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Abstract The Critical Problem in matroid theory is the problem to determine the critical exponent of a given
representable matroid over a finite field. In this paper, we study the critical exponents of a class of representable
matroids over finite fields, called Dowling matroids. Then the critical problem for a Dowling matroid is corresponding
to the classical problem in coding theory to determine the maximum dimension k such that there exists an [n, k, d]q
code for given n, d and q. We give a necessary and sufficient condition on the critical exponents of Dowling matroids
by using a coding theoretical approach..
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1 Introduction

Let Fq be a finite field of q elements. For any subset S ⊆ Fn
q , define the critical exponent of S as follows:

c(S, q) := n−max{r ∈ Z+ : there exists an r-dimensional subspace D of Fn
q with D ∩ S = ∅}.

This number was introduced in the context of matroid theory where it has attracted attention as the critical
exponent c(M, q) of an Fq-representable matroid M . An Fq-representable matroid is a matroid obtained by a set of
vectors in Fn

q . Thus we identify an Fq-representable matroid M as a subset S ⊆ Fn
q in this paper.

The Critical Problem for matroids is the following problem introduced by Crapo and Rota in [6] to unify some
problems in extremal combinatorial theory including such celebrated conjectures as the Tutte’s 5-flow conjecture
([24]) and the Hadwiger conjecture ([9]) in graph theory. See [16] for further details.

Problem 1 (Crapo and Rota in [6]) For given subset S ⊆ Fn
q , find the critical exponent c(S, q).

For instance, see [2,4,5,7,14,15,16,17] for general results on the Critical Problem. As an application of this
problem, Abbe, Alon and Bandeira consider the special case in which S is an annulus, motivated by the problem of
correcting a black and white pixel image with respect to two possible corrected images, one light and one dark in [1].

For any vector x = (x1, x2, . . . , xn) ∈ Fn
q , we define the Hamming weight of x as follows:

wt(x) := |{i : xi ̸= 0}|.

The weight-t Dowling matroid B̃n,t(q) is defined by

B̃n,t(q) := {x ∈ Fn
q : wt(x) ≤ t}.
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A Dowling matroid might contain parallel vectors. Hence we shall consider it as a subset of points in projective
space PG(n − 1, q) for convenience by regarding PG(n − 1, q) as the set of all non-zero vectors in Fn

q , modulo the
equivalence relation x ∼ y whenever y = αx for some nonzero scalar α. Then we define a Dowling geometry Bn,t(q)
as a set of all points in PG(n− 1, q) having weight at most t (cf. [16]). The Dowling geometry Bn,t(q) can be viewed
as a simplification of the Dowling matroid B̃n,t(q). In this paper, we mainly consider the Critical Problem for the
special case S = Bn,t(q).

The remainder of the paper is organized as follows. In Section 2, we show some known results on the critical
exponents of Dowling geometries (matroids). In Section 3, we present some bounds on the critical exponents of
Dowling geometries and we study a necessary and sufficient condition for the equality c(Bn,t(q), q) = n− r to hold.
In Section 4, we give more detailed necessary and sufficient conditions, given special values of q and r, for the equality
c(Bn,t(q), q) = n− r to hold.

2 Preliminary Results

An [n, k, d]q code C is a k-dimensional subspace of Fn
q with

d = min{wt(x) : 0 ̸= x ∈ C}.

One of the main problems in coding theory is to determine the minimum value of n for which there exists an
[n, k, d]q code C. The following lower bound, known as the Griesmer bound, is essential in this paper (see, for instance,
Theorem 2.7.4 in [12]):

n ≥ gq(k, d) :=
k−1∑
i=0

⌈
d

qi

⌉
,

where ⌈x⌉ denotes the smallest integer not less than x for any non-negative real number x. An [n, k, d]q code C is
called a Griesmer code if C attains the Griesmer bound, that is, n = gq(k, d). The following is one of the existence
theorems on Griesmer codes (Theorem 1.2 in [19]).

Theorem 2 ([19]) There exists a [gq(k, d), k, d]q Griesmer code for all d, k = 1, 2 and for
d ≥ (k − 2)qk−1 − (k − 1)qk−2 + 1, k ≥ 3 for all q.

The Critical Problem for S = B̃n,t(q) is equivalent to a classical problem in coding theory and it turns out that
the Griesmer bound plays an important role in this problem.

Problem 3 For given n, t, and q (n, t ∈ Z+, q : a prime power), determine the maximum dimension k such that
there exists an [n, k, t+ 1]q code.

In particular, c(B̃n,t(q), q) = n−k where k is the maximal dimension for which there exists an [n, k, t+1]q code.

Example 4 Consider

S = B̃4,2(2) = {x ∈ F4
2 : wt(x) ≤ 2}.

We first note that there does not exist a [4, 2, 3]2 code by the Griesmer bound. On the other hand, D = {(0, 0, 0, 0), (1, 1, 1, 0)}
is a [4, 1, 3]2 code. Therefore it follows that

c(B̃4,2(2), 2) = 4− 1 = 3.

