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Construction of new Griesmer codes of dimension 5
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Abstract. We construct Griesmer [n,5,d], codes for 2¢* -3¢ +1<d<
2¢* — 3¢% + ¢* and for 3¢* — 5¢® + ¢®* + 1 < d < 3¢* — 5¢ + 2¢° for every
q > 3 using some geometric methods such as projective dual and geometric
puncturing.

1 Introduction

Let [, denote the vector space of n-tuples over F,, the field of g elements. The weight of a
vector € Fy, denoted by wt(x), is the number of nonzero coordinate positions in . An
[n, k,d], code C is a k dimensional subspace of Fy with minimum weight d = min{wt(c) >

0| ¢ € C} over F,. The weight distribution of C is the list of numbers A; which is the
number of codewords of C with weight i. A fundamental problem in coding theory is to
find n,(k, d), the minimum length n for which an [n, k, d], code exists for given ¢, k, d, see
[5, 6]. The Griesmer bound is a well-known lower bound on the length n:

k—1
n > gq(k,d) :Z d/q
=0

where [2] denotes the smallest integer greater than or equal to z. C is called Griesmer
if it attains the Griesmer bound, i.e., n = g,(k,d). The values of n,(k, d) are determined
for all d only for some small values of ¢ and k [4, 14]. For the case k = 5, it is known that
ng(5,d) = gq(5,d) for ¢* —2¢* +1 < d < ¢*, 2¢* —2¢° —* +1 < d < 2¢" + ¢* — g and
d > 3q* —4¢* + 1 for all ¢ [9, 12], see also [3]. The main aim of this paper is to construct
new Griesmer codes of dimension 5, which are already known for ¢ < 4 but not for ¢ > 5,
as follows.

Theorem 1.1. There exist [g,(5,d),5,d], codes for 2¢* —3¢*> +1 < d < 2¢* — 3¢> + ¢*
for all q.

Theorem 1.2. There exist [g,(5,d), 5, d], codes for 3¢* —5¢* +¢*+1 < d < 3¢* — 54> +24¢*
for all q.

Corollary 1.3. n,(5,d) = g,(5,d) for 2¢* —3¢* + 1 < d < 2¢* — 3¢® + ¢* for all q.
Corollary 1.4. n,(5,d) = g,(5,d) for 3¢* —5¢> + ¢* + 1 < d < 3¢* — 5¢* + 2¢* for all q.

LCorresponding author.
E-mail addresses: syb01016@edu.osakafu-u.ac.jp (Y. Inoue), maruta@mi.s.osakafu-u.ac.jp (T. Maruta)

1



2 Construction methods through projective geome-
try

We denote by PG(r, q) the projective geometry of dimension r over F,. The 0-flats, 1-
flats, 2-flats, 3-flats and (r—1)-flats are called points, lines, planes, solids and hyperplanes,
respectively. We denote by F; the set of j-flats of PG(r, ¢) and by 6; the number of points
in a j-flat, ie., 68; = (¢t —1)/(¢ —1).

Let C be an [n, k,d], code having no coordinate which is identically zero. Then, the
columns of a generator matrix of C can be considered as a multiset of n points in 3 =
PG(k — 1,q) denoted by M. We see linear codes from this geometrical point of view.
An i-point is a point of ¥ which has multiplicity ¢ in M. Denote by 7 the maximum
multiplicity of a point from ¥ in M¢. Let C; be the set of i-points in 3, 0 < i < 7, and
let \; = |C;|, where |C;] denotes the number of elements in a set C;. For any subset S of
¥, the multiplicity of S, denoted by me(S), is defined as me(S) = .2, 4:|SNC;|. Then
we obtain the partition ¥ = (J}?, C; such that n = m¢(X) and

n—d=max{me(r) | 7 € Fr_2}.

