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Streamwise-wall-normal (x–y) and streamwise-spanwise (x–z) plane measurements
are carried out by planar particle image velocimetry for turbulent channel flows over
anisotropic porous media at the bulk Reynolds number Reb=900–13600. Three kinds
of anisotropic porous media are constructed to form the bottom wall of the channel.
Their wall permeability tensor is designed to have a larger wall-normal diagonal
component (wall-normal permeability) than the other components. Those porous media
are constructed to have three mutually orthogonal principal axes and those principal axes
are aligned with the Cartesian coordinate axes of the flow geometry. Correspondingly,
the permeability tensor of each porous medium is diagonal. With the x–y plane data, it
is found that the turbulence level well accords with the order of the streamwise diagonal
component of the permeability tensor (streamwise permeability). This confirms that the
turbulence strength depends on the streamwise permeability rather than the wall-normal
permeability when the permeability tensor is diagonal and the wall-normal permeability
is larger than the streamwise permeability. To generally characterize those phenomena
including isotropic porous wall cases, modified permeability Reynolds numbers are
discussed. From a quadrant analysis, it is found that the contribution from sweeps and
ejections to the Reynolds shear stress near the porous media are influenced by the
streamwise permeability. In the x–z plane data, although low- and high-speed streaks
are also observed near the anisotropic porous walls, large-scale spanwise patterns appear
at a larger Reynolds number. It is confirmed that they are due to the transverse waves
induced by the Kelvin-Helmholtz instability. By the two-point correlation analyses of
the fluctuating velocities, the spacing of the streaks and the wavelengths of the Kelvin-
Helmholtz waves are discussed. It is then confirmed that the transition point from the
quasi-streak structure to the roll-cell like structure is characterized by the wall-normal
distance including the zero plane displacement of the log-law velocity which can be
characterized by the streamwise permeability. It is also confirmed that the normalized
wavelengths of the K-H waves over porous media are in the similar range to that of the
turbulent mixing layers irrespective of the anisotropy of the porous media.

Key words:

1. Introduction

The surfaces of real materials are usually not hydraulically smooth but have roughness.
In many such cases, flows are turbulent and sometimes the fluids permeate through the
wall materials. Accordingly, many studies tried to reveal turbulent flow characteristics

† Email address for correspondence: suga@me.osakafu-u.ac.jp
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over permeable porous surfaces (e.g. Lovera & Kennedy 1969; Ruff & Gelhar 1972; Ho &
Gelhar 1973; Zagni & Smith 1976; Zippe & Graf 1983; Kong & Schetz 1982; Shimizu et al.
1990; Pokrajac & Manes 2009; Manes et al. 2009; Detert et al. 2010; Suga et al. 2010,
2011, 2013; Manes et al. 2011). The permeability was defined in the convection theory
through porous media by Darcy (1856) who found proportionality between flow rates
and pressure differences applied to uniform porous media. Whitaker (1986) theoretically
derived this Darcy’s law as

⟨ui⟩ = −Kij

µ

(
∂ ⟨p⟩f

∂xj
− ρgj

)
, (1.1)

where Kij , ⟨ui⟩, ⟨p⟩f , gj , µ and ρ are the permeability tensor, the superficially volume
averaged velocity ui, the volume averaged fluid-phase pressure, the gravitational accel-
eration, the dynamic viscosity and the density of the fluid, respectively. Although the
permeability is a second order symmetric tensor (Whitaker 1969, 1996; Guin et al. 1971;
Szabo 1968; Case & Cochran 1972), most studies on flows over porous media applied
isotropic porous media and thus did not consider anisotropic permeability effects. Even
though Kong & Schetz (1982) measured flows over anisotropic porous media such as
perforated titanium sheets and bonded screen sheets, they did not discuss the anisotropic
effects. Of course, in cases that the structures of the porous media are isotropic, it does
not cause any problem to define one of the diagonal components of the permeability
tensor as the “permeability” of the material. In fact, it has been usually applied in the
literature as in Zagni & Smith (1976); Zippe & Graf (1983); Pokrajac & Manes (2009);
Suga et al. (2010); Manes et al. (2011).
From those studies, what was confirmed was that the wall permeability affects the

turbulent flow structure near wall surfaces enhancing momentum exchange. Since a per-
meable wall allows turbulent eddy vortex motions to penetrate into the wall, turbulence
is not totally damped unlike near a solid wall resulting in strong wall shear. This has
been also proven by the direct numerical simulation (DNS) studies (Breugem et al.
2006; Chandesris et al. 2013; Rosti et al. 2015; Kuwata & Suga 2016a) of turbulent
porous walled channel flows. The DNSs by Breugem et al. (2006); Kuwata & Suga
(2016a) and the particle image velocimetry (PIV) experiments by Suga et al. (2010,
2011, 2017); Suga (2016) for turbulent channel flows over isotropic porous media indicated
correlations between the inner phenomena and the permeability Reynolds number defined
as ReK = up

τ

√
K/ν based on the friction velocity up

τ on the porous wall, the wall
permeability K and the fluid kinematic viscosity ν. Suga et al. (2010, 2017) suggested
that the von Kármán coefficient κ, the zero plane displacement d and the roughness
scale h of the mean velocity profiles were well correlated to the permeability Reynolds
number. Manes et al. (2011) performed laser Doppler anemometer (LDA) measurements
for turbulent boundary layers over polyurethane foam and suggested that the shear
penetration depth and the boundary layer thickness could be used respectively for the
inner and outer length scales of boundary layers.
As for the near-wall turbulence structure, the DNS and PIV studies(Breugem et al.

2006; Suga et al. 2011, 2017; Kuwata & Suga 2016a,b) reported that the streaky structure
was destroyed in the turbulent porous walled channel flows by the wall permeability
effects. Above a highly permeable wall, Breugem et al. (2006) concluded that turbulent
transport across the permeable wall prevented the development of elongated streaks.
From the comparison between the results of permeable and impermeable rough wall
cases, Kuwata & Suga (2016a) concluded that over the permeable wall, the vortex
structure became shredded and the streamwise coherent structure became shorter due to
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the wall roughness whereas the streaks over the permeable wall tended to be vaguer and
its spanwise pitch became approximately twice as wide as that over the impermeable
walls. By analysing the PIV data in streamwise-wall-normal (x-y) planes, Suga et al.
(2011) showed that the structure tended to be disordered with the increase of the wall
permeability while it looked similar to that in an impermeable wall boundary layer at
a lower wall permeability. The quadrant analysis confirmed that sweeps became most
dominant very near the permeable wall whilst that of ejections overtook them in the
buffer region. As the wall permeability increased, stronger sweeps tended to move toward
the wall though ejections tended to lose their strength since the fluid pushed out from the
porous wall by the strong inward penetrating motions had already lost its energy inside
the porous wall. Accordingly, these phenomena led to shortened longitudinal vortices
since vortex motions could not be maintained with the weakened ejections over highly
permeable walls. From the PIV data in streamwise-spanwise (x–z) planes, Suga et al.
(2017) found that the spanwise spacing of the streaks and the spanwise integral length
could be reasonably correlated with the wall normal distance including the zero-plane
displacement of the log-law mean velocity profile. Since the zero-plane displacement d is
considered to be a length scale associated with the penetration, the distribution profiles
of those scales indicated that the structure maintained the characteristics of streaks
even if their bottom parts penetrated into the porous walls by the downward motions
of the Kelvin-Helmholtz (K-H) waves. Accordingly, the surviving elements of the streaks
existed and their scales maintained correlations with the wall normal distance under the
transitional range starting from (y + d)p+ ≃ 100, while those elements tended to be
disturbed by the K-H instability as the wall normal distance increases. Here, (·)p+ is a
normalized value using the friction velocity at the porous wall. Above the transitional
region, flow motions with much larger spanwise length scales started to be dominant.
Such flow motions were considered to be transverse roll cells which were generated by
the K-H instability and destroyed the longitudinal vortex trails.
Although the above mentioned understandings are pieces to construct the fluid dy-

namics over porous media, we need further knowledge of the anisotropic permeability
effects to make it complete. Correspondingly, for turbulent flows over anisotropic porous
media, Kuwata & Suga (2017) recently performed a direct numerical simulation. They
applied four kinds of porous media whose structures were designed ideally to have
anisotropic components of the permeability tensor. The considered porous media were
walls with square pore arrays aligned with the Cartesian axes, namely walls with only
the wall-normal diagonal component, with the wall-normal and streamwise diagonal
components, with the vertical and spanwise diagonal components, and with the isotopic
wall-normal, spanwise and streamwise diagonal components of the permeability tensor. It
was found that turbulence was not altered by the wall-normal diagonal component of the
permeability tensor (called the wall-normal permeability, hereafter for simplicity) itself
whilst the streamwise and spanwise components (streamwise and spanwise permeabilities,
hereafter) considerably enhanced turbulence over the porous walls. It was revealed that
enhancement of turbulence was more remarkable over porous media with streamwise
permeability.
Except for the above knowledge, we do not know the anisotropic permeability effects on