In [16], Kung gives a necessary and sufficient condition for the equality c(Bn,t(q), q) = n− 1 to hold.

Theorem 5 ([16]) Bn,t(q) has critical exponent n− 1 if and only if

n− 1 ≥ t ≥ n−
⌈

n

q + 1

⌉
.
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In the proof of this theorem, he mainly argues about the Hamming weight of the sum of two vectors over Fq.
Now we provide another proof of this theorem by using the Griesmer bound for corresponding linear codes over Fq.

(Another Proof of Theorem 5) There exists an [n, 1, t + 1]q code if and only if n ≥ t + 1. From Theorem 2, there
exists an [n, 2, t+1]q code if and only if n ≥ gq(2, t+1) = t+1+ ⌈(t+ 1)/q⌉, or, equivalently, n ≥ t+1+(t+1)/q.
Therefore, Bn,t(q) has critical exponent n− 1 if and only if

t+ 1 ≤ n < t+ 1+
t+ 1

q
= (t+ 1)(1 + 1/q) = (t+ 1)(q + 1)/q.

The proof follows easily. 2

In this paper, we generalize the bound in Theorem 5 by using a similar argument as above for c(Bn,t(q), q) = n−r.
In addition, Kung gives a sufficient condition for the equality c(Bn,t(q), q) = n− 2 to hold.

Theorem 6 ([16]) Let

e =

⌊
1

q + 1+ 1
q

⌈
n

q + 1

⌉⌋
.

Suppose that e ≥ 1 and

n−
⌈

n

q + 1

⌉
− 1 ≥ t ≥ n−

⌈
n

q + 1

⌉
− e.

Then Bn,t(q) has critical exponent n− 2.

The converse of Theorem 6 is not true in general. For instance, there does not exist a [23, 3, 13]2 code by the
Griesmer bound. Here,

G =

(
1 0 1 0 1 0 · · · 1 0 1 1 1
0 1 0 1 0 1 · · · 0 1 1 1 1

)
is a generator matrix of a [23, 2, 13]2 code; that is, a matrix whose rows span such a code. Therefore we have that

c(B23,12(2), 2) = 23− 2 = 21.

However it follows that

n−
⌈

n

q + 1

⌉
− 1 = 23− 8− 1 = 14,

n−
⌈

n

q + 1

⌉
− e = 23− 8− 2 = 13.

One of the main purposes of this paper is to find necessary and sufficient conditions for when c(Bn,t(q), q) = n−2.

3 Conditions for c(Bn,t(q), q) = n − r

Let r be a positive integer with 1 ≤ r ≤ n− 1. Firstly, we shall prove some bounds on critical exponents of Dowling
geometries to give a sufficient condition for when c(Bn,t(q), q) = n− r. The following lemma is essential.

Lemma 7 If there exists an [n, k, d(≥ 2)]q code, then there also exists an [n, k, d− 1]q code.

Proof. Let C be an [n, k, d]q code with d ≥ 2 and let x be a codeword in C with wt(x) = d. Suppose that i-th
coordinate of x is nonzero. Consider the code

C′ = {(y1, . . . , yi−1, 0, yi+1, . . . , yn) : y = (y1, . . . , yn) ∈ C}.

If there exist two distinct codewords u = (u1, . . . , un),v = (v1, , . . . , vn) ∈ C such that

(u1, . . . , ui−1, 0, ui+1, . . . , un) = (v1, . . . , vi−1, 0, vi+1, . . . , vn),

then wt(u− v) = 1, which contradicts that d ≥ 2. Therefore, the code C′ is an [n, k, d− 1]q code. 2

Set θi := qi + qi−1 + · · ·+ q + 1, for any non-negative integer i, and set θ−1 := 0.
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Proposition 8 Let r be a positive integer with 1 ≤ r ≤ n− 1. Suppose that

n−
⌈
nθr−1

θr

⌉
≤ t.

Then Bn,t(q) has critical exponent at least n− r.

Proof. Note that

n−
⌈
nθr−1

θr

⌉
≤ t ⇔ n− nθr−1

θr
< t+ 1

⇔ qrn∑r
i=0 q

i
< t+ 1

⇔ n∑r
i=0

1
qi

< t+ 1

⇔ n <

r∑
i=0

t+ 1

qi
= (t+ 1)

r∑
i=0

1

qi
.

Therefore, there does not exist an [n, r+1, t+1]q code. Hence we have c(Bn,t(q), q) ≥ n−r. The proposition follows.
2

We may modify Proposition 8 for some special cases of n. Let s0, s1, . . . , sr−1 be integers such that 0 ≤ si ≤ q

for i = 0, 1, . . . , r − 1.

Lemma 9 The parameter s0 = 0 if and only if

s0θr−1 ≤
r−1∑
i=1

siq
i−1.

Proof. If s0 = 0, then 0 ≤
∑r−1

i=1 siq
i−1 holds from the definition.

Conversely, we assume that s0 ≥ 1. Then we have that

s0θr−1 −
r−1∑
i=1

siq
i−1 ≥ θr−1 −

r−1∑
i=1

siq
i−1 =

r−1∑
i=1

(q − si)q
i−1 + 1 ≥ 1 > 0.