Conversely such a partition ¥ = (J)2, C; as above gives an [n, k,d], code in the natural
manner. A hyperplane H with ¢ = m¢(H) is called a t-hyperplane. A t-line, a t-plane
and t-solid are defined similarly. Denote by a; the number of i-hyperplanes in . The
list of the values a; is called the spectrum of C, which can be calculated from the weight
distribution by a; = A,_;/(¢—1) for 0 <i <n—d. An [n, k,d], code is called m-divisible
if all codewords have weights divisible by an integer m > 1.

Lemma 2.1 ([16]). Let C be an m-divisible [n,k,d], code with ¢ = p", p prime, whose
spectrum, is

(an—d—(w—l)ma Qp—d—(w—2)m> """ » An—d—m, an—d) = (aw—17 Qyy—2,°°+ , 01, Oé(]),
where m = p" for some 1 < r < h(k — 2) satisfying \g > 0 and
N H=9.
HeFi_o, me(H)<n—d
Then there exists a t-divisible [n*, k,d*], code C* with t = ¢*~2/m, n* = Z;U;ol joy =
ntq — L6,_1, d* = ((n — d)q — n)t whose spectrum is

(an*—d*—’yota an*fd*f(’yofl)h sty Apr—g*—t, an*—d*) - (>\’yo) )\’yo—la Ty, )\1; )\0)
fi « I ST * : :
The condition “Myez, . me(Hy<n—d H = (” is needed to guarantee that C* has dimension

k although it was missing in Lemma 5.1 of [16]. Note that a generator matrix for C* is
given by considering (n — d — jm)-hyperplanes as j-points in the dual space ¥* of ¥ for
0<j<w-—1][16]. C* is called a projective dual of C, see also [2] and [6].

Lemma 2.2 ([13, 15]). Let C be an [n,k,d], code and let U°,C; be the partition of
Y =PG(k —1,q) obtained from C. If U;>1C; contains a t-flat A and if d > ¢*, then there
exists an [n — 0y, k,d'), code C" with d' > d — ¢".

The code C' in Lemma 2.2 can be constructed from C by removing the t-flat A from the
multiset Mc. In general, the method for constructing new codes from a given [n, k, d],
code by deleting the coordinates corresponding to some geometric object in PG(k — 1, q)
is called geometric puncturing [13].



3 Proof of Theorems

A set S of s points in PG(r,q), r > 2, is called an s-arc if no r + 1 points are on the same
hyperplane, see [7] and [8] for arcs. When ¢ > r, one can take a normal rational curve
as a (¢ + 1)-arc, see Theorem 27.5.1 in [8]. We first assume k& > 4 and ¢ > k — 2. Let
H be a hyperplane of ¥ = PG(k — 1,q). Take a (¢ + 1)-arc K = {Fy, P,...,P,} in H
and a line ly = { P, Q1, ..., Q,} of ¥ not contained in H meeting H at the point . Let
l; be the line joining P; and Q; for 1 < i < ¢. Setting Cy = (UL_,;) \ lo, Cpu1 = { P},
Co =2\ (C1 UC,_1), we get the following.

Lemma 3.1. Fork >4, ¢ > k—2, a q-divisible [¢* + q — 1,k,q* — (k — 3)q|, code exists.
From now on, let £ = 5 and take a normal rational curve as K with
Py(1,0,0,0,0), Pi(1,a',a*, a”,0), P,(0,0,0,1,0)
in H =10,0,0,0,1] and the line [, with
Qi(1,0,0,0,a") for 1 <i <gq—1, Q,(0,0,0,0,1),

