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Abstract 8

An advanced second moment closure for rough wall turbulence is proposed.

In contrast to previously proposed models relying on an empirical correlation

based on equivalent sand grain roughness, the proposed model mathemati-

cally derives roughness effects by applying spatial and Reynolds averaging to

the governing equations. The additional terms in the momentum equations

are the drag force and inhomogeneous roughness density terms. The drag

force term is modeled with respect to the plane porosity and plane hydraulic

diameter. The two-component limit pressure-strain model is applied to the

additional pressure-strain term, which is related to the external force terms.

An evaluation of turbulence over surfaces with randomly distributed semi-

spheres confirms that the developed model reasonably reproduces the effects

of roughness on mean velocity, Reynolds stress, and energy dissipation. Tur-

bulence over rough surfaces of marine paint is also simulated to assess the

predictive performance for higher Reynolds number turbulent flows over real

rough surfaces. The developed model successfully reproduces the dependence

of the Reynolds number on roughness effects. Moreover, qualitative agree-
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ment of the skin friction increase with the experimental data is confirmed.

Keywords: Turbulence modeling, Rough wall turbulence, Double 1

averaging, Second moment closure 2

1. Introduction 3

Predicting fluid flow over rough surfaces is an important prerequisite for 4

engineering design because wall surfaces encountered in engineering flows are 5

usually rough. The wall roughness inevitably occurs in production processes 6

due to imperfections in the surface finish. Furthermore, erosion or corrosion 7

due to aging and fouling processes also roughen surfaces; e.g., aerodynamic 8

flows over airfoils with icing (Dalili et al., 2009; Parent and Ilinca, 2011), 9

ship hull roughness due to organic fouling (Townsin, 2003; Schultz, 2007), or 10

erosion of turbine blades by impinging combustor air (Bons, 2010). It is well 11

known that those rough surfaces lead to performance degradation due to a 12

significant increase in wall-friction. 13

The most important effect of wall roughness on turbulent flow is a down- 14

ward shift in the mean velocity profile, known as the roughness function due 15

to a modified friction factor (Hama, 1954; Schlichting et al., 1960). The pio- 16

neering experimental work on this effect was performed by Nikuradse (1933). 17

His large number of measurements of pressure drop in pipes with walls cov- 18

ered by sand grains revealed that the friction factor only depends on the 19

sand grain roughness scale at sufficiently high Reynolds numbers. Colebrook 20

et al. (1939) extended this work by including the data in transitionally-rough 21

turbulent flow for more practical uses. Moody (1944) later consolidated the 22

data as a Moody diagram, which is the most widely used engineering tool for 23
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estimating the friction factor. Because the diagram was based on the equiva- 1

lent roughness, many studies have dedicated their efforts to determining the 2

equivalent sand grain roughness from topological roughness parameters (e.g., 3

Schlichting et al., 1960; Dvorak, 1969; Dirling, 1973; Musker, 1980; Sigal and 4

Danberg, 1990; Flack and Schultz, 2010; Forooghi et al., 2017; Kuwata and 5

Kawaguchi, 2018b). These were based on the roughness density and shape 6

parameter (Dirling, 1973; Sigal and Danberg, 1990; Van Rij et al., 2002), or 7

statistical moments of the roughness height elevation (Musker, 1980; Townsin 8

et al., 1981; Flack and Schultz, 2010; Kuwata and Kawaguchi, 2018b). An- 9

other important strategy, which was originally not intended for the equivalent 10

roughness but the roughness function, is based on the slope of a roughness 11

corrugation (Napoli et al., 2008; Schultz and Flack, 2009; Forooghi et al., 12

2017; Chan et al., 2015). Indeed, those correlations were used to success- 13

fully estimate an increase in the rough wall skin friction. However, one can 14

readily expect that those correlations cannot be used to predict wall rough- 15

ness effects in practical flow problems where flow separation, reattachment, 16

and impingement sometimes occur due to complex wall geometries. Accord- 17

ingly, in order to predict the impact of roughness on such engineering flows 18

with relatively low computational cost many studies attempted to extend 19

the Reynolds-Averaged-Navier–Stokes (RANS) turbulence model to account 20

for the roughness effects (Christoph and Pletcher, 1983; Taylor et al., 1985; 21

Patel and Yoon, 1995; Wilcox et al., 1998; Durbin et al., 2001; Aupoix and 22

Spalart, 2003; Suga et al., 2006; Knopp et al., 2009; Qi et al., 2018). 23

An early attempt at modeling roughness effects was made by Taylor et al. 24

(1985); he modeled the blockage and drag force effects due to the presence 25
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of roughness. Validation in flows over surfaces with two-dimensional rough- 1