2

Now we consider the following cases for given n and r.

Cases Ar:

(1) n = θrm+
∑r−1

i=0 siq
i for some m ≥ 0 and some s0, . . . , sr−1 with s0 ≥ s1 ≥ · · · ≥ sr−1 and

(s0, s1, . . . , sr−1) ̸= (α, α, . . . , α), (β + 1, β, . . . , β) for any α, β such that 0 ≤ α ≤ q and 0 ≤ β ≤ q − 1;
(2) n = θrm +

∑r−1
i=0 siq

i for some m ≥ 0 and some s0, . . . , sr−1 with sr−1 ̸= 0 and 0 = s0 ≤ s1 ≤ · · · ≤ sr−1,
si+1 − si ≤ q − 1 for all i = 0, 1, . . . , r − 2.

Proposition 10 For given n and r(≥ 2), suppose that either of the cases Ar holds. If

n−
⌈
nθr−1

θr

⌉
− 1 ≤ t,

then Bn,t(q) has critical exponent at least n− r.
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Proof. Assume that there exists an [n, r+1, d := n− ⌈nθr−1/θr⌉]q code. It follows from Lemma 9 that if the case
Ar(1) holds, the the inequality s0θr−1 −

∑r−1
i=1 siq

i−1 > 0 holds, and if the case Ar(2) holds, the the inequality
s0θr−1 −

∑r−1
i=1 siq

i−1 ≤ 0 holds. Therefore, in the case Ar(j) for each j = 1, 2, we have that

d = n−
⌈
nθr−1

θr

⌉
= θrm+

r−1∑
i=0

siq
i −

⌈
θr−1m+

r−1∑
i=1

siq
i−1 +

s0θr−1 −
∑r−1

i=1 siq
i−1

θr

⌉

= qrm+ sr−1q
r−1 +

r−2∑
i=0

(si − si+1)q
i + (j − 2),

⌈
d

ql

⌉
=

⌈
qr−lm+ sr−1q

r−l−1 +
r−2∑
i=l

(si − si+1)q
i−l +

∑l−1
i=0(si − si+1)q

i + (j − 2)

ql

⌉
, l = 1, 2, . . . , r − 1,

⌈
d

qr

⌉
=

⌈
m+

sr−1q
r−1 +

∑r−2
i=0 (si − si+1)q

i + (j − 2)

qr

⌉
.

Suppose that the case Ar(1) holds. From the assumptions in this proposition, we have that∑l−1
i=0(si − si+1)q

i − 1 ≥ −1 for all l = 1, 2, . . . , r− 1, and there exist some j such that
∑j−1

i=0 (si − si+1)q
i − 1 > 0.

Then it follows that ⌈
d

ql

⌉
≥ qr−lm+ sr−1q

r−l−1 +
r−2∑
i=l

(si − si+1)q
i−l, l = 1, 2, . . . , r − 1,⌈

d

qr

⌉
≥ m+ 1.

Moreover there exists some j such that⌈
d

qj

⌉
= qr−jm+ sr−1q

r−j−1 +
r−2∑
i=j

(si − si+1)q
i−j + 1.

Thus we have that

gq(r + 1, d) =
r∑

i=0

⌈
d

qi

⌉
≥ θrm+

r−1∑
i=0

siq
i + 1 = n+ 1 > n.

Next we suppose that the case Ar(2) holds. Then we have that

sr−1q
r−1 −

r−2∑
i=0

(si+1 − si)q
i ≥ sr−1q

r−1 −
r−2∑
i=0

(q − 1)qi = (sr−1 − 1)qr−1 + 1 > 0.

Therefore it follows that⌈
d

ql

⌉
= qr−lm+ sr−1q

r−l−1 −
r−2∑
i=l

(si+1 − si)q
i−l, l = 1, 2, . . . , r − 1,⌈

d

qr

⌉
= m+ 1.

Thus we have that

gq(r + 1, d) =
r∑

i=0

⌈
d

qi

⌉
= θrm+

r−1∑
i=0

siq
i + 1 = n+ 1 > n.

This argument shows that there does not exist the assumed code. Therefore the proposition follows. 2

Now we study a necessary condition for the equality c(Bn,t(q), q) = n− r to hold for any positive integer r with
1 ≤ r ≤ n − 1. From the definition of the critical exponent of Bn,t(q) and Lemma 7, it is sufficient to show the
existence of an [n, r + 1, d]q code C such that d ≥ t+ 1 when we prove that c(Bn,t(q), q) ≤ n− (r + 1).
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Lemma 11 Suppose that n = θrm with m ≥ 1. If

n−
⌈
nθr−1

θr

⌉
− 1 ≥ t,

then c(Bn,t(q), q) ≤ n− (r + 1).

Proof. In this case, set

d := n−
⌈
nθr−1

θr

⌉
= θrm− θr−1m = qrm.

