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Construction of new Griesmer codes of dimension 5
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Abstract. We construct Griesmer [n, 5, d]q codes for 2q4 − 3q3 + 1 ≤ d ≤
2q4 − 3q3 + q2 and for 3q4 − 5q3 + q2 + 1 ≤ d ≤ 3q4 − 5q3 + 2q2 for every
q ≥ 3 using some geometric methods such as projective dual and geometric
puncturing.

1 Introduction

Let Fn
q denote the vector space of n-tuples over Fq, the field of q elements. The weight of a

vector x ∈ Fn
q , denoted by wt(x), is the number of nonzero coordinate positions in x. An

[n, k, d]q code C is a k dimensional subspace of Fn
q with minimum weight d = min{wt(c) >

0 | c ∈ C} over Fq. The weight distribution of C is the list of numbers Ai which is the
number of codewords of C with weight i. A fundamental problem in coding theory is to
find nq(k, d), the minimum length n for which an [n, k, d]q code exists for given q, k, d, see
[5, 6]. The Griesmer bound is a well-known lower bound on the length n:

n ≥ gq(k, d) =
k−1∑
i=0

⌈
d/qi

⌉
,

where ⌈x⌉ denotes the smallest integer greater than or equal to x. C is called Griesmer
if it attains the Griesmer bound, i.e., n = gq(k, d). The values of nq(k, d) are determined
for all d only for some small values of q and k [4, 14]. For the case k = 5, it is known that
nq(5, d) = gq(5, d) for q

4 − 2q2 + 1 ≤ d ≤ q4, 2q4 − 2q3 − q2 + 1 ≤ d ≤ 2q4 + q2 − q and
d ≥ 3q4 − 4q3 + 1 for all q [9, 12], see also [3]. The main aim of this paper is to construct
new Griesmer codes of dimension 5, which are already known for q ≤ 4 but not for q ≥ 5,
as follows.

Theorem 1.1. There exist [gq(5, d), 5, d]q codes for 2q4 − 3q3 + 1 ≤ d ≤ 2q4 − 3q3 + q2

for all q.

Theorem 1.2. There exist [gq(5, d), 5, d]q codes for 3q
4−5q3+q2+1 ≤ d ≤ 3q4−5q3+2q2

for all q.

Corollary 1.3. nq(5, d) = gq(5, d) for 2q4 − 3q3 + 1 ≤ d ≤ 2q4 − 3q3 + q2 for all q.

Corollary 1.4. nq(5, d) = gq(5, d) for 3q4 − 5q3 + q2 + 1 ≤ d ≤ 3q4 − 5q3 + 2q2 for all q.
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2 Construction methods through projective geome-

try

We denote by PG(r, q) the projective geometry of dimension r over Fq. The 0-flats, 1-
flats, 2-flats, 3-flats and (r−1)-flats are called points, lines, planes, solids and hyperplanes,
respectively. We denote by Fj the set of j-flats of PG(r, q) and by θj the number of points
in a j-flat, i.e., θj = (qj+1 − 1)/(q − 1).

Let C be an [n, k, d]q code having no coordinate which is identically zero. Then, the
columns of a generator matrix of C can be considered as a multiset of n points in Σ =
PG(k − 1, q) denoted by MC. We see linear codes from this geometrical point of view.
An i-point is a point of Σ which has multiplicity i in MC. Denote by γ0 the maximum
multiplicity of a point from Σ in MC. Let Ci be the set of i-points in Σ, 0 ≤ i ≤ γ0, and
let λi = |Ci|, where |Ci| denotes the number of elements in a set Ci. For any subset S of
Σ, the multiplicity of S, denoted by mC(S), is defined as mC(S) =

∑γ0
i=1 i·|S∩Ci|. Then

we obtain the partition Σ =
∪γ0

i=0 Ci such that n = mC(Σ) and

n− d = max{mC(π) | π ∈ Fk−2}.
Conversely such a partition Σ =

∪γ0
i=0 Ci as above gives an [n, k, d]q code in the natural

manner. A hyperplane H with t = mC(H) is called a t-hyperplane. A t-line, a t-plane
and t-solid are defined similarly. Denote by ai the number of i-hyperplanes in Σ. The
list of the values ai is called the spectrum of C, which can be calculated from the weight
distribution by ai = An−i/(q− 1) for 0 ≤ i ≤ n−d. An [n, k, d]q code is called m-divisible
if all codewords have weights divisible by an integer m > 1.