turbulence over porous media at all. Therefore, in this study planar PIV measurements of
turbulence over anisotropic porous media are carried out. Using polymer nets, three kinds
of anisotropic porous layers are constructed to form a bottom wall of fully developed
turbulent channel flows. Their wall normal component of the permeability tensor is
designed to be larger than the other components by the factor of 1.2, 1.5 and 173.
Those porous media are constructed to have three mutually orthogonal principal axes.
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Hence, their permeability tensors are diagonal and they are called orthotropic porous
media(Dullien 1979). Measurements of the streamwise-wall-normal (x–y) planes are
carried out to reveal the turbulence characteristics. The range of the measured Reynolds
number is Reb=900–13600 to cover laminar to turbulent flows. To understand the
spanwise turbulence structure measurements of the streamwise-spanwise (x–z) planes
are also carried out.

2. Experimental method

To construct the porous media, ethylene vinyl acetate (EVA) copolymer nets (N-523,
Takiron) with rounded-square shaped pores shown in figure 1(a) are applied. Although
one side of the net has a ribbed structure, the reverse side has a smooth surface. The
porous media have layered structures of the unit layers which are formed by bonding two
nets as shown in figure 1(b). Figure 2 shows three kinds of porous media made by different
piling patterns of the layers in which the pore arrays are aligned with the Cartesian axes
of the flow geometry. Since the specific gravity of the EVA is 0.92–0.95, to increase the
weight of the porous media lead plates are bonded to the very bottom layers. Porous
medium case O is constructed by piling up the unit layers straightly while case Θ is
made by offset staggered piling-up. Case Φ is the same porous medium as case Θ but
its setting angle to the flow direction is turned 90 degree. Note that cases O, Θ and Φ
are named from the top views of the meshes. As seen in figure 2, all the structures have
three mutually orthogonal principal axes and those principal axes are aligned with the
Cartesian coordinate axes. In such cases, the porous media are called the orthotropic
porous media and their permeability tensors become diagonal (Dullien 1979). (This can
be easily proven by manipulating Darcy’s law with macroscopic symmetry conditions.)
The characteristics of the porous media are measured by the method as follows. For

the porosity φ that is the ratio of the fluid phase volume Vf and the total volume Vm:
φ = Vf/Vm, by measuring perimeters of sample rectangular parallelepiped blocks, Vm

is obtained and its solid phase volume Vs is obtained by sinking the sample blocks into
water contained in a measuring cylinder. Diagonal components of the permeability tensor
Kαα and the Forchheimer tensor Fαα are measured using a duct flow facility. In between
the pressure holes, a porous block is placed to block the duct. Pressure drops ∂ ⟨p⟩f /∂xα

along the α–axis of the media and flow rates are measured by a differential pressure
gauge and a flow meter, respectively. With those variables at several different flow rates,
the diagonal components of the permeability and Forchheimer tensors are obtained using
the Darcy-Forchheimer equation of Whitaker (1986):

⟨ui⟩ = −Kij

µ

∂ ⟨p⟩f

∂xj
− Fij ⟨uj⟩ , (2.1)

where Fij is the Forchheimer tensor and currently modelled as Fij = ρCF
ij | ⟨u⟩ |/µ

following the model by Nakayama et al. (2002) while their Forchheimer coefficient tensor
BF

ij was defined by Fij = ρKikB
F
kj | ⟨u⟩ |/µ. (In their case, the Forchheimer tensor

explicitly depends on the permeability tensor.) The Darcy velocity ⟨ui⟩ is obtained from
the measured flow rate. Note that for the material whose structure is symmetric in the
x-, y- and z-directions, the Forchheimer tensor becomes diagonal. (This can be proven
by manipulating equation (2.1) with the symmetry conditions.) As seen in figure 2, the
structures of the present porous media are symmetric in the x- and z-directions while
they are not strictly symmetric in the y-direction. The side-views of the pore-shapes are
asymmetric in the y-direction though they are not very far from symmetric. Hence, we
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assume that the effects of the off-diagonal components of the Forchheimer tensor on the
measurement of the characteristics of the porous media are insignificant. The measured
valuables of the present porous media are listed in table 1. Although the porosity is
constant for all three cases as φ=0.7, to study the effects of the anisotropic permeability
on turbulence, the wall-normal diagonal component of the permeability tensor Kyy is
designed to be larger than the other components by the factor of 1.2, 1.5 and 173. As for
the Forchheimer tensor, the coefficient CF

ij is nearly isotropic in cases Θ and Φ while it

is anisotropic in case O with larger CF
yy than the other components by the factor of 76.

Figure 3(a) illustrates the experimental flow facility. Tap water whose temperature is
maintained by a cooler at 285±1 K is pumped to a digital flow meter (FD-MH200A/500A,
KEYENCE) where its total flow rate is measured. The water temperature is recorded by a
digital thermometer (FD-T1, KEYENCE) in a honeycomb-bundled nozzle. After the flow
is conditioned by the honeycomb-bundled nozzle and fully developed in a driver section
whose length is 3.0 m, it enters the test section whose length is 1.0 m. As illustrated in
figure 3(b), both the sections consist of solid smooth acrylic walls with a porous bottom
layer. The sectional width W and the total height are, respectively, 0.3 m and 0.06 m
which is filled by a 0.03 m thick porous layer. Since the height of the clear fluid region is
set to H=0.03 m, the aspect ratio of the cross section of the clear fluid region is about
10. Accordingly, two-dimensionality can be reasonably attained in z/W =0.1−0.9 which
was confirmed and reported by the previous study (Suga et al. 2017). The measured
range of the bulk Reynolds number Reb (ρUbH/µ) is 900–13600 where the fluid viscosity
µ and density ρ are determined by the measured water temperature. Here, the bulk
mean velocity Ub is obtained by integrating the measured cross-sectional streamwise
mean velocity distribution while the wall shear stress is estimated by extrapolating the
Reynolds shear stress distribution obtained by the x–y plane measurement.

The applied planar PIV system consists of a double-pulse Nd-YAG laser (Dual Power
200-15, Litron) with 200 mJ per pulse at a wavelength of 532 nm. For the measurements
of the streamwise-wall-normal (x–y) planes, the laser beam is formed into a sheet
of approximately 1.0 mm thickness through several cylindrical lenses and illuminates
the measuring planes as shown in figure 3(c). The recorded frame of a CCD camera
(Flowsense 4M Mk2, DANTEC DYNAMICS) operating at 30 f.p.s with 85 mm f/1 : 8
lenses (AF Nikkor, Nikon) covers a section of 30(x)× 30(y) mm2 locating in the middle
part of the test section with 2048×2048 pixels. This frame covers four pore-cells of the
porous media in the x-direction. To obtain the x–z plane averaged time mean quantities
in the y-direction, the flow fields are measured at four x–y sections: A, B, C and D
from the symmetry plane of the channel as shown in figure 3(d). Using time mean field
data, streamwise averaging is carried out for each section. Then, with the streamwise
averaged data of the four sections, integration by the trapezoidal rule is applied to the
spanwise averaging. It has been confirmed that the four plane measurements are good
enough for the spanwise averaging by comparing the results with those obtained by the
measurement of six planes which divide the unit pore-cell equally (1.25 mm pitch). Note
that the integration by the six plane measurement data is nearly ideal for the volume
averaging since the pore pitch and the approximate laser sheet thickness are 7.5 mm and
1 mm, respectively. Accordingly, the present plane averaged values are from the plane
of 4(x) × 1(z) pore-cells of the porous media. For the measurements of the streamwise-
spanwise (x–z) planes, the laser sheet of approximately 1.0 mm thickness illuminates
the x–z planes as shown in figure 3(e). Two CCD cameras are arranged in tandem. The
recorded frame of each CCD camera covers a zone of 81×81 mm2 located in the middle of
the test section with 2048×2048 pixels, for which 10% of the area overlaps with another
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camera’s frame. The measured planes are located at y =1.0, 2.0, 3.0, 4.0, 5.0 mm while
additional planes are occasionally measured. Note that the origin of the y–axis is set at
the porous surface.
For the tracer particles of the x–y plane measurements, acrylic colloid particles are