Let Sr be a simplex [θr, r + 1, qr]q code with a generator matrix Gr. Then we can construct a [θrm, r + 1, qrm]q
code by m concatenations of Sr, that is, a linear code having generator matrix [Gr, Gr, · · · , Gr]. 2

Lemma 12 Suppose that n = θrm+ θr − θl with m ≥ 0 and 0 ≤ l ≤ r − 1. If

n−
⌈
nθr−1

θr

⌉
− 1 ≥ t,

then c(Bn,t(q), q) ≤ n− (r + 1).

Proof. Set

d := n−
⌈
nθr−1

θr

⌉
= (m+ 1)θr − θl −

⌈
(m+ 1)θr−1 − θl−1 −

θr−1 − θl−1

θr

⌉
= qr(m+ 1)− θl + θl−1 = qr(m+ 1)− ql.

It turns out that there exists an [(m+1)θr, r+1, qr(m+1)]q Griesmer code from Lemma 11. By Lemma 2.1 in
[20], there exists an [(m+ 1)θr − θl, r + 1, d′ ≥ qr(m+ 1)− ql(= d)]q code for m ≥ 0 and 0 ≤ l ≤ r − 1. 2

Consider n = θrm +
∑r−1

i=0 siq
i with m ≥ 0 and s0 ≤ s1 ≤ · · · ≤ sr−1. We assume that s0 = 0. If sr−1 = 0,

then sr−2 = · · · = s1 = 0 and so n = θrm, which is corresponding to the case in Lemma 11. Thus we suppose
that sr−1 ̸= 0. If sl − sl−1 = q for some l, 1 ≤ l ≤ r − 1, then we have that q = sl(= sl+1 = · · · = sr−1) and
0 = sl−1(= sl−2 = · · · = s1), and so n = θrm+ θr − θl, which is corresponding to the case in Lemma 12. Moreover
if sl − sl−1 ≤ q − 1 for all l, 1 ≤ l ≤ r − 1, then this case is corresponding to the case in Proposition 10 (2). Thus
we may assume that s0 ̸= 0.

Lemma 13 Set n = θrm+
∑r−1

i=0 siq
i with m ≥ r − 1. Suppose that s0 ≤ s1 ≤ · · · ≤ sr−1 with s0 ̸= 0. If

n−
⌈
nθr−1

θr

⌉
− 1 ≥ t,

then c(Bn,t(q), q) ≤ n− (r + 1).

Proof. Set d := n− ⌈nθr−1/θr⌉. From Lemma 9, we have that s0θr−1 −
∑r−1

i=1 siq
i−1 > 0. Thus it follows that

d = θrm+
r−1∑
i=0

siq
i −

⌈
θr−1m+

r−1∑
i=1

siq
i−1 +

s0θr−1 −
∑r−1

i=1 siq
i−1

θr

⌉

= qrm+ sr−1q
r−1 +

r−2∑
i=0

(si − si+1)q
i − 1.

It is straightforward that si+1 − si ̸= q for all i, 1 ≤ i ≤ r − 2. So we have the following:

ql −
l−1∑
i=0

(si+1 − si)q
i = {q − (sl − sl−1)}ql−1 − (sl−1 − sl−2)q

l−2 − · · · − (s1 − s0)

≥ ql−1 − (q − 1)ql−2 − · · · − (q − 1)q − (q − 1)

= 1 > 0, l = 1, 2, . . . , r − 1.
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Therefore it follows that⌈
d

ql

⌉
=

⌈
qr−lm+ sr−1q

r−l−1 −
r−2∑
i=l

(si+1 − si)q
i−l −

∑l−1
i=0(si+1 − si)q

i + 1

ql

⌉

= qr−lm+ sr−1q
r−l−1 −

r−2∑
i=l

(si+1 − si)q
i−l, l = 1, 2, . . . , r − 1,

⌈
d

qr

⌉
=

m+
sr−1q

r−1 −
(∑r−2

i=0 (si+1 − si)q
i + 1

)
qr

 = m+ a,

where a is equal to either 0 or −1. Thus we have that

gq(k, d) =
r∑

i=0

⌈
d

qi

⌉
= θrm+

r−1∑
i=0

siq
i + a = n+ a.

From Lemma 2, there exist such Griesmer codes for m ≥ r − 1. 2

Lemma 14 Set n = θrm+
∑r−1

i=0 siq
i with m ≥ r − 1. Suppose that (s0, s1, . . . , sr−1) = (β + 1, β, . . . , β) for some

β such that 0 ≤ β ≤ q − 1. If

n−
⌈
nθr−1

θr

⌉
− 1 ≥ t,

then c(Bn,t(q), q) ≤ n− (r + 1).

Proof. Set

d := n−
⌈
nθr−1

θr

⌉
= qrm+ sr−1q

r−1 +
r−2∑
i=0

(si − si+1)q
i − 1 = qrm+ βqr−1,⌈

d

ql

⌉
= qr−lm+ βqr−l−1, l = 1, 2, . . . , r − 1,⌈

d

qr

⌉
=

⌈
m+

βqr−1

qr

⌉
= m+ a,

where a is equal to either 1 or 0. Thus we have that

gq(r + 1, d) = θrm+
r−1∑
i=0

siq
i + b = n+ b,

where b is equal to either 0 or −1. From Lemma 2, there exist such codes for m ≥ r − 1. 2

In addition, we have the following lemma.