ness demonstrated that the roughness model in conjunction with the mixing 2

length model could be used to successfully predict the dependence of skin 3

friction on rib spacing, rib size, and Reynolds number, although the appli- 4

cation examples were limited to surfaces with simple roughness elements. 5

Roughness modification with the widely-used, robust two-equation k − ω 6

SST model was reported by Wilcox et al. (1998). He modified only the wall 7

boundary condition of ω using the equivalent roughness. In spite of a very 8

simple modification, the developed model could be used to reasonably predict 9

the decreased mean velocity over rough surfaces. However, Patel and Yoon 10

(1995); Hellsten (1997); Knopp et al. (2009) pointed out a major drawback of 11

the modification presented by Wilcox et al. (1998) in that the model required 12

very fine near-wall mesh resolution. Durbin et al. (2001) also extended the 13

two-layer k − ε model. They modified the eddy viscosity in the vicinity of 14

a rough wall by introducing the equivalent roughness and imposed non-zero 15

turbulence energy at the rough wall boundary. Their modifications relied on a 16

log-law profile over a surface with sand grain roughness of Nikuradse (1933). 17

Similar modifications based on the log-law solution were also reported by 18

Aupoix and Spalart (2003); Knopp et al. (2009). Flows past an airfoil were 19

simulated for a variety of angle of attack using the extended k − ω model 20

Knopp et al. (2009) where an adverse pressure gradient presented. They 21

demonstrated the potential of predicting the effects of roughness on the lift 22

coefficient; however, the simulated results did not quantitatively agree with 23

the experimental data. Using a similar idea to those of Durbin et al. (2001); 24

Aupoix and Spalart (2003); Knopp et al. (2009), Suga et al. (2006) extended 25
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the analytical wall function developed by the UMIST group (Craft et al., 1

2004) to account for the effects of fine-grain surface roughness. They modi- 2

fied the viscous sublayer thickness by using the equivalent roughness in order 3

to mimic how roughness disrupts the viscous sublayer. They predicted suf- 4

ficient results for flows over curved rough walls, sand dunes, and a roughed 5

ramp, as well as boundary layer flows over a rough-wall. 6

Those turbulence models showed good performance in predicting turbu- 7

lent flow over rough surfaces. However, those models basically relied on 8

an equivalent roughness; thus, their application is limited to rough surfaces 9

whose equivalent roughness is known a priori. Applicable examples include 10

commercial steel pipes, glass, and concrete, while applying those to naturally 11

occurring roughness with unknown equivalent roughness is not straightfor- 12

ward (e.g., roughness by corrosion, erosion, icing, or organic fouling). An- 13

other concern of those models is that they describe transitionally-rough tur- 14

bulence based on empirical asymptotic correlations for sand grain roughness 15

(Nikuradse, 1933) or hemispheres roughness (Ligrani and Moffat, 1986), de- 16

spite the fact that there is no universal correlation between the equivalent 17

roughness and roughness function in this regime (Jiménez, 2004; Flack et al., 18

2012; Thakkar et al., 2017). Therefore, those models may not provide a 19

reasonable prediction of turbulence over a variety of rough surfaces in the 20

transitionally rough regime. 21

A different approach for simulating rough wall turbulence has been dis- 22

cussed in terms of direct numerical simulation (DNS)(Miyake et al., 2000; 23

Busse and Sandham, 2012; Forooghi et al., 2018a; Kuwata and Kawaguchi, 24

2018a). Their simulations were basically DNS, but an external drag force 25
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term was introduced to account for the blocking effects due to the rough wall. 1