used. The mean diameter, specific gravity and refractive index of the particles are
respectively 3.1 µm, 1.19 and 1.50. For the x–z plane measurements, to avoid the
noisy Mie scattering from the wall surface, polymer fluorescent particles containing
Rhodamine B, whose mean diameter and specific gravity are respectively 10 µm and
1.50, are used. Correspondingly, a long-pass filter with cutoff wavelength 560 nm is
located in front of each camera lens. In both cases, the seeding density is adjusted to
obtain 10-15 particle-image pairs in each interrogation window whose size is set to 32×32
pixels. Thus the measurement sampling volumes are 0.4(x) × 0.4(y) × 1.0(z) mm3 and
0.4(x)×1.0(y)×0.4(z) mm3, respectively for the x–y and x–z measurements. The image
sampling rate was 4 Hz. The average particle displacement was set to be about 25 %
length (6-8 pixels) of the interrogation window. To obtain the statistical data more than
4000 image pairs are processed. The recorded data are processed by Dynamics Studio
3.1 software (DANTEC DYNAMICS) with the fast Fourier transform cross-correlation
technique (Willert & Gharib 1991). Each image is processed to produce 127× 127 vectors
from the interrogation windows with 50 % overlap in each direction. When the ratio of
the first and the second correlation peaks in an interrogation window is smaller than
1.3, it is removed from the process as an error vector. Furthermore, the moving-average
validation (Host-Madsen & McCluskey 1994) is applied with an acceptance factor of
0.1. In the present study, the removed error vectors are less than 3 % of the total data
processed.
Following Prasad et al. (1992), it is confirmed that the particle images are well resolved

in the present experiments, and the uncertainty in the measured displacement can be
expected to be approximately less than 1/10 of the diameter of the particle image.
Normalizing this uncertainty by the mean displacement length of particles indicates that
the estimated error of the magnitude of the instantaneous velocity is less than 4% of the
maximum velocity near the channel centreline.

3. Results and discussions

3.1. Streamwise-wall-normal plane measurements

Table 2 lists the experimental conditions and measured parameters which are discussed
below. For case O, the measured flows are at Reb=900, 1300, 3600, 4800, 10500 and 13600
while for cases Θ and Φ they are at Reb= 3400, 5000, 10300, 13600 and Reb= 3400, 5700,
10400, 13600, respectively. In the following discussions, the x–z plane averaged value
of ϕ is denoted as [ϕ] and the Reynolds averaged ϕ is denoted as ϕ̄ with the Reynolds
decomposition: ϕ = ϕ̄ + ϕ′. For simplicity, the plane and Reynolds averaged velocity is
called the “mean velocity” hereafter.

3.1.1. Mean velocity

Figure 4 shows the streamwise mean velocity [U ] (=[ūx]) profiles. In case O, as seen
in figure 4(a) at Reb = 900 the velocity profile is parabolic implying that the flow is
laminar but from Reb = 1300 the profile becomes asymmetrical indicating that the
laminar to turbulent transition occurs in this range of the Reynolds number. Once the
flow becomes fully turbulent at Reb ⩾ 3600, there is no significant change in the profiles.
This tendency and the general slanted profiles to the porous walls are maintained in cases
Θ and Φ as seen in figure 4(b) and (c). The slippage velocities on the porous surfaces are
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approximately [Uw] /Ub = 0.4 at Reb ⩾ 3600 which are similar to those over isotropic
porous media reported in the previous study (Suga et al. 2010). These velocity profiles
are replotted in semi-logarithmic charts as shown in figure 5. The fitted lines are of the
log-law form that is usually applied to the flows over porous media and canopies (Best
1935; Nikora et al. 2002; Nepf & Ghisalberti 2008). That is

[U ]
p+

=
1

κ
ln

(
y + d

h

)
, (3.1)

with the von Kármán constant κ, the zero-plane displacement d and the roughness scale
h. Here, [U ]

p+
= [U ] /up

τ and the friction velocity up
τ on the porous wall is estimated

by extrapolating the plane averaged Reynolds shear stress distribution measured by this
study. Figure 6(a) shows illustrative definition of d and h. They are the displacement
of the origin of the y-axis and the equivalent roughness-height from the zero-plane,
respectively. Table 2 lists the values of κ, dp+(= up

τd/ν) and hp+(= up
τh/ν) which are

obtained as follows. The extent of the logarithmic layer can be determined from plots of
(y+d)d[U ]

p+
/dy as a function of yp+(= yup

τ/ν) changing the values of d (Breugem et al.
2006). Since (y + d)d[U ]

p+
/dy must be a constant equal to 1/κ inside the logarithmic

layer, a value of d giving a flat plateau in the profile must be the best fitted value. For
example, in figure 6(b), a flat plateau can be obtained with dp+ = 51.5 and the value
of the plateau becomes (y+ d)d[U ]

p+
/dy=3.5 which corresponds to 1/κ to be obtained.

Then, with these d and κ, equation (3.1) is best fitted to the velocity profile to obtain
the roughness length scale h.
It is obvious that the slope of the fitted line, and hence κ varies with Reb. This trend is

the same as that reported in the previous studies (Suga et al. 2010, 2017) in which obvious
correlations between the permeability Reynolds number ReK and the parameters: κ , d
and h were reported. However, as shown in figure 7 it is seen that such correlations with
ReK cannot be seen in the present data, particularly for d and h. For the anisotropic
porous media, K is currently defined as

K = Kkk/3 = (Kxx +Kyy +Kzz)/3, (3.2)

which corresponds to 1/3 of the trace of the permeability tensor and maintains consis-
tency with the isotropic permeability. Hence, in this study the permeability Reynolds
number is defined as

ReK =
up
τ

√
Kkk/3

ν
. (3.3)

Table 2 lists ReK for each case. Since the values of ReK in case O are significantly larger
than those in cases Θ and Φ, the plots of case O in figure 7 significantly deviate from the
other plots. Also, another form: K = (KxxKyyKzz)

1/3, whose concept is from Chan et al.
(1993), leads to much larger values of ReK in case O and produces more unsuccessful
results than those shown in figure 7. These results suggest that anisotropic effects of the
permeability and/or the Forchheimer tensor play important roles in determining the flow
characteristics.

3.1.2. Generalization of the characteristic Reynolds number

Since the zero-plane displacement d and the roughness scale h are defined as the
values inside porous surfaces, we discuss on the transport equations inside porous media.
In the double (Reynolds and volume) averaging process, Pedras & de Lemos (2000)
proved that the order of the averaging operations is interchangeable. When the following
decomposition for the volume averaging: ϕ = ⟨ϕ⟩ + ϕ̃, is applied, the interchangeable
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operations lead to ⟨ϕ⟩ =
⟨
ϕ̄
⟩
, ⟨ϕ⟩′ = ⟨ϕ′⟩, ϕ̃′ = (ϕ̃)′ and ˜̄ϕ =

¯̃
ϕ. Then, the double-

averaged continuity and momentum equations in porous media may be written as

∂φ⟨ūi⟩f

∂xi
= 0, (3.4)

∂⟨ūi⟩f

∂t
+ ⟨ūj⟩f

∂⟨ūi⟩f

∂xj
= −1

ρ

∂⟨p̄⟩f

∂xi
+ ν

∂2⟨ūi⟩f

∂x2
j

− 1

φ

∂

∂xj
(φ⟨Rij⟩f )−

1

φ

∂

∂xj
(φ⟨Tij⟩f )− f̄i,

(3.5)
where the symbolic notations of the volume averaged Reynolds stress and the dispersion

stress (or dispersive covariance; Raupach & Shaw (1982)) are ⟨Rij⟩f = ⟨u′
iu

′
j⟩

f
and

⟨Tij⟩f = ⟨¯̃ui
¯̃uj⟩

f
, respectively. Note that for the volume averaging, there is a relation:

φ⟨ϕ⟩f = ⟨ϕ⟩. With the link to equation (2.1), the drag force term fi derived by Whitaker
(1996) is

fi = φµK−1
ij ⟨uj⟩f︸ ︷︷ ︸

viscous drag

+φµK−1
ik Fkj ⟨uj⟩f︸ ︷︷ ︸
form drag

. (3.6)