Lemma 15 Suppose that n = θrm + θr − θl + 1 with m ≥ 0 and 0 ≤ l ≤ r − 1. If n − ⌈nθr−1/θr⌉ − 1 ≥ t, then
c(Bn,t(q), q) ≤ n− (r + 1).

Proof. Set

d := n−
⌈
nθr−1

θr

⌉
= (m+ 1)θr − θl + 1−

⌈
(m+ 1)θr−1 − θl−1 +

θl−1

θr

⌉
= (m+ 1)θr − θl + 1− (m+ 1)θr−1 + θl−1 − 1 = qr(m+ 1)− ql.

From Lemma 12, there exists an [(m+1)θr − θl, r+1, d′ ≥ qr(m+1)− ql]q code C. By adding 0 to each codewords
in C as an extra coordinate, we can construct an [(m+ 1)θr − θl + 1, r + 1, d′ ≥ qr(m+ 1)− ql]q code. 2

Now we would label the cases that we consider in Lemmas 11–15 for given n and r as follows:

Cases Br:

(1) n = θrm for some m ≥ 1;
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(2) n = θrm+ θr − θl for some m ≥ 0 and some l with 0 ≤ l ≤ r − 1;
(3) n = θrm+

∑r−1
i=0 siq

i for some m ≥ r − 1 and some s0, . . . , sr−1 with 1 ≤ s0 ≤ s1 ≤ · · · ≤ sr−1;
(4) n = θrm+ βθr−1 + 1 for some m ≥ r − 1 and some β with 0 ≤ β ≤ q − 1;
(5) n = θrm+ θr − θl + 1 for some m ≥ 0 and some l with 0 ≤ l ≤ r − 1.

Furthermore, we consider the following cases for given n and r:

Cases Cr:

(1) n = θrm+
∑r−1

i=0 siq
i for some m ≥ r − 1 and some s0, . . . , sr−1 with s0 = s1 = · · · = sr−2 > sr−1;

(2) n = θrm +
∑r−1

i=0 siq
i for some m ≥ r − 1 and some s0, . . . , sr−1 with sr−1 ̸= 0, 0 = s0 ≤ s1 ≤ · · · ≤ sr−1,

si+1 − si ≤ q − 1 for all i = 0, 1, . . . , r − 2.

Proposition 16 For given n and r(≥ 2), suppose that either of the cases Cr holds. If

n−
⌈
nθr−1

θr

⌉
− 2 ≥ t,

then c(Bn,t(q), q) ≤ n− (r + 1).

Proof. We prove that there exists an [n, r + 1, d := n− ⌈nθr−1/θr⌉ − 1]q code.
We firstly suppose that the case Cr(1) holds. Then it follows that

d = n−
⌈
nθr−1

θr

⌉
− 1 = qrm+ sr−1q

r−1 +
r−2∑
i=0

(si − si+1)q
i − 2

= qrm+ sr−1q
r−1 + (sr−2 − sr−1)q

r−2 − 2,⌈
d

q

⌉
=


2m+ sr−1 (q = 2, r = 2)

2r−1m+ sr−12
r−2 + 2r−3 − 1 (q = 2, r ≥ 3)

qr−1m+ sr−1q
r−2 + (sr−2 − sr−1)q

r−3 (q ̸= 2)

,

⌈
d

ql

⌉
= qr−lm+ sr−1q

r−l−1 + (sr−2 − sr−1)q
r−l−2, l = 2, . . . , r − 2,⌈

d

qr−1

⌉
=

⌈
qm+ sr−1 +

(sr−2 − sr−1)q
r−2 − 2

qr−1

⌉
= qm+ sr−1 + 1 or qm+ sr−1,⌈

d

qr

⌉
=

⌈
m+

sr−1q
r−1 + (sr−2 − sr−1)q

r−2 − 2

qr

⌉
= m+ 1 or m.

Thus we have that

gq(r + 1, d) ≤ θrm+
r−1∑
i=0

siq
i = n.

From Lemma 2, there exist such codes for m ≥ r − 1.
Next we suppose that the case Cr(2) holds. Then si+1 − si ≤ q − 1 for all i = 0, 1, . . . , r − 2 implies that∑l−1

i=0(si+1 − si)q
i +1 = ql for any l if and only if si+1 − si = q− 1 for all i = 0, 1, . . . , l− 1. However this does not
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happen in the case s0 ≤ s1 ≤ · · · ≤ sr−1. Hence we have that

d = n−
⌈
nθr−1

θr

⌉
− 1

= θrm+
r−1∑
i=0

siq
i −

⌈
θr−1m+

r−1∑
i=1

siq
i−1 +

s0θr−1 −
∑r−1

i=1 siq
i−1

θr

⌉
− 1

= qrm+ sr−1q
r−1 +

r−2∑
i=0

(si − si+1)q
i − 1,

⌈
d

ql

⌉
=

⌈
qr−lm+ sr−1q

r−l−1 −
r−2∑
i=l

(si+1 − si)q
i−l −

∑l−1
i=0(si+1 − si)q

i + 1

ql

⌉

= qr−lm+ sr−1q
r−l−1 −

r−2∑
i=l

(si+1 − si)q
i−l, l = 1, 2, . . . , r − 1,

⌈
d

qr

⌉
=

⌈
m+

sr−1q
r−1 −

∑r−2
i=0 (si+1 − si)q

i − 1

qr

⌉
= m+ 1.