Hence, empirical correlation based on the equivalent roughness is not used 2

in those models. Recently, Forooghi et al. (2018a); Kuwata and Kawaguchi 3

(2018a) compared the model simulation results with those obtained by DNS 4

of turbulence over fully-resolved rough surfaces, and they showed almost 5

perfect agreement of the standard turbulence statistics with the DNS data. 6

In addition, Kuwata and Kawaguchi (2018a) confirmed that the modified 7

turbulence structure and transport due to the wall roughness were correctly 8

reproduced by their model, where the additional roughness terms were math- 9

ematically derived by applying spatial (plane) averaging theory. However, it 10

should be stressed again that the computational cost is too huge for practical 11

applications because those models do not include a turbulence model. 12

Following this strategy, the aim of the present study is to develop a more 13

elaborate turbulence model starting from the plane averaged Navier–Stokes 14

(PANS) model of Kuwata and Kawaguchi (2018a), which was rigorously val- 15

idated through a comparison with DNS data. By applying Reynolds aver- 16

aging in addition to the plane averaging, we attempt a first step towards 17

establishing a second moment closure for rough wall turbulence based on the 18

most advanced SMC model, namely the TCL (two-component limit) model 19

of (Craft and Launder, 1996). Unlike a previous phenomenological strategy 20

that relies on the equivalent roughness, the present study faithfully treats the 21

mathematically derived additional terms representing roughness effects. The 22

developed model is first validated in transitionally-rough turbulence over sur- 23

faces with semi-spheres. The turbulence statistics, including mean velocity, 24

Reynolds stress, energy dissipation rate, and drag force terms, are evaluated 25
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against the DNS and PANS results of Kuwata and Kawaguchi (2018a). A 1

second validation is performed for fully-rough turbulence over rough surfaces 2

with marine paint. In order to assess the predictive performance for higher 3

Reynolds number turbulent flows over real rough surfaces. 4

7



Nomenclature 1

AS : plane area of a representative elementary plane 2

ASf
: plane area of fluid phase contained within a representative elementary 3

plane 4

Cf : Skin friction coefficient 5

CD
1 , CD

2 : model coefficients of the plane-averaged drag force model 6

Dm : plane hydraulic diameter 7

ES : effective slope 8

fi : plane-averaged drag force 9

gφi : inhomogeneous roughness density term 10

hm : mean roughness height 11

hmax : maximum peak height of a rough surface 12

hrms : standard deviation of roughness elevation 13

H : channel height 14

k : turbulence energy: k = Rkk/2 15

ℓ : circumference length of solid obstacles 16

p : pressure 17

Rij : Reynolds stress: ⟨u′
i⟩

f⟨u′
j⟩

f
18

8



Reτ : friction Reynolds number: Reτ = uτδ/ν 1

Reb : bulk mean Reynolds number: Reb = UbH/ν 2

Sk : skewness of roughness elevation 3

t : time 4

ui : velocity 5

uτ : friction velocity 6

Ub : bulk mean velocity 7

x : streamwise coordinate 8

y : wall-normal coordinate 9

z : spanwise coordinate 10

δij : Kronecker delta 11

δ : boundary layer thickness 12

∆U : roughness function 13

ε : isotropic part of the energy dissipation rate 14

ν : kinematic viscosity 15

τij : dispersive stress: τij = φ⟨ũiũj⟩f 16

ρ : fluid density 17

φ : plane porosity: φ = ASf
/As 18
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ϕ : variable 1

ϕ : Reynolds averaged value of ϕ 2

ϕ′ : temporal fluctuation of ϕ : ϕ− ϕ 3

⟨ϕ⟩f : intrinsic plane-averaged value of ϕ 4

⟨ϕ⟩ : superficial plane-averaged value of ϕ 5

()+ : values normalized by the friction velocity 6

2. Spatial averaged Navier–Stokes equation 7

Before we discuss an extension of the base PANS model of Kuwata and 8

Kawaguchi (2018a), we briefly describe spatial (plane) averaging theory. The 9

present study applies plane averaging to the governing equations in order to 10

macroscopically describe fluid flow near a rough wall. To account for the na- 11

ture of rough surfaces whose characteristics vary drastically depending on the 12

rough wall-normal coordinate, we define a representative elementary plane 13

(REP) for spatial averaging that is parallel to the rough wall, as illustrated 14

in Fig.1. The typical size of the REP can be defined such that the average 15

roughness parameters over the REP are independent of the plane size, but it 16

should be smaller than the global flow geometry (see Kuwata and Kawaguchi 17

(2018a) for the discussions on the REP size). The superficial plane average 18

of the flow velocity ui is 19

⟨ui⟩ =
1

AS

∫
S

uidS, (1)
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where S and AS are the REP and its plane area, respectively. As flow within 1

rough surface is spatially inhomogeneous, the velocity ui can be decomposed 2

into a contribution from the intrinsic (fluid phase) averaged value ⟨ui⟩f : 3

⟨ui⟩f =
1

ASf

∫
S

uidS, (2)

and a deviation from the intrinsic (fluid phase) averaged value ũi, which is 4

usually referred to as the dispersion: 5

ui = ⟨ui⟩f + ũi, (3)

where ASf
denotes the plane area of the fluid phase contained within S and 6

there is a relation between the superficial and intrinsic plane-averaged values: 7