Accordingly, when Kij is diagonal and the Forchheimer tensor is modelled as Fij =
ρCF

ij | ⟨u⟩ |/µ, the force terms for the double averaged fields of fully developed flows (the
streamwise and normal directions are aligned with the x- and y-axes, respectively) are

f̄x = µK−1
xx ⟨ūx⟩+ ρK−1

xx

{
CF

xx

(
| ⟨u⟩ | ⟨ūx⟩+ | ⟨u⟩ |′ ⟨u′

x⟩
)
+ CF

xy

(
| ⟨u⟩ |′ ⟨u′

y⟩
)}

,(3.7)

f̄y = ρK−1
yy

{
CF

yx

(
| ⟨u⟩ |′ ⟨u′

x⟩
)
+ CF

yy

(
| ⟨u⟩ |′ ⟨u′

y⟩
)}

, (3.8)

since ⟨ūy⟩ = ⟨ūz⟩ = 0. The above equation (3.7) indicates that the streamwise per-
meability Kxx directly affects the streamwise mean velocity inside porous media with
the x-x and x-y components of CF

ij . Furthermore, as shown in equation (3.5), since
the double averaged momentum equation includes the contribution from the volume
averaged Reynolds stress ⟨Rij⟩f and the dispersion stress ⟨Tij⟩f , the budget terms of the

shear stresses ⟨Rxy⟩f and ⟨Txy⟩f should be considered for the streamwise velocity. (See
Appendix A for the stress transport equations.) Among them there is no drag force related

term in the ⟨Rij⟩f transport equation (A 1) as derived by Pinson et al. (2006); Nezu &
Sanjou (2008); Kuwata & Suga (2015), but the drag work term f̄i ⟨ūj⟩+ f̄j ⟨ūi⟩ appears
in the ⟨Tij⟩f transport equation (A 2) as shown in Pinson et al. (2006); Kuwata et al.

(2014). Hence, f̄y⟨ūx⟩ affects the mean velocity profile indirectly via ⟨Txy⟩f . Accordingly,
coupling with the Forchheimer terms, Kyy influences the streamwise velocity as the
Reynolds number increases. However, it is expected that the primary effect on the mean
flow profile comes from the streamwise permeability Kxx via f̄x when the Reynolds
number is not significantly high. (Note that this is for the diagonal Kij cases and not
for the general anisotropic cases.) Furthermore, considering the fact that meaningful
classification of turbulent flows by the permeability Reynolds number was reported by
Breugem et al. (2006) at Reb = 5500 and by Manes et al. (2011) at Reb < 105, the
following discussion focuses on modifying the permeability Reynolds number using the
streamwise permeability.

Although simply replacing K with Kxx for ReK may improve the correlation, to
include the effects of the porosity in the characterization, we consider the Kozeny-Carman
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equation (Kozeny 1927; Carman 1937, 1956):

d ⟨p⟩f

dx
= −150µ

d2gΦ
2
s

(1− φ)2

φ3
⟨ux⟩ , (3.9)

where Φs is the sphericity of the particles in the packed bed and dg is the diameter of the
related spherical particle. Combining equation (3.9) with the Darcy equation (1.1) yields

the following relationship between dg and permeability as
√

180(1−φ)2

φ3 Kxx = dg, where

150/Φ2
s is replaced by 180 following Macdonald et al. (1979). When Kxx is measurable,

the newly defined length scale dKx =
√

180(1−φ)2

φ3 Kxx may be regarded as a characteristic

streamwise length scale for the porous medium rather than the particle diameter. Using
dKx

, a characteristic Reynolds number:

Re∗K =
up
τdKx

ν
=

up
τ

√
Kxx

ν

√
180(1− φ)2

φ3
, (3.10)

which is a function of the porosity and the streamwise permeability, is called the
“generalized” permeability Reynolds number in this study. The point that should be
emphasized is that the length scale of Re∗K is neither the pore nor grain diameter of
a porous medium but a characteristic streamwise length scale defined by the porosity
and the streamwise permeability. Figure 8 confirms that this generalized permeability
Reynolds number Re∗K is successful to characterize the turbulence over the present
anisotropic porous media as well as the isotropic cases of Suga et al. (2010, 2017)
though the plotted data of the von Kármán constant κ are somewhat more scattered. By
performing the linear stability analysis, Tilton & Cortelezzi (2008) suggested that inertial
effects can be considered negligible if the ratio between the square root of permeability
and the channel half-width does not exceed 0.02. Indeed, in the present porous media√
Kxx/(H/2) does not exceed 0.02.
When the streamwise permeability does not exist, it is obvious that one encounters

difficulty with Re∗K . Moreover, it is not very convenient for engineers to directly measure
permeabilities of the materials they want to apply to products. In fact, to obtain the
permeability, Detert et al. (2010) applied the experimental correlation of Hazen (1892)
for their laboratory measurements. Accordingly, a further discussion for an alternative
candidate of the characteristic Reynolds number is carried out. Since the length scale
in equation (3.10) is a streamwise characteristic length scale, it may be considered that
there is a correlation between dKx and pore dimensions. After non-exhaustive search
among possible candidates, our empirical attempt has selected the streamwise length
Dpx

of the surface pore to surrogate dKx
. Hence, the “surrogate” permeability Reynolds

number may be

Re∗∗K = c
up
τDpx

ν
, (3.11)

where c is a constant to adjust the length scale. Interestingly, when c = 1/3.8 is applied,
an almost linear correlation between Re∗K and Re∗∗K can be seen as shown in figure 9. Note
that when the surface pore is circular, Dpx

is its diameter while for a non-circular pore
case Dpx

is simply defined as its streamwise length. Hence, for cases #20,#13 and #06,
Dpx corresponds to their pore diameters:1.7, 2.8, 3.8 mm, respectively, while for cases
O, Θ, and Φ, Dpx=5 mm. Consequently, this surrogate permeability Reynolds number,
which is essentially a kind of modified pore Reynolds number, may be used to characterize
general porous medium cases. Table 2 also lists Re∗K and Re∗∗K for the present cases.
To confirm the applicability of this surrogate permeability Reynolds number Re∗∗K to
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characterize porous-wall turbulence, figure 10 indicates all the data including the isotropic
porous medium cases of #20, #13 and #06 as well as the experimental data of Detert
et al. (2010); Manes et al. (2011) and numerical simulations of Breugem et al. (2006);
Kuwata & Suga (2016a, 2017). For the cases of Detert et al. (2010) and Breugem et al.
(2006), porous media consisting of sphere grains were considered. Hence, the hydraulic
diameter using the specific surface av is applied as Dpx = 4 φ

av(1−φ) . When the grain

shape is spheric with the diameter Dg, the specific surface becomes av = 6/Dg. The
plots in figure 10 show reasonable correlations between the parameters and Re∗∗K for all
the porous wall cases. Indeed, the data correlate well for the zero-plane displacement d
and the roughness scale h though the plotted data of the von Kármán constant κ are
again somewhat more scattered. Note that even though a couple of cases of Kuwata
& Suga (2017) do not have the streamwise permeability, Re∗∗K can be applied to those
cases. It is thus suggested that the proposed surrogate permeability Reynolds number:
equation (3.11), is promising for the general correlation parameter of turbulence over
porous media.

3.1.3. Turbulence quantities

Figure 11 compares the plane-averaged Reynolds shear stress [−u′v′] distribution
profiles normalized by the bulk mean velocity Ub to see the difference depending on
the bulk Reynolds number. As confirmed in figure 11(a), in case O, the flow is laminar
at Reb = 900 since [−u′v′] is almost zero across the channel. Then, at Reb = 1300 the
level of [−u′v′] increases indicating that the laminar to turbulent transition is taking
place, and the other profiles suggest that the transition completes by Reb = 3600. When
the flow becomes turbulent, it is observed that the level of [−u′v′] near the porous wall
(y/H = 0.0) becomes significantly higher than that near the solid top wall (y/H = 1.0).
As seen in figure 11(b, c) for cases Θ and Φ, the trends at Reb ⩾ 3400 look the same as
that in case O. This confirms that the turbulence becomes significantly strong near the
present porous media. Corresponding to the trend of the plane-averaged Reynolds shear
stress, turbulent intensities: [u′] and [v′], which are the r.m.s. values of the plane-averaged
Reynolds normal stresses, generally become higher in the bottom half of the channel than
in the top half of the channel as seen in figure 12. Particularly, [v′] near the porous wall
is considerably higher than near the top wall. Due to the relaxed wall-blocking effect by
the porous surfaces, [v′2] has larger values near the porous media than near the solid
wall leading to the enhancement of the production of the plane-averaged Reynolds shear
stress: −[v′2]∂[U ]/∂y. Accordingly, turbulence level near the porous walls becomes high.
This is the main reason why turbulence level becomes high near the porous media in many
studies (e.g. Lovera & Kennedy 1969; Ruff & Gelhar 1972; Ho & Gelhar 1973; Zagni &
Smith 1976; Zippe & Graf 1983; Kong & Schetz 1982; Breugem et al. 2006; Suga et al.
2010). However, when the slip velocity on the porous wall becomes much higher than the
present ones due to higher porosity and/or permeability, the velocity gradient ∂[U ]/∂y is
expected to be considerably relaxed and this damps turbulence generation. In fact, in the
rigid-vegetation-canopy flows of Nezu & Sanjou (2008), the friction velocity at φ = 0.99
reduced to be 84% of that at φ = 0.97 while it could not be confirmed which parameter
controlled this tend since the permeabilities were unknown. In any case, although the
relation between the surface turbulence and the porous parameters is considered to be
non-monotonic, the present cases are in the range of turbulence enhancement.
Since the porosity is constant at φ = 0.7 in the present cases, it is possible to see