Thus we have that

gq(r + 1, d) =
r∑

i=0

⌈
d

qi

⌉
= θrm+

r−1∑
i=0

siq
i = n.

From Lemma 2, there also exist such Griesmer codes for m ≥ r − 1.
The proposition follows. 2

Based on the previous argument, we prove a necessary and sufficient condition for the equality Bn,t(q) = n− r

to hold in each case on given n and r.
Proposition 8 holds without any condition. The following result is obtained by combining Proposition 8 and

Lemmas 11–15.

Theorem 17 For given n and r, suppose that both one of the cases Br and one of the cases Br−1 hold. Then
Bn,t(q) has critical exponent n− r if and only if

n−
⌈
nθr−2

θr−1

⌉
− 1 ≥ t ≥ n−

⌈
nθr−1

θr

⌉
.

Now we shall modify the above theorem for some special cases on n as discussed in Proposition 10.
By combining Proposition 10 and Proposition 16, we have the following results.

Theorem 18 For given n and r(≥ 3), suppose that all of one of the cases Ar−1, one of the cases Br, and one of
the cases Cr−1 hold. Then Bn,t(q) has critical exponent n− r if and only if

n−
⌈
nθr−2

θr−1

⌉
− 2 ≥ t ≥ n−

⌈
nθr−1

θr

⌉
.

Theorem 19 For given n and r, suppose that all of one of the cases Ar, one of the cases Br−1, and one of the
cases Cr hold. Then Bn,t(q) has critical exponent n− r if and only if

n−
⌈
nθr−2

θr−1

⌉
− 1 ≥ t ≥ n−

⌈
nθr−1

θr

⌉
− 1.

Theorem 20 For given n and r(≥ 3), suppose that all of one of the cases Ar, one of the cases Ar−1, one of the
cases Cr, and one of the cases Cr−1 hold. Then Bn,t(q) has critical exponent n− r if and only if

n−
⌈
nθr−2

θr−1

⌉
− 2 ≥ t ≥ n−

⌈
nθr−1

θr

⌉
− 1.
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4 Some Special Cases

4.1 Conditions for c(Bn,t(q), q) = n− 2, 2 ≤ q ≤ 9

In this subsection, we study the conditions for when c(Bn,t(q), q) = n− 2. For a given q, any positive integer n(≥ 3)
is uniquely written as follows by using non-negative integers m, a, b, c:

n = (q2 + q + 1)m+

{
aq + b (0 ≤ a ≤ q − 1 and 0 ≤ b ≤ q − 1;)
q2 + c (0 ≤ c ≤ q.)

Suppose that n = (q2+q+1)m+aq+b with m ≥ 1. By Theorem 5 and Proposition 10, we have that in the cases
that (1) b > a with b− a ̸= 1, and (2) b = 0 and a ̸= 0, if n−⌈n/(q + 1)⌉− 1 ≥ t ≥ n−

⌈
(q + 1)n/(q2 + q + 1)

⌉
− 1,

then c(Bn,t(q), q) = n− 2. From Theorem 5 and Proposition 16, the converse is true for these cases.
By Theorem 5 and Proposition 8, it also finds that if n−⌈n/(q+1)⌉− 1 ≥ t ≥ n−⌈(q+1)n/(q2 + q+1)⌉, then

c(Bn,t(q), q) = n − 2. By applying Lemma 14 for the case of b − a = 1, Lemma 13 for the case of 0 < b ≤ a, and
Lemma 11 for the case of a = b = 0, it turns out that the converse is also true for these cases.

In addition, if n = (q2 + q + 1)m + q2 + c with m ≥ 1, then the necessary and sufficient condition also holds
from Lemmas 13 and 12.

Theorem 21 Suppose that n ≥ q2+q+1. If n = (q2+q+1)m+aq+b for m ≥ 1, 0 ≤ a ≤ q−1, and 0 ≤ b ≤ q−1
such that (1) a < b with b− a ̸= 1, or (2) a > b = 0 holds, then Bn,t(q) has critical exponent n− 2 if and only if

n−
⌈

n

q + 1

⌉
− 1 ≥ t ≥ n−

⌈
(q + 1)n

q2 + q + 1

⌉
− 1.

Otherwise Bn,t(q) has critical exponent n− 2 if and only if

n−
⌈

n

q + 1

⌉
− 1 ≥ t ≥ n−

⌈
(q + 1)n

q2 + q + 1

⌉
.