where [ag, ay, . .., a4] stands for the hyperplane in PG(4, q) defined by the equation agxo+
a121 + - - - +asxy = 0 and o is a primitive element of F;. Let H;; be the solid containing /;
and [; for 1 <7 < j < ¢. Take the point (0,1,0,0,1) and the plane dy = (ly, @), where
(X1, X2, - -+ ) denotes the smallest flat containing x1, x2, - - - . For any point P(a,b,0,0,c) €
do, the solid H;, = [0,—a’,1,0,0] contains P if and only if b = 0, i.e., P € [ for
1 <i < ¢— 1. Similarly, the solid H;; = [0,a"™, —a’ — a7, 1,0] contains P if and only if
Pelyforl1 <i<j<gqg-—1. Thus, H;Nd =1 for 1 <i< j<g, and no (3¢ — 1)-solid
contains @. Hence, adding ) as a g-point, we get a g-divisible [¢* +2q— 1,5, ¢* — q|, code,
say C;. The spectrum of C; can be derived as follows. The (3¢ — 1)-solids consist of the (g)
solids H;j, 1 <i < j < g, the ¢ solids (dp,[;), 1 <i < g, the ¢* solids through one of the
planes (Q,[;) other than (dp,[;), 1 <i < g, and the ¢* solids through the line (Q, Pp) not
containing dy. Hence ag,—1 = (g) +2¢? + ¢. From two equalities Qg1+ Q2g—1 + A3g—1 = 04
and 2a, 1 + as,—1 = 2¢* — ¢* + 1, we get the spectrum of C; as follows.

Lemma 3.2. There exists a q-divisible [¢* + 2q — 1,5,¢* — q, code Cy with spectrum

q

2

(Qg1, Qg 1,034-1) = ((g) +q¢" —2¢°+¢*, 3¢ = 3¢* + ¢ + 1, (

) +2¢* + q).

For a geometrical object S in Y, we denote by S* the corresponding object in the dual
space X* of ¥. Considering the (¢ — 1)-solids, (2¢ — 1)-solids and (3¢ — 1)-solids in ¥ as
2-points, 1-points and 0-points in X* respectively, we get the following ¢*-divisible code
Cy as a projective dual of C;.

Lemma 3.3. There exists a ¢*-divisible [2¢* — ¢ + 1,5,2¢* — 3¢ + ¢%], code C.

Lemma 3.4. The multiset Mc; contains q — 1 skew lines.



Proof. Recall that the 0-points for C; are the (3¢ — 1)-solids for C;. Since [ is contained
in H;; and dp in X, the plane [j contains exactly (g) + ¢ 0-points in X* corresponding
to the solids H;;, 1 < i < j < ¢, and the solids (d,;), 1 < i < ¢. Hence the number
of i-points with 2 > 1 on [j is 0, — (g) —q > g — 1. On the other hand, the plane [j is
contained in the solids P and @7, ..., Q; in X*, and the O-points in X* corresponding to
the ¢? solids through the line (@, Py) not containing §y in X are contained in P;. Since
the set of O-points in ¥* corresponding to the ¢* solids through one of the planes (Q, ;)
other than (dg,[;), 1 <i < ¢, in ¥ meets QF in a line on the plane [, one can take ¢ — 1
skew lines in the solid ()7 containing no 0-point in »*. O

Next, we construct another ¢-divisible code from the first assumption: H is a hyper-
plane of ¥ = PG(k — 1,q) with k > 4, ¢ > k-2, K = {P, P,..., B} is a (¢ + 1)-
arc in H, ly = {Py,Q1,...,Q,} is a line of ¥ not contained in H meeting H at the
point Py, and [; = (P;,Q,), 1 < i < q. Setting Cy = (U{1;) \ lo, Cyur = {Po, Qu},
Cy={F,},.Co =%\ (C1UCy_1 UCy), we get the following.

Lemma 3.5. Fork >4, ¢ > k—2, a g-divisible [¢* +2q — 2, k, ¢* — (k — 3)q], code exists.