the effects of the permeability. Figure 13 compares the plane-averaged Reynolds shear
stress and turbulent intensity profiles at Reb ≃ 10500. Near the porous wall it is seen
that case Φ is most turbulent and the least turbulent one is case O though its wall-
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normal permeability Kyy is approximately two order larger than the other cases. This
indicates that although permeable surfaces relaxes the near-wall blocking effect on vortex
motions and lead to strong turbulence, turbulence generation in the present cases is not
very sensitive to the wall-normal permeability Kyy. Interestingly, rather than Kyy, small
difference inKxx seems to affect turbulence generation. (This trend does not change in the
different Reb cases.) Indeed, case Φ whose Kxx is 25% larger than that of case Θ is most
turbulent and case O whose Kxx is 25% smaller than that of case Θ is least turbulent.
When the ratio between the wall-normal and streamwise permeabilities is considered,
the present cases are at Kyy/Kxx =1.2, 1.5 and 172.7. Thus, there might be a question
about whether those trends are monotonic between the ratios of 1.5 and 172.7. Although
the channel geometry was not the same as the present one, Matsuo et al. (2017) applied
orthotropic porous media whose permeabilities were (Kxx,Kyy,Kzz) = (0.22, 0.17, 0.22)
and (0.16, 0.97, 0.16) mm2 to the bottom wall of turbulent rectangular duct flows and
reported that turbulence was sensitive to the streamwise permeability rather than the
the wall-normal permeability. Their permeability ratios were Kyy/Kxx =0.77 and 6.1.
Hence, although the supporting data might not be enough, we consider that the presently
observed trends are monotonic in the range of Kyy/Kxx=0.77-172.7.

For the flow underneath the porous surface, equation (3.7) suggests that the drag
reduces as the streamwise permeability increases. Accordingly, the increase of Kxx leads
to an increased flow rate enhancing the slippage velocity on the surface. This results in
more relaxed shear rate ∂[U ]/∂y near the surface. This is confirmed in figure 14 (a) that
compares near-wall velocity profiles at Reb ≃ 10500. Case O shows the largest velocity
gradient followed by case Θ and then case Φ. Consequently, for the present cases, it
is considered that relaxing the wall-blocking effect on turbulence enhances turbulence
generation significantly making up for the reduction by relaxing the velocity gradient.
Indeed, as shown in figure 14 (b), the profiles of shear production P12 = −[v′2]∂[U ]/∂y of
case Φ shows the largest level followed by those of cases Θ and O. Accordingly, although
it might be expected that relaxing the wall-blocking effect is related to the wall-normal
permeability, turbulence generation is not controlled by the wall-normal permeability .

To see the near-wall turbulence in more detail, figure 15 shows the distribution of the
joint probability density function p(u′, v′) at yp+ = 15 for Reb ≃ 10500. Although the
shape difference is not very drastic, the angles between the major and the streamwise
axes are β =11.9◦, 12.2◦ and 16.4◦ for cases O, Θ and Φ, respectively. The order of the
angle magnitude corresponds to the order of Kxx. Here, the major axis is determined as
the least square approximated line of plots of (u′, v′). When the motions in the second
and forth quadrants (Q2 and Q4) simultaneously have large streamwise and wall-normal
fluctuations, β increases and thus β is a measure to see the strength of the wall-normal
fluctuations. Interestingly, even though the wall-normal permeability is approximately
two-order larger than the other cases, case O has the smallest β suggesting that its
near-wall turbulence receives more the wall-blocking effect. For further discussions, the
decomposed Reynolds shear stress profiles are investigated using the quadrant analysis
method:

(uv)m =
1∑
Nm

∑
(u′v′)m, (3.12)

where subscript m(= 1− 4) corresponds to the quadrant event. Figure 16(a-c) compares
the decomposed Reynolds shear stress profiles of cases O, Θ and Φ at Reb ≃ 10500. In
all the plots, it is obvious that the events in the second quadrant (Q2): ejections are
most dominant. The contribution of the fourth quadrant (Q4): sweeps, is also larger
and it tends to be nearly the same as that of Q2 as the position moves toward the
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wall surface. For turbulence near a solid wall, Wallace et al. (1972) reported that Q4
was most dominant very close to the wall while Q2 overtook it as the location moved
away from the wall. The previous study on isotropic porous media (Suga et al. 2011)
also showed such a trend and the intersection points of Q2 and Q4 were at yp+=30–
100 for Reb ≃10000. However, the present cases only show the distributions after the
intersections (if they exist). As seen in figure 16 (d) that compares the Q4 distributions,
obviously the Q4 profile of case Φ is most negative. The levels of cases O and Θ are
similar to each other close to the wall while that of case Θ becomes more negative away
from the wall. This suggests that sweep motions tend to extend more away from the
wall with the increase of the streamwise permeability. Since parts of wall penetrating
vortices having large streamwise momentum are observed as the sweeps, the streamwise
permeability becomes the primary factor to maintain strong near-wall rotating motions
when the wall-normal permeability is sufficiently large. Because the wall penetrating fluid
pushes out the same amount of fluid from the surface forming parts of the ejections, the
profiles of the ejections are closely related to those of the sweeps. Therefore, the sweeps
and the ejections are considerably affected by the streamwise permeability. This is one
of the reasons why turbulence is looked controlled by the streamwise permeability in
this study. However, when the permeability ratio becomes smaller as Kyy/Kxx ≪ 1.0, a
different trend might be observed.

3.2. Streamwise-spanwise plane measurements

For understanding the turbulence fields more in details, streamwise-spanwise plane
measurements are carried out and the spanwise structure is discussed. With the present
experimental facility and measurement method, the two-dimensionality of the flow field
and the reproducibility of the data between the x–y and x–z measurements are well
confirmed as mentioned in section 2. The measured flows are at Reb =3600, 4800, 10500,
13600 for case O, Reb =3400, 5000, 10300, 13600 for case Θ and Reb =3400, 5700, 10400,
13100 for case Φ.

3.2.1. Snapshots of turbulence fields

Figure 17(a) and (b) show examples of snapshots of the instantaneous streamwise
velocity fluctuation u′ indicating low- and high-speed fluid lumps observed at yp+ ≃ 20
for case O at Reb = 4800 (Re∗K = 20.6) and case Φ at Reb = 13100 (Re∗K = 83.8),
respectively. The window size is Lx/H×Lz/H = 5.4×2.6 that corresponds to Lp+

x ×Lp+
z =

2260× 1200 and Lp+
x ×Lp+

z = 6820× 3610, respectively for figure 17(a) and (b). Clearly,
large scale low- and high-speed fluid lumps are observed. The corresponding vorticity
fields are shown in figure 17(c,d). In figure 17(c), there are fragments of shredded vortex
tubes looking similar to those observed at a location under the structural transition range
in the isotropic porous medium cases (Suga et al. 2017). This suggests that the condition
of figure 17(a,c) is still under the transition range that is discussed later in section 3.2.2.
Compared with figure 17(a), the fluid lumps look well aligned in the spanwise direction
in figure 17(b). Their length×width is approximately ∆xp+ ×∆zp+ = 5000× 1300. The
observed patterns are very different from the longitudinally elongated streaks usually
detected over solid smooth walls. Similar large scale fluid lumps were also observed in the
isotropic porous medium cases over the transitional range and such patterns of fluid lumps
were considered to be footprints of the spanwise transverse rolls which are considered to
be generated by the K-H instability. Jiménez et al. (2001) suggested that a large scale
perturbation is induced by the K-H instability associated with an inflection point of mean
velocity profile at the surface of porous layer. In fact, the vorticity patterns seen in figure
17(d) look more regularly arranged and very similar to those indicated by the simulation
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of Kuwata & Suga (2017). Since the pores of the present porous media are aligned with
the coordinate axes as in the simulation, the footprints can be maintained more visibly
than in the isotropic porous medium cases.