In order to determine the condition for when c(Bn,t(q), q) = n−2 completely, it is sufficient to study the existences
of some linear codes. From Theorem 2, it is sufficient to study the existences of [n, 3, n− ⌈(q + 1)n/(q2 + q + 1)⌉]q
codes or [n, 3, n − ⌈(q + 1)n/(q2 + q + 1)⌉ − 1]q codes for any (3 ≤)n = aq + b, 0 ≤ a ≤ q − 1 and 0 ≤ b ≤ q − 1,
or m = q2 + c, 0 ≤ c ≤ q. By using Lemmas 12 and 15, we find that there exist [n, 3, n− ⌈(q + 1)n/(q2 + q + 1)⌉]q
codes for n = q2 + q, q2, q2 + 1. Therefore we study the existences of some [n, 3, d]q codes with the following types
of parameters from Lemmas 13 and 14 ((I), (II), (III)), and Proposition 16 ((IV), (V)).

(I) [aq + b, 3, d = (q − 1)a+ b− 1]q codes with 1 ≤ b ≤ a(≤ q − 1);
(II) [q2 + c, 3, d = (q − 1)q + c− 1]q codes with 2 ≤ c ≤ q − 1;
(III) [aq + a+ 1, 3, d = aq]q codes with 0 ≤ a ≤ q − 2;
(IV) [aq + b, 3, d = (q − 1)a+ b− 2]q codes with (q − 1 ≥)b > a ≥ 0 and b− a ̸= 1;
(V) [aq, 3, d = (q − 1)a− 1]q codes with 1 ≤ a ≤ q − 1.

According to [3], [8] and [21], we can summarize the nonexistence of codes of types (I) and (III) for q ≤ 9 in Table
1. We remark that there always exists an [n, 3, d− 1]q code for any parameters in Table 1.

On the codes of types (II) and (IV), we find that there exist such codes with these parameters for q ≤ 9 (see,
[8]). The non-existing codes of type (V) for q ≤ 9 are the [16, 3, 13]8 code and the [18, 3, 15]9 code. In addition, we
remark that there exist a [16, 3, 12]8 code and the [18, 3, 14]9 code (see, [3,8,21]).

Then we prove a necessary and sufficient condition for the equality c(Bn,t(q), q) = n− 2 to hold with 2 ≤ q ≤ 9.

Corollary 22 Let n be a positive integer with n ≥ 3. Then Bn,t(2) has critical exponent n− 2 if and only if

n−
⌈
n

3

⌉
− 1 ≥ t ≥ n−

⌈
3n

7

⌉
+ a,

where

a =

{
−1 (n ≡ 2 (mod 7))

0 (otherwise).
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q 3 4 4 5 5 5 5 5 5 7 7 7 7 7
(a, b) (1, 2) (2, 2) (2, 3) (2, 2) (3, 2) (3, 3) (1, 2) (2, 3) (3, 4) (2, 2) (3, 2) (4, 2) (5, 2) (3, 3)
n 5 10 11 12 17 18 7 13 19 16 23 30 37 24
d 3 7 8 9 13 14 5 10 15 13 19 25 31 20
q 7 7 7 7 7 7 7 7 7 7 8 8 8 8

(a, b) (4, 3) (5, 3) (4, 4) (5, 4) (5, 5) (1, 2) (2, 3) (3, 4) (4, 5) (5, 6) (2, 1) (2, 2) (4, 2) (6, 2)
n 31 38 32 39 40 9 17 25 33 41 17 18 34 50
d 26 32 27 33 34 7 14 21 28 35 14 15 29 43
q 8 8 8 8 8 8 8 8 8 8 8 8 8 9

(a, b) (4, 3) (5, 3) (6, 3) (4, 4) (5, 4) (6, 4) (5, 5) (6, 5) (6, 6) (2, 3) (4, 5) (5, 6) (6, 7) (2, 1)
n 35 43 51 36 44 52 45 53 54 19 37 46 55 19
d 30 37 44 31 38 45 39 46 47 16 32 40 48 16
q 9 9 9 9 9 9 9 9 9 9 9 9 9 9

(a, b) (2, 2) (3, 2) (3, 3) (4, 2) (4, 3) (4, 4) (5, 4) (5, 5) (6, 2) (6, 3) (6, 4) (6, 5) (6, 6) (7, 3)
n 20 29 30 38 39 40 49 50 56 57 58 59 60 66
d 17 25 26 33 34 35 43 44 49 50 51 52 53 58
q 9 9 9 9 9 9 9 9 9 9 9

(a, b) (7, 4) (7, 5) (7, 6) (7, 7) (1, 2) (2, 3) (3, 4) (4, 5) (5, 6) (6, 7) (7, 8)
n 67 68 69 70 11 21 31 41 51 61 71
d 59 60 61 62 9 18 27 36 45 54 63

Table 1 Non-existing codes of types (I) and (III)

Corollary 23 Let n be a positive integer with n ≥ 3 and let q be a prime power with 3 ≤ q ≤ 9. If (n, q) = (16, 8),
or (18, 9), then Bn,t(q) has critical exponent n− 2 if and only if

n−
⌈

n

q + 1

⌉
− 1 ≥ t ≥ n−

⌈
(q + 1)n

q2 + q + 1

⌉
− 2.