Let £ = 5 again and take the (¢ 4+ 1)-arc and the line [y as for C;. Similarly to the
situation for constructing C;, no (4¢ — 2)-solid contains dy. Hence, we get a g¢-divisible
[¢* +3q —2,5,¢° — q], code by adding @ as a g-point, say C. The (4¢q — 2)-solids consist
of the (g) solids H;j, 1 < i < j < ¢, the ¢ solids (dp,l;), 1 < ¢ < g, the ¢ — 1 solids
(P, Q,1;) with 1 <14 < ¢—1, the ¢ solids through the plane (@, [,) not containing [, and
the ¢ solids through the plane (Q, Fy, P,) not containing ly. Hence ay,—o = (g) +4q — 1.
The (3¢ — 2)-solids consist of the ¢ solids through the plane (ly, ;) not containing ) and
any other [; # [; for 1 < i < g, the solid through dy not containing /;, 1 < 7 < ¢,
the ¢* — ¢ solids through the line (P, P,) not containing @ and Q,, the ¢*> — ¢ solids
through the line (P, @) not containing Iy and P,, the ¢* — ¢ solids through the line [,
not containing @ and Py, the ¢* — ¢ solids through the line (Q, @,) not containing l, and
P,, the (¢ — 1) solids through the plane (P,,;) not containing @ and Q,, 1 <i <q—1,
the (¢ — 1)? solids through the plane (@, ;) not containing Iy and P,, 1 <i < ¢ — 1, and
the (¢ — 1)? solids through the plane (Q, P,, Q;) not containing ly and [;, 1 <14 < g — 1.
Hence agq;—2 = 7¢*> — 9g + 4. From two equalities Aq—2 + A2g—2 + A34—2 + Asg—2 = 04 and
309 + 2a24—2 + azg—2 = 3¢* — 2¢* + 1, we get the following.

Lemma 3.6. There exists a q-divisible [¢* + 3q — 2,5, ¢* — q], code Cy with spectrum

(ag—2, A2g—2, A3g—2, Qag—2) = (q4 —4¢® +6¢* —4q + 1,

5¢° — 12¢* 4+ 10q — 3 — (‘2’),7q2—9q+4, (g) +4q —1).

Considering the ((4 — j)q — 2)-solids in ¥ as j-points in ¥* for j = 0, 1,2, 3, we get the
following ¢*-divisible code Cj as a projective dual of Cy.

Lemma 3.7. There exists a ¢*-divisible [3¢* — 2¢® 4+ 1,5, 3¢* — 5¢% + 2¢?], code C;.

Lemma 3.8. The multiset Mc; contains ¢ — 1 skew lines.



Proof. Note that the 0-points for C} are the (4g—2)-solids for C5. From the same argument
with that in the proof of Lemma 3.4, the plane [j contains exactly (g) + ¢ O-points in »*,
and the number of ¢-points with ¢ > 1 on [ is 0 — (g) —q > q — 1. Recall that the plane
l5 is contained in the solids Fj and @7, ..., @y in X*. The 0-points in ¥* corresponding to
the ¢ solids through the plane (Q, Py, P,) not containing [y in ¥ are contained in Py, and
the 0-points in ¥* corresponding to the ¢ solids through the plane (@, ;) not containing
lp in 3 are contained in (). Since the set of O-points in 3* corresponding to the ¢ — 1
solids (P,, @, ;) with 1 <i < g—1in X meets @ in a point on the plane [}, one can take
g — 1 skew lines in the solid ()7 containing no 0-point in X*. O]

It follows from Lemmas 3.4 and 3.8 that applying Lemma 2.2 repeatedly (for ¢t = 1),
starting with the code C; or C;, we get the following.

Lemma 3.9. There exist [2¢*—¢*+1—s(q+1),5, 2¢*—3¢*+¢*—sq|, codes for1 < s < g—1.

Lemma 3.10. There exist [3¢* — 2¢°> + 1 — s(q¢+ 1),5,3¢* — 5¢® + 2¢* — sq], codes for
1<s<qg—1.

Lemmas 3.9 and 3.10 provide the codes needed in Theorems 1.1 and 1.2 respectively,
when d is divisible by g. The rest of the codes required for the theorem can be obtained
by puncturing these divisible codes.

Remark 1. As the projective duals of the ¢-divisible codes in Lemmas 3.1 and 3.5,
one can obtain ¢*~3-divisible Griesmer codes of dimension k with minimum weights d =
(k—3)¢" 1 —2¢" 2+ ¢ 3 and (k —2)¢" ! —4¢* 2 +2¢"3. Griesmer codes with the same
parameters are known to exist, see [1], [11] for £ = 4 and [10] for k£ > 5.
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