Lemma 2.1 ([16]). Let C be an m-divisible [n, k, d]q code with q = ph, p prime, whose
spectrum is

(an−d−(w−1)m, an−d−(w−2)m, · · · , an−d−m, an−d) = (αw−1, αw−2, · · · , α1, α0),

where m = pr for some 1 ≤ r < h(k − 2) satisfying λ0 > 0 and∩
H∈Fk−2, mC(H)<n−d

H = ∅.

Then there exists a t-divisible [n∗, k, d∗]q code C∗ with t = qk−2/m, n∗ =
∑w−1

j=0 jαj =

ntq − d
m
θk−1, d

∗ = ((n− d)q − n)t whose spectrum is

(an∗−d∗−γ0t, an∗−d∗−(γ0−1)t, · · · , an∗−d∗−t, an∗−d∗) = (λγ0 , λγ0−1, · · · , λ1, λ0).

The condition “
∩

H∈Fk−2, mC(H)<n−dH = ∅” is needed to guarantee that C∗ has dimension

k although it was missing in Lemma 5.1 of [16]. Note that a generator matrix for C∗ is
given by considering (n− d− jm)-hyperplanes as j-points in the dual space Σ∗ of Σ for
0 ≤ j ≤ w − 1 [16]. C∗ is called a projective dual of C, see also [2] and [6].

Lemma 2.2 ([13, 15]). Let C be an [n, k, d]q code and let ∪γ0
i=0Ci be the partition of

Σ = PG(k− 1, q) obtained from C. If ∪i≥1Ci contains a t-flat ∆ and if d > qt, then there
exists an [n− θt, k, d

′]q code C ′ with d′ ≥ d− qt.

The code C ′ in Lemma 2.2 can be constructed from C by removing the t-flat ∆ from the
multiset MC. In general, the method for constructing new codes from a given [n, k, d]q
code by deleting the coordinates corresponding to some geometric object in PG(k − 1, q)
is called geometric puncturing [13].
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3 Proof of Theorems

A set S of s points in PG(r, q), r ≥ 2, is called an s-arc if no r+1 points are on the same
hyperplane, see [7] and [8] for arcs. When q ≥ r, one can take a normal rational curve
as a (q + 1)-arc, see Theorem 27.5.1 in [8]. We first assume k ≥ 4 and q ≥ k − 2. Let
H be a hyperplane of Σ = PG(k − 1, q). Take a (q + 1)-arc K = {P0, P1, . . . , Pq} in H
and a line l0 = {P0, Q1, . . . , Qq} of Σ not contained in H meeting H at the point P0. Let
li be the line joining Pi and Qi for 1 ≤ i ≤ q. Setting C1 = (∪q

i=1li) \ l0, Cq−1 = {P0},
C0 = Σ \ (C1 ∪ Cq−1), we get the following.

Lemma 3.1. For k ≥ 4, q ≥ k− 2, a q-divisible [q2 + q− 1, k, q2 − (k− 3)q]q code exists.

From now on, let k = 5 and take a normal rational curve as K with

P0(1, 0, 0, 0, 0), Pi(1, α
i, α2i, α3i, 0), Pq(0, 0, 0, 1, 0)

in H = [0, 0, 0, 0, 1] and the line l0 with

Qi(1, 0, 0, 0, α
i) for 1 ≤ i ≤ q − 1, Qq(0, 0, 0, 0, 1),

where [a0, a1, . . . , a4] stands for the hyperplane in PG(4, q) defined by the equation a0x0+
a1x1+ · · ·+a4x4 = 0 and α is a primitive element of Fq. Let Hij be the solid containing li
and lj for 1 ≤ i < j ≤ q. Take the point Q(0, 1, 0, 0, 1) and the plane δ0 = ⟨l0, Q⟩, where
⟨χ1, χ2, · · · ⟩ denotes the smallest flat containing χ1, χ2, · · · . For any point P (a, b, 0, 0, c) ∈
δ0, the solid Hiq = [0,−αi, 1, 0, 0] contains P if and only if b = 0, i.e., P ∈ l0 for
1 ≤ i ≤ q − 1. Similarly, the solid Hij = [0, αi+j,−αi − αj, 1, 0] contains P if and only if
P ∈ l0 for 1 ≤ i < j ≤ q − 1. Thus, Hij ∩ δ0 = l0 for 1 ≤ i < j ≤ q, and no (3q − 1)-solid
contains Q. Hence, adding Q as a q-point, we get a q-divisible [q2+2q−1, 5, q2−q]q code,
say C1. The spectrum of C1 can be derived as follows. The (3q−1)-solids consist of the