If (n, q) is one of the pairs in Table 1, or n = aq + b for any (a, b) such that 0 ≤ a < b ≤ q − 1 and b− a ̸= 1, then
Bn,t(q) has critical exponent n− 2 if and only if

n−
⌈

n

q + 1

⌉
− 1 ≥ t ≥ n−

⌈
(q + 1)n

q2 + q + 1

⌉
− 1.

Otherwise Bn,t(q) has critical exponent n− 2 if and only if

n−
⌈

n

q + 1

⌉
− 1 ≥ t ≥ n−

⌈
(q + 1)n

q2 + q + 1

⌉
.

4.2 Conditions for c(Bn,t(2), 2) = n− r, r = 3, 4

Throughout of this subsection, we only consider the binary case.
According to Theorem 2 and [8], it is known that there always exists a Griesmer [n, 4, d]2 code for any positive

integer d. From Theorem 17, if n ≡ 0, 1, 7, 8, 9, 11, 12, 13, 14 (mod 15), then there exists any [n, 4, n − ⌈7n/15⌉]2
code and there does not exist any [n, 4, n− ⌈7n/15⌉+1]2 code. From Theorem 18, if n ≡ 3, 4, 6, 10 (mod 15), then
there exists any [n, 4, n − ⌈7n/15⌉ − 1]2 code and there does not exist any [n, 4, n − ⌈7n/15⌉]2 code. Moreover, by
calculation, if n ≡ 2 (mod 15), then there exists any [n, 4, n − ⌈7n/15⌉ − 1]2 code and there does not exist any
[n, 4, n− ⌈7n/15⌉]2 code, and if n ≡ 5 (mod 15), then there exists any [n, 4, n− ⌈7n/15⌉]2 code and there does not
exist any [n, 4, n− ⌈7n/15⌉+ 1]2 code. On combining these facts, we immediately deduce the following.

Proposition 24 Let n be a positive integer with n ≥ 4. Set

a :=

{
−2 (n ≡ 2 (mod 7))

−1 (otherwise)
and b :=

{
−1 (n ≡ 2, 3, 4, 6, 10 (mod 15))

0 (otherwise).

Then Bn,t(2) has critical exponent n− 3 if and only if

n−
⌈
3n

7

⌉
+ a ≥ t ≥ n−

⌈
7n

15

⌉
+ b.
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According to Theorem 2 and [8], it is known that there exists any Griesmer [n, 5, d]2 code except for [8, 5, 3]2,
[9, 5, 4]2, [12, 5, 5]2, [13, 5, 6]2 codes, and there exist [8, 5, 2]2, [9, 5, 3]2, [12, 5, 4]2, [13, 5, 5]2 codes. Let n be a positive
integer with n ≥ 5 and n ̸= 8, 9, 12, 13. From Theorem 17, if n ≡ 0, 1, 15, 16, 23, 24, 27, 28, 29, 30 (mod 31), then
there exists any [n, 5, n−⌈15n/31⌉]2 code and there does not exist any [n, 5, n−⌈15n/31⌉+1]2 code. From Theorem
18, if n ≡ 7, 8, 12, 14, 20, 22, 26 (mod 31), then there exists any [n, 5, n−⌈15n/31⌉−1]2 code and there does not exist
any [n, 5, n−⌈15n/31⌉]2 code. Moreover, by calculation, if n ≡ 2, 3, 4, 5, 6, 10, 11, 18, 19, 21, 25 (mod 31), then there
exists any [n, 5, n−⌈15n/31⌉− 1]2 code and there does not exist any [n, 5, n−⌈15n/31⌉]2 code, and if n ≡ 9, 13, 17
(mod 31), then there exists any [n, 5, n − ⌈15n/31⌉]2 code and there does not exist any [n, 5, n − ⌈15n/31⌉ + 1]2
code. Therefore we have the following result.

Proposition 25 Let n be a positive integer with n ≥ 5. Set

a :=

{
−2 (n ≡ 2, 3, 4, 6, 10 (mod 15))

−1 (otherwise),

b :=

{
−1 (n ≡ 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 14, 18, 19, 20, 21, 22, 25, 26 (mod 31))

0 (otherwise),

c :=

{
−2 (n = 8, 12)

−1 (n = 9, 13).

Suppose that n ̸= 8, 9, 12, 13. Then Bn,t(2) has critical exponent n− 4 if and only if

n−
⌈
7n

15

⌉
+ a ≥ t ≥ n−

⌈
15n

31

⌉
+ b.

Suppose that n = 8, 9, 12, or 13. Then Bn,t(2) has critical exponent n− 4 if and only if

n−
⌈
7n

15

⌉
− 2 ≥ t ≥ n−

⌈
15n

31

⌉
+ c.
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