3.2.2. Two-point correlations

The normalized two-point correlation function:

R̂ij(∆z) =
Rij(∆z)

Rij(0)
=

u′
i(z)u

′
j(z +∆z)

u′
i(z)u

′
j(z)

, (3.13)

in the spanwise direction is applied to detect the spanwise scales of the structure. Figure
18 shows examples of R̂11(∆z) distributions. Figure 18(a-c) correspond to the results of
case O at Reb = 4800 , case Θ at Reb = 10300 and case Φ at Reb = 13100, respectively.
Although they are not very clear in figure 18(a), the distribution indicates short wavy
profiles at locations closer to the wall surface as clearly shown in figure 18(b,c) for the
higher Reynolds numbers. It has been confirmed that the wavelength of those short waves
corresponds to the pore pitch of the EVA net shown in figure 1(a). However, as the wall-
normal distance increases, those short waves disappear and local minimum in the profile
becomes clearer. The depth of the local minimum and its positions change depending
on the wall-normal distance.The locations of those local minima indicate the statistical
spanwise distance between low-speed and neighbouring high-speed flow regions. Figure
19 shows the distributions of the spanwise spacing of streaks λp+

z against the wall-normal
distance plus the zero plane displacement d with a curve that indicates the fitting line of
the smooth solid-wall cases obtained from the literature (Smith & Metzler 1983; Iritani
et al. 1985; Kim et al. 1987; Tomkins & Adrian 2003). Since the zero-plane displacement
is a length scale associated with the penetration, (y + d)p+ is an equivalent height to
y+ of smooth solid wall turbulence. It is seen that the points of λp+

z collapse around the
curve under, (y + d)p+=150–200 reasonably well. In the isotropic porous medium cases
λp+
z also collapsed around the curve under (y + d)p+ ≃ 100 (Suga et al. 2017). They

concluded that although the coherent streaky structure was disturbed, its characteristics
were still maintained in such a region. This suggests that as seen in figure 17(c) whose
location corresponds to (y+d)p+ ≃ 105, the structure observed in the present study may
retain some of the characteristics of the coherent streaky structure at such a location
which is a little higher than that of the isotropic porous medium case. At a position over
a certain distance from the wall surfaces of (y+ d)p+ =150–200, the plotted values start
to deviate largely from the correlation line. Above this structural transition region, the
quasi-streaky structure is smeared out and no longer exist as it can be also confirmed in
figure 17(d) whose location corresponds to (y+ d)p+ ≃ 380. Since as discussed in section
3.1.2, the zero plane displacement d has a correlation with the generalized permeability
Reynolds number Re∗K (and the surrogate permeability Reynolds number Re∗∗K ), the
observed structural change certainly correlates with the streamwise permeability.
For the discussion of the streamwise length of the fluid lumps, figure 20(a, b) shows

examples of the distribution profiles of R̂11(∆x). Although it is possible to detect the
local minima and maxima of the profiles in some cases as seen in figure 20(b), generally
it is impossible to do so as seen in figure 20(a). This is because some small fluid lumps
are irregularly detected between large fluid lumps and hence the averaging blurs their
correlation u′

i(x)u
′
j(x+∆x). It can be considered that a part of those fluid lumps are pro-

duced by the instability with high wave number motions. By performing a linear stability
analysis on free surface flows over porous media, Camporeale et al. (2013) classified the
instability modes into three categories: namely, the surface, shear and porosity induced
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modes. In the porosity induced instability mode, there are three sub-categories: stable,
unstable and one caused by the interaction with the free surface. Although detecting
the waves by those instability modes by spectrum analysis is desirable, it is impossible
by the present sampling rate of 4 Hz. Accordingly, we focus on detecting the lowest
streamwise wave number motions, which may correspond to the surface mode, by a two-
point correlation function of spanwise averaged fluctuating velocities. Its definition is

⟨̂Rij⟩z(∆x) =
⟨u′

i(x)⟩z
⟨
u′
j(x+∆x)

⟩
z

⟨u′
i(x)⟩z

⟨
u′
j(x)

⟩
z

, (3.14)

where ⟨u′
i(x)⟩z is the spanwise averaged instantaneous fluctuating velocity. By this

process, the contribution from the noisy smaller fluid lumps is reasonably damped. See
the samples of the spanwise averaged fluctuating velocities in the lower images of figure
17(a,b).

The distribution profiles of ⟨̂R11⟩z(∆x) shown in figure 20(c,d) correspond to the cases
shown in figure 20(a, b). Clearly, it is now possible to detect local minima (and maxima)
by this method though the magnitudes of local minima and maxima tend to reduce as the
wall-normal distance increases due to the complexity of the structure. Since the location
of the local minimum indicates the statistical streamwise distance between low-speed and
neighbouring high-speed flow regions, it corresponds to the half of the wavelength λx of
a transverse wavy motion. As discussed in the DNS studies of porous wall turbulence
by Jiménez et al. (2001); Breugem et al. (2006); Kuwata & Suga (2016a, 2017), such a
wavy motion is large-scale perturbation induced by the K-H instability as hypothesized
by Raupach et al. (1991) and Finnigan (2000). It was also observed in the experiments
of vegetation turbulence by Raupach et al. (1996); Finnigan (2000); Ghisalberti & Nepf
(2002); Poggi et al. (2004). Figure 20(c) also indicates that it tends to be difficult to
detect the location of the local minimum depending on the wall-normal distance since
the structure cannot be stable all along the channel height. Hence, the K-H wavelength
λx is estimated by the local minimum at a closer location of the wall-normal distance.

Figure 21 shows the distribution of λx, which is detected from the ⟨̂R11⟩z(∆x) profiles,
against the shear Reynolds number Reτ = up

τδp/ν. Here, δp is the equivalent boundary
layer thickness defined as δp/H = (up

τ )
2/[(up

τ )
2 + (ut

τ )
2], where ut

τ is the friction velocity
at the top smooth wall. Figure 21 also includes the DNS results of Breugem et al. (2006);
Kuwata & Suga (2016a, 2017) and the presently processed results using the isotropic
porous medium data of Suga et al. (2017) to see the general trend. The plotted points of
Breugem et al. (2006); Kuwata & Suga (2016a) are for isotropic porous media while the
data of Kuwata & Suga (2017) are for anisotropic porous media. It is confirmed that the
DNS results distribute in the range of the presently measured data.

In the fully developed mixing layers, the normalized wavelength of the K-H-type
coherent eddies by the vorticity thickness Cλ (= λx/δω) is known to be 3.5 ⩽ Cλ ⩽ 5
(Dimotakis & Brown 1976; Rogers & Moser 1994). For flows over the porous walls, the
DNSs by Breugem et al. (2006); Kuwata & Suga (2016a, 2017) indicated Cλ ≃ 3.4
when the the boundary-layer thickness δp is considered to be equivalent to the vorticity
thickness δω while Raupach et al. (1996); Finnigan (2000) summarized that the best
fitted value of Cλ was 4.05 for a wide range of turbulent canopy flows. As seen in figure
21, the experimental data collapse mainly around Cλ =5.5 and 4.3 and some data are
around the line of Cλ =3.4, irrespective of anisotropy of the porous walls. This result of
3.4 ⩽ Cλ ⩽ 5.5 for porous wall turbulence confirms that the characteristics of the K-H
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waves over porous media are similar to those of the turbulent mixing layers though their
detailed flow structures are very different.