(
q
2

)
solids Hij, 1 ≤ i < j ≤ q, the q solids ⟨δ0, li⟩, 1 ≤ i ≤ q, the q2 solids through one of the
planes ⟨Q, li⟩ other than ⟨δ0, li⟩, 1 ≤ i ≤ q, and the q2 solids through the line ⟨Q,P0⟩ not
containing δ0. Hence a3q−1 =

(
q
2

)
+2q2 + q. From two equalities aq−1 + a2q−1 + a3q−1 = θ4

and 2aq−1 + a2q−1 = 2q4 − q3 + 1, we get the spectrum of C1 as follows.

Lemma 3.2. There exists a q-divisible [q2 + 2q − 1, 5, q2 − q]q code C1 with spectrum

(aq−1, a2q−1, a3q−1) = (

(
q

2

)
+ q4 − 2q3 + q2, 3q3 − 3q2 + q + 1,

(
q

2

)
+ 2q2 + q).

For a geometrical object S in Σ, we denote by S∗ the corresponding object in the dual
space Σ∗ of Σ. Considering the (q − 1)-solids, (2q − 1)-solids and (3q − 1)-solids in Σ as
2-points, 1-points and 0-points in Σ∗ respectively, we get the following q2-divisible code
C∗
1 as a projective dual of C1.

Lemma 3.3. There exists a q2-divisible [2q4 − q3 + 1, 5, 2q4 − 3q3 + q2]q code C∗
1 .

Lemma 3.4. The multiset MC∗
1
contains q − 1 skew lines.
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Proof. Recall that the 0-points for C∗
1 are the (3q − 1)-solids for C1. Since l0 is contained

in Hij and δ0 in Σ, the plane l∗0 contains exactly
(
q
2

)
+ q 0-points in Σ∗ corresponding

to the solids Hij, 1 ≤ i < j ≤ q, and the solids ⟨δ0, li⟩, 1 ≤ i ≤ q. Hence the number
of i-points with i ≥ 1 on l∗0 is θ2 −

(
q
2

)
− q ≥ q − 1. On the other hand, the plane l∗0 is

contained in the solids P ∗
0 and Q∗

1, . . . , Q
∗
q in Σ∗, and the 0-points in Σ∗ corresponding to

the q2 solids through the line ⟨Q,P0⟩ not containing δ0 in Σ are contained in P ∗
0 . Since

the set of 0-points in Σ∗ corresponding to the q2 solids through one of the planes ⟨Q, li⟩
other than ⟨δ0, li⟩, 1 ≤ i ≤ q, in Σ meets Q∗

i in a line on the plane l∗i , one can take q − 1
skew lines in the solid Q∗

1 containing no 0-point in Σ∗.

Next, we construct another q-divisible code from the first assumption: H is a hyper-
plane of Σ = PG(k − 1, q) with k ≥ 4, q ≥ k − 2, K = {P0, P1, . . . , Pq} is a (q + 1)-
arc in H, l0 = {P0, Q1, . . . , Qq} is a line of Σ not contained in H meeting H at the

point P0, and li = ⟨Pi, Qi⟩, 1 ≤ i ≤ q. Setting C1 = (∪q−1
i=1 li) \ l0, Cq−1 = {P0, Qq},

Cq = {Pq},C0 = Σ \ (C1 ∪ Cq−1 ∪ Cq), we get the following.

Lemma 3.5. For k ≥ 4, q ≥ k− 2, a q-divisible [q2+2q− 2, k, q2− (k− 3)q]q code exists.

Let k = 5 again and take the (q + 1)-arc and the line l0 as for C1. Similarly to the
situation for constructing C1, no (4q − 2)-solid contains δ0. Hence, we get a q-divisible
[q2 + 3q − 2, 5, q2 − q]q code by adding Q as a q-point, say C2. The (4q − 2)-solids consist
of the

(
q
2

)
solids Hij, 1 ≤ i < j ≤ q, the q solids ⟨δ0, li⟩, 1 ≤ i ≤ q, the q − 1 solids

⟨Pq, Q, li⟩ with 1 ≤ i ≤ q− 1, the q solids through the plane ⟨Q, lq⟩ not containing l0, and
the q solids through the plane ⟨Q,P0, Pq⟩ not containing l0. Hence a4q−2 =

(
q
2

)
+ 4q − 1.