⟨ui⟩ = φ⟨ui⟩f . Here, the plane porosity φ is defined as the ratio of the fluid 8

phase plane area ASf
to the plane area AS: φ = ASf

/AS. Plane averaging 9

can be applied to the momentum equations for incompressible flows, yielding 10

the plane averaged Navier–Stokes (PANS) equation (Kuwata and Kawaguchi, 11

2018a): 12

∂⟨ui⟩f

∂t
+ ⟨uj⟩f

∂⟨ui⟩f

∂xj

= −1

ρ

∂⟨p⟩f

∂xi

+
1

φ

∂

∂xj

(
ν
∂φ⟨ui⟩f

∂xj

)

− 1

φ

∂

∂xj

φ⟨ũiũj⟩f︸ ︷︷ ︸
τij

− ν

φ

∂φ

∂xj

∂⟨ui⟩f

∂xj︸ ︷︷ ︸
gφi

−
(

1

ρASf

∫
L

p̃nidℓ−
ν

ASf

∫
L

nk
∂ũi

∂xk

dℓ

)
︸ ︷︷ ︸

fi

, (4)

where L represents obstacle perimeter within the REP, ℓ is the circumference 13

length of solid obstacles, and nk is its unit normal vector pointing outward 14
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from the fluid to the solid phase. The spatial averaging process produces an 1

additional stress term τij, called dispersive stress, which consists of velocity 2

dispersion ũ (Raupach and Shaw, 1982). This also yields an inhomogeneous 3

roughness density term gφi and a plane-averaged drag force term fi. The 4

plane-averaged drag force is expressed as a line integral of the dispersive 5

viscous stress and dispersive pressure, representing the viscous and foam 6

drag effects, respectively. The term gφi does not require any approximation, 7

whereas the term τij and fi must be modeled to close Eq.(4). In our previous 8

work, Kuwata and Kawaguchi (2018a) modeled fi by using two geometric 9

roughness parameters, namely the plane porosity φ and plane hydraulic di- 10

ameter Dm as 11

fi = νCD
1 ⟨ui⟩f + CD

2 ⟨ui⟩f
√
⟨uk⟩f⟨uk⟩f , (5)

where the model coefficients CD
1 and CD

2 were modeled in terms of Dm and 12

φ as follows: 13

CD
1 =

2C1

π

(1− φ)

φ2D2
m

, CD
2 =

2C2

π

(1− φ)

φ2.5Dm

, (6)

where the model constants were C1 = 71 and C2 = 0.79. Here, the plane 14

hydraulic diameter Dm is the representative cross-sectional area of the rough- 15

ness elements, which is defined as follows: 16

Dm =
4Ssum

Lsum

, (7)

where Ssum and Lsum stand for the total area occupied by the obstacles and 17

the total wetted perimeter of the obstacles in the REP, respectively. Kuwata 18

and Kawaguchi (2018a) conducted DNS of turbulent flows over macro rough 19

walls by solving the PANS equation (Eq.(4)) in a rough wall region in order 20

to validate the PANS approach. They used the plane-averaged drag force 21
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model (Eq.(5)) while they dropped the dispersive stress τij, and confirmed 1