4. Concluding summary

Three kinds of anisotropic porous media having large wall-normal permeabilities are
made by piling up ethylene vinyl acetate copolymer nets with rounded-square shaped
pores. Their wall permeability tensor is designed to have a larger wall-normal perme-
ability than the other components and thus the ratios of the wall-normal to streamwise
permeabilities areKyy/Kxx > 1.0. Those porous media are constructed to have three mu-
tually orthogonal principal axes and those principal axes are aligned with the Cartesian
coordinate axes of the flow geometry. Correspondingly, their permeability tensors are di-
agonal. PIV measurements are performed for fully developed turbulent channel flows over
those anisotropic porous media. Streamwise-wall-normal (x–y) and streamwise-spanwise
(x–z) plane measurements are carried out at Reb=900–13600. The obtained x–y plane
data show that the streamwise permeability affects turbulence more significantly than the
wall-normal permeability. To correlate the turbulence characteristics over isotropic and
anisotropic porous wall flows a modified permeability Reynolds number, which is named
the generalized permeability Reynolds number, is proposed considering the Kozeny-
Carman equation. This generalized permeability Reynolds number is a function of the
porosity and the streamwise permeability. For the general usage a surrogate permeability
Reynolds number, which is essentially a modified pore Reynolds number and has a strong
linear correlation with the generalized permeability Reynolds number, is also proposed.
It is then confirmed that the generalized and surrogate permeability Reynolds numbers
represent the turbulence characteristics over porous media, particularly for the zero
plane displacement d and the roughness scale h of the log-law velocities, irrespective
of anisotropy of porous media. From the discussion on the contributions of sweeps and
ejections to the Reynolds shear stress near the porous media, it is confirmed that the
streamwise permeability is the primary factor to affect sweeps and ejections which are
the main events for the Reynolds shear stress. As the streamwise permeability increases,
wall-penetrating vortices causing those events maintain more their strength. This results
in the enhancement of turbulence over the present porous media.

From the x–z plane measurements, low- and high-speed streaks, which are similar to
those of solid-wall turbulence, are also observed near the anisotropic porous walls. In case
of a large Reynolds number, large-scale spanwise patterns which look similar to those
observed in the numerical simulations by Kuwata & Suga (2017) are observed. They are
confirmed to be from the transverse waves induced by the Kelvin-Helmholtz instability. It
is also confirmed that near the anisotropic porous walls the spanwise spacing of the streaks
well correlates with the wall normal distance plus the zero-plane displacement d of the log-
law mean velocity profile. From the transitional range starting from (y+ d)p+ ≃ 200 the
quasi-coherent structure tends to be disturbed by the transverse rollers. This structural
change is generally the same as that of the isotropic porous wall cases reported by Suga
et al. (2017). Since the zero plane displacement d has a correlation with the generalized
permeability Reynolds number, the observed structural change is certainly controlled
by the streamwise permeability. Through the two-point correlation analysis of spanwise
averaged instantaneous fields, it is found that the Kelvin-Helmholtz wavelength λx ranges
in the region of λx/δp=3.4–5.5, where δp is the boundary layer thickness, irrespective of
anisotropy of the porous walls. This range is generally accord with that of the turbulent
mixing layers.
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Appendix A. Transport equations of turbulent and dispersion
stresses in the double averaged system

In homogeneous porous media, the transport equation of the volume averaged Reynolds
stress reads
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iũ
′
j⟩

f
+ ⟨ũkũ′
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∂⟨ūj⟩f

∂xk
− ⟨Rjk⟩f

∂⟨ūi⟩f
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f
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, (A 1)

while the transport equation of the dispersion stress becomes

∂⟨Tij⟩f
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∂⟨Tij⟩f
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∂
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i
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(
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f
+
⟨
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′ũ′
i
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+
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′ũ′
j
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ρ
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ρ

(
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∂xj
+

∂ ¯̃uj

∂xi

)⟩f

+

⟨
Tik

∂ ¯̃uj
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⟩f

+

⟨
Tjk

∂ ¯̃ui
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⟩f

−⟨Tik⟩f
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⟨
∂ ¯̃ui

∂xk

∂ ¯̃uj

∂xk

⟩f



Anisotropic wall permeability effects on turbulent channel flows 17

−

{
−
⟨(

ũ′
iũ

′
k + ũ′

i⟨u′
k⟩f
) ∂ ¯̃uj

∂xk

⟩f

−
⟨(

ũ′
j ũ

′
k + ũ′

j⟨u′
k⟩f
) ∂ ¯̃ui

∂xk

⟩f
}

−⟨¯̃uiũ′
k⟩f

∂⟨u′
j⟩f

∂xk
− ⟨¯̃uj ũ′

k⟩f
∂⟨u′

i⟩f
∂xk

+ f̄i⟨ūj⟩f + f̄j⟨ūi⟩f . (A 2)
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Pinson, F., Grégoire, O. & Simonin, O. 2006 k−ε macro-scale modeling of turbulence based
on a two scale analysis in porous media. Int. J. Heat Fluid Flow 27 (5), 955 – 966.

Poggi, D., Porporato, A., Ridolfi, L., Albertson, J. D. & Katul, G. G. 2004 The effect
of vegetation density on canopy sub-layer turbulence. Boundary-Layer Meteorol. 111 (3),
565–587.

Pokrajac, D. & Manes, C. 2009 Velocity measurements of a free-surface turbulent flow
penetrating a porous medium composed of uniform-size spheres. Transp. Porous, Med.
78, 367–383.

Prasad, A. K., Adrian, R. J., Landreth, C. C. & Offutt, P. W. 1992 Effect of resolution
on the speed and accuracy of particle image velocimetry interrogation. Exp. Fluids 13,
105–116.

Raupach, M. R., Antonia, R. A. & Rajagopalan, S. 1991 Rough-wall turbulent boundary
layers. Appl. Mech. Rev. 44, 1–25.

Raupach, M. R., Finnigan, J. J. & Brunei, Y 1996 Coherent eddies and turbulence in
vegetation canopies: the mixing-layer analogy. Boundary-Layer Meteorol. 78 (3-4), 351–
382.

Raupach, M. R. & Shaw, R. H. 1982 Averaging procedures for flow within vegetation canopies.
Bound. Layer Meteorol. 22, 79–90.

Rogers, M. M. & Moser, R. D. 1994 Direct simulation of a self-similar turbulent mixing
layer. Phys. Fluids 6, 903–923.

Rosti, M. E., Cortelezzi, L. & Quadrio, M. 2015 Direct numerical simulation of turbulent
channel flow over porous walls. J. Fluid Mech. 784, 396–442.

Ruff, J. F. & Gelhar, L. W. 1972 Turbulent shear flow in porous boundary. J. Eng. Mech.
Div., ASCE 98, 975–991.



Anisotropic wall permeability effects on turbulent channel flows 19

Shimizu, Y., Tsujimoto, T. & Nakagawa, H. 1990 Experiment and macroscopic modelling
of flow in highly permeable porous medium under free-surface flow. J. Hydrosci. Hydraul.
Eng. 8, 69–78.

Smith, C. R. & Metzler, S. P. 1983 The characteristics of low-speed streaks in the near-wall
region of a turbulent boundary layer. J. Fluid Mech. 129, 27–54.

Suga, K. 2016 Understanding and modelling turbulence over and inside porous media. Flow
Turb. Combust. 96, 717–756.

Suga, K., Matsumura, Y., Ashitaka, Y., Tominaga, S. & Kaneda, M. 2010 Effects of wall
permeability on turbulence. Int. J. Heat Fluid Flow 31, 974–984.

Suga, K., Mori, M. & Kaneda, M. 2011 Vortex structure of turbulence over permeable walls.
Int. J. Heat Fluid Flow 32, 586–595.

Suga, K., Nakagawa, Y. & Kaneda, M. 2017 Spanwise turbulence structure over permeable
walls. J. Fluid Mech. 822, 186–201.

Suga, K., Tominaga, S., Mori, M. & Kaneda, M. 2013 Turbulence characteristics in flows
over solid and porous square ribs mounted on porous walls. Flow Turb. Combust. 91,
19–40.

Szabo, B. A. 1968 Permeability of orthotropic porous mediums. Water Resour. Res. 4, 801–808.
Tilton, N. & Cortelezzi, L. 2008 Linear stability analysis of pressure-driven flows in channels

with porous walls. J. Fluid Mech. 604, 411–445.
Tomkins, C. D. & Adrian 2003 Spanwise structure and scale growth in turbulent boundary

layers. J. Fluid Mech. 490, 37–74.
Wallace, J. M., Eckelmann, H. & Brodkey, R. S. 1972 The wall region in turbulent shear

flow. J. Fluid Mech. 54, 39–48.
Whitaker, S. 1969 Advances in theory of fluid motion in porous media. Ind. Eng. Chem. 61,

14–28.
Whitaker, S. 1986 Flow in porous media I: A theoretical derivation of Darcy’s law. Transp.

Porous Med. 1, 3–25.
Whitaker, S. 1996 The Forchheimer equation: A theoretical development. Transp. Porous Med.

25, 27–61.
Willert, C. E. & Gharib, M. 1991 Digital particle image velocimetry. Expt. Fluids 10, 181–

193.
Zagni, A. F. E. & Smith, K. V. H. 1976 Channel flow over permeable beds of graded spheres.

J. Hydraul. Div. 102, 207–222.
Zippe, H. J. & Graf, W. H. 1983 Turbulent boundary-layer flow over permeable and non-

permeable rough surfaces. J. Hydraul. Res. 21, 51–65.