The (3q − 2)-solids consist of the q solids through the plane ⟨l0, li⟩ not containing Q and
any other lj ̸= li for 1 ≤ i ≤ q, the solid through δ0 not containing li, 1 ≤ i ≤ q,
the q2 − q solids through the line ⟨P0, Pq⟩ not containing Q and Qq, the q2 − q solids
through the line ⟨P0, Q⟩ not containing l0 and Pq, the q2 − q solids through the line lq
not containing Q and P0, the q

2 − q solids through the line ⟨Q,Qq⟩ not containing l0 and
Pq, the (q − 1)2 solids through the plane ⟨Pq, li⟩ not containing Q and Qq, 1 ≤ i ≤ q − 1,
the (q − 1)2 solids through the plane ⟨Q, li⟩ not containing l0 and Pq, 1 ≤ i ≤ q − 1, and
the (q − 1)2 solids through the plane ⟨Q,Pq, Qi⟩ not containing l0 and li, 1 ≤ i ≤ q − 1.
Hence a3q−2 = 7q2 − 9q + 4. From two equalities aq−2 + a2q−2 + a3q−2 + a4q−2 = θ4 and
3aq−2 + 2a2q−2 + a3q−2 = 3q4 − 2q3 + 1, we get the following.

Lemma 3.6. There exists a q-divisible [q2 + 3q − 2, 5, q2 − q]q code C2 with spectrum

(aq−2, a2q−2, a3q−2, a4q−2) = (q4 − 4q3 + 6q2 − 4q + 1,

5q3 − 12q2 + 10q − 3−
(
q

2

)
, 7q2 − 9q + 4,

(
q

2

)
+ 4q − 1).

Considering the ((4− j)q− 2)-solids in Σ as j-points in Σ∗ for j = 0, 1, 2, 3, we get the
following q2-divisible code C∗

2 as a projective dual of C2.

Lemma 3.7. There exists a q2-divisible [3q4 − 2q3 + 1, 5, 3q4 − 5q3 + 2q2]q code C∗
2 .

Lemma 3.8. The multiset MC∗
2
contains q − 1 skew lines.
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Proof. Note that the 0-points for C∗
2 are the (4q−2)-solids for C2. From the same argument

with that in the proof of Lemma 3.4, the plane l∗0 contains exactly
(
q
2

)
+ q 0-points in Σ∗,

and the number of i-points with i ≥ 1 on l∗0 is θ2 −
(
q
2

)
− q ≥ q− 1. Recall that the plane

l∗0 is contained in the solids P ∗
0 and Q∗

1, . . . , Q
∗
q in Σ∗. The 0-points in Σ∗ corresponding to

the q solids through the plane ⟨Q,P0, Pq⟩ not containing l0 in Σ are contained in P ∗
0 , and

the 0-points in Σ∗ corresponding to the q solids through the plane ⟨Q, lq⟩ not containing
l0 in Σ are contained in Q∗

q. Since the set of 0-points in Σ∗ corresponding to the q − 1
solids ⟨Pq, Q, li⟩ with 1 ≤ i ≤ q− 1 in Σ meets Q∗

i in a point on the plane l∗i , one can take
q − 1 skew lines in the solid Q∗

1 containing no 0-point in Σ∗.

It follows from Lemmas 3.4 and 3.8 that applying Lemma 2.2 repeatedly (for t = 1),
starting with the code C∗

1 or C∗
2 , we get the following.

Lemma 3.9. There exist [2q4−q3+1−s(q+1), 5, 2q4−3q3+q2−sq]q codes for 1 ≤ s ≤ q−1.

Lemma 3.10. There exist [3q4 − 2q3 + 1 − s(q + 1), 5, 3q4 − 5q3 + 2q2 − sq]q codes for
1 ≤ s ≤ q − 1.

Lemmas 3.9 and 3.10 provide the codes needed in Theorems 1.1 and 1.2 respectively,
when d is divisible by q. The rest of the codes required for the theorem can be obtained
by puncturing these divisible codes.

Remark 1. As the projective duals of the q-divisible codes in Lemmas 3.1 and 3.5,
one can obtain qk−3-divisible Griesmer codes of dimension k with minimum weights d =
(k− 3)qk−1− 2qk−2+ qk−3 and (k− 2)qk−1− 4qk−2+2qk−3. Griesmer codes with the same
parameters are known to exist, see [1], [11] for k = 4 and [10] for k ≥ 5.
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