20 K. Suga, Y. Okazaki, U. Ho and Y. Kuwata

Porous med. φ Kxx [mm2] Kyy [mm2] Kzz [mm2] CF
xx[mm] CF

yy[mm] CF
zz[mm]

case O 0.7 0.044 7.6 0.044 0.025 1.91 0.025
case Θ 0.7 0.060 0.090 0.075 0.029 0.027 0.027
case Φ 0.7 0.075 0.090 0.060 0.027 0.027 0.029

Table 1. Characteristics of the anisotropic porous media; φ is the porosity; Kxx, Kyy and Kzz

are the diagonal components of the permeability tensor; CF
xx, C

F
yy and CF

zz are the diagonal
components of the coefficient of the Forchheimer tensor.

Porous med. Reb ReK Re∗K Re∗∗K up
τ/u

t
τ κ dp+ hp+ x− y x− z

case O 900 - - - - - - - ✓
1300 4.5 4.0 3.6 1.13 - - - ✓
3600 17.3 15.7 14.2 1.23 0.25 40 8.1 ✓ ✓
4800 22.6 20.6 18.6 1.30 0.18 95 27.5 ✓ ✓

10500 46.1 42.0 37.9 1.32 0.17 165 51.0 ✓ ✓
13600 60.2 54.9 49.5 1.33 0.17 210 77.0 ✓ ✓

case Θ 3400 3.3 20.3 15.9 1.38 0.20 80 24.3 ✓ ✓
5000 4.8 29.3 22.9 1.38 0.15 183 72.0 ✓ ✓

10300 9.0 61.9 48.3 1.45 0.16 210 84.0 ✓ ✓
13600 11.5 71.0 55.3 1.53 0.15 285 122.5 ✓ ✓

case Φ 3400 3.4 23.4 16.3 1.47 0.22 60 18.3 ✓ ✓
5700 5.9 39.9 27.9 1.56 0.21 102 39.9 ✓ ✓

10400 9.8 67.3 47.1 1.61 0.15 260 131.0 ✓ ✓
13100 12.2 83.8 58.6 1.73 0.15 360 175.0 ✓ ✓

Table 2. Experimental conditions and measured parameters of the mean velocity fields; Reb,
ReK , Re∗K and Re∗∗K are the bulk Reynolds number, the permeability Reynolds number defined
by equation (3.3), the generalized permeability Reynolds number defined by equation (3.10)
and the surrogate permeability Reynolds number defined by equation (3.11); ut

τ and up
τ are the

friction velocities on the top solid and bottom porous walls; κ, d and h are the von Kármán
coefficient, the zero plane displacement and the roughness scale, respectively; (·)p+ corresponds
to a value normalized by using up

τ .
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Figure 1. Polymer net for constructing the porous media; (a) shape of the EVA copolymer
net (N-523, Takiron), (b) forming a unit layer.
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Figure 2. Three types of anisotropic porous media: cases O, Θ and Φ are named from the
views of the meshes from the channel centre; lead plates are bonded to the very bottom layers
to increase the weight.
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Figure 3. Experimental set up: (a) flow facility, (b) cross sectional view of the test section,
(c) schematic view of the streamwise-wall-normal (x− y) plane measurements, (d) locations of
the measured planes: A, B, C and D for volume averaging the x − y plane measurements, (e)
schematic view of the streamwise-spanwise (x− z) plane measurements.
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Figure 4. Mean velocity distributions: (a) case O, (b) case Θ, (c) case Φ.
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Figure 5. Mean velocity distributions in semi-log scale: (a) case O, (b) case Θ, (c) case Φ;
lines are fitting lines.
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Figure 6. Parameters of mean velocity: (a) zero-plane displacement d and roughness length

scale h, (b) logarithmic layer indicated by (y + d)d [U ]p+ /dy.
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Figure 7. Distributions of log-law parameters against the permeability Reynolds number ReK :
(a) zero-plane displacement, and (b) roughness scale; #20, #13, #06 are the isotropic cases at
φ = 0.8 of Suga et al. (2010, 2017).
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Figure 8. Distributions of log-law parameters against the generalized permeability Reynolds
number Re∗K : (a) von Kármán constant, (b) zero-plane displacement, and (c) roughness scale.
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Figure 9. Correlation between the generalized and surrogate permeability Reynolds numbers.
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Figure 10. Distributions of log-law parameters against the surrogate permeability Reynolds
number Re∗∗K : (a) von Kármán constant, (b) zero-plane displacement, and (c) roughness scale;
data of Detert et al. (2010); Manes et al. (2011); Breugem et al. (2006); Kuwata & Suga (2016a)
are for isotropic porous media, data of Kuwata & Suga (2017) are for anisotropic porous media.
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Figure 11. Comparison of Reynolds shear stress: (a) case O, (b) case Θ, (c) case Φ.
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Figure 12. Comparison of turbulent intensities: (a) streamwise turbulent intensity of case O,
(b) wall-normal turbulent intensity of case O, (c) streamwise turbulent intensity of case Θ,
(d) wall-normal turbulent intensity of case Θ, (e) streamwise turbulent intensity of case Φ, (f)
wall-normal turbulent intensity of case Φ.
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Figure 13. Comparison of turbulence quantities at Reb ≃10500: (a) Reynolds shear stress, (b)
streamwise turbulent intensity, (c) wall-normal turbulent intensity.
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(a)
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Figure 14. Comparison of mean velocity and shear production near the porous wall at
Reb ≃10500: (a) mean velocity profiles, (b) shear production P12 = −[v′2]∂[U ]/∂y profiles.
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Figure 15. Joint probability density function p(u′, v′) of fluctuating velocity at yp+ = 15 for
Reb ≃ 10500: (a) case O (β = 11.9◦), (b) case Θ (β = 12.2◦), (c) case Φ (β = 16.4◦); β is the
streamwise angle of the major axis of (u′, v′) distribution.
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Figure 16. Quadrant analysis of the Reynolds shear stress distributions at Reb ≃ 10500: (a)
case O at Reb = 10500, (b) case Θ at Reb = 10300, (c) case Φ at Reb = 10400, (d) comparison
of sweeps: Q4.
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Figure 17. Snapshots of low- and high-speed fluid lumps at yp+ ≃ 20: (a, b) fluctuation
velocity contours of case O at Reb = 4800, Re∗K = 20.6 and case Φ at Reb = 13100, Re∗K = 83.8,
respectively. The upper images are snapshots of the instantaneous fields and the lower images
correspond to the spanwise averaged fields of the upper images. (c, d) instantaneous wall-normal
vorticity ωp+

y = (∂u/∂z − ∂w/∂x)ν/(up
τ )

2 fields corresponding to the snapshots shown in (a)
and (b), respectively.
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Figure 18. Two-point correlation of the streamwise velocity versus spanwise spacing: (a) case
O at Reb = 4800 (Re∗K = 20.6), (b) case Θ at Reb = 10300 (Re∗K = 61.9), (c) case Φ at
Reb = 13100 (Re∗K = 83.8).
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p
zλ +
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Figure 19. Distribution of spanwise spacing of streaks in the wall-normal direction; solid line
indicates the fitting line of the solid-wall cases from the literature (Smith & Metzler 1983; Iritani
et al. 1985; Kim et al. 1987; Tomkins & Adrian 2003) and broken lines indicate the transitional
range.
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Figure 20. Two-point correlation of the streamwise velocity versus streamwise spacing: (a)

standard two-point correlation functions R̂11(∆x) for case Θ at Reb = 10300 (Re∗K = 61.9),

(b) two-point correlation functions of the spanwise averaged field ⟨̂R11⟩z(∆x) for case Θ at

Reb = 10300, (c) standard two-point correlation functions R̂11(∆x) for case Φ at Reb = 13100

(Re∗K = 83.8), (d) two-point correlation functions of the spanwise averaged field ⟨̂R11⟩z(∆x) for
case Φ at Reb = 13100.
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Figure 21. Streamwise wavelength of the fluid lumps; #20, #13, #06 are the isotropic cases
of Suga et al. (2017), data of Breugem et al. (2006); Kuwata & Suga (2016a) are for isotropic
porous media, data of Kuwata & Suga (2017) are for anisotropic porous media; chain, solid and
broken lines correspond to λx = Cλδp with Cλ =5.5,4.3 and 3.4, respectively.