that the standard turbulence statistics were in almost perfect agreement with 2

those obtained from fully resolved rough wall simulations. Furthermore, they 3

confirmed the validity of omitting τij and the drag force model by analyzing 4

the budget terms in the turbulent kinetic energy transport equation. Ac- 5

cordingly, in the subsequent section, we attempt to extend the PANS model 6

using the drag force model of Eq.(5). It should be noted that ignoring the 7

dispersive stress means that the turbulence generation induced by wake flows 8

(i.e., wake production (Raupach and Shaw, 1982)) is not taken into account 9

in the present model. However, results from the fully-resolved roughness 10

DNS studies in the fully-rough regime (Yuan and Piomelli, 2014; Kuwata and 11

Kawaguchi, 2018b; Yuan and Jouybari, 2018) suggest that the majority of the 12

turbulence generation in the roughness sublayer was occupied by the shear 13

production rather than the wake production. Interestingly, the experimental 14

study by Mignot et al. (2009) on higher Reynolds number flows in gravel 15

beds, where the inner-scaled equivalent roughness exceeded 580, reached the 16

same conclusion. Moreover, the success of the macro rough wall simulations 17

(Busse and Sandham, 2012; Forooghi et al., 2018a; Kuwata and Kawaguchi, 18

2018a), in which the dispersive stress was neglected, indicates the minor 19

contribution of the wake production in turbulence generation. However, one 20

must keep in mind that the turbulence predicted deep inside a modeled rough 21

wall may deviate considerably from the real turbulence because velocity dis- 22

persion cannot be neglected relative to the spatially-averaged velocity in the 23

region. 24
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3. Spatial and Reynolds averaged Navier–Stokes equation 1

The merit of the PANS simulation is that we do not have to treat compli- 2

cated rough geometries. However, the PANS simulation treats time-dependent 3

flow and uses fine grids to resolve fine-scale turbulent eddies because no tur- 4

bulence model is used in the PANS simulation. Hence, the PANS simulations 5

are likely beyond the capability of modern supercomputers when we consider 6

engineering or environmental flows. Accordingly, to reduce computational 7

costs, we incorporate a turbulence model in the PANS method. On that 8

account, Reynolds averaging is used in addition to spatial averaging: 9

ui = ui + u′
i, (8)

where ui is the Reynolds-averaged velocity, and u′
i denotes the fluctuation 10

from the averaged velocity. Applying Reynolds averaging to the PANS equa- 11

tion in Eq.(4) yields the spatial and Reynolds (double) averaged Navier– 12

Stokes equation in the following form: 13

∂⟨ui⟩f

∂t
+ ⟨uj⟩f

∂⟨ui⟩f

∂xj

= −1

ρ

∂⟨p⟩f

∂xi

+
1

φ

∂

∂xj

(
ν
∂φ⟨ui⟩f

∂xj

)
− 1

φ

∂

∂xj

φ ⟨u′
i⟩

f⟨u′
i⟩

f︸ ︷︷ ︸
Rij

+gφi − f i (9)

where Rij is the plane-averaged Reynolds stress. Here, the correlation terms 14

related to the dispersive stress τij are all neglected (see Kuwata and Suga 15

(2015) in the exact form of the double averaged Navier–Stokes (DANS) equa- 16

tion). Reynolds averaging is applied to the spatially-averaged equation in the 17

present study. However, one should note that the order of the spatial and 18

Reynolds averaging operators is interchangeable, and the resulting forms are 19

mathematically equivalent (Pedras and de Lemos, 2001). 20

14



Reynolds averaging of the plane-averaged drag force term can be ex- 1

pressed as 2

f i = νCD
1 ⟨ui⟩f + CD

2 ⟨ui⟩f
√
⟨uk⟩f⟨uk⟩f , (10)

The modelled form of Eq.(5) consists of linear and quadratic terms with 3

respect to the fluid velocity, and this form is the same as the Forchheimer- 4

extended Darcy model, which is widely used to model flow resistance due 5

to porous media (Whitaker, 1996). Because the quadratic term cannot be 6

strictly treated, the Reynolds-averaged Darcy-Forchheimer model is usually 7

modelled as a simple form (Chan et al., 2007; Silva and de Lemos, 2003) with 8

the assumption that 9√
⟨uk⟩f⟨uk⟩f ≈

√
⟨uk⟩f⟨uk⟩f . (11)

This assumption yields 10

f i = νCD
1 ⟨ui⟩f + CD

2 ⟨ui⟩f
√
⟨uk⟩f⟨uk⟩f (12)

The assumption in Eq.(11) may be valid for relatively low Reynolds number 11

flows in porous media, where the contribution from the turbulent velocity 12

fluctuation is sufficiently smaller than that from the mean velocity. How- 13

ever, one can expect that the turbulent velocity fluctuation remains signif- 14

icant just below the roughness crest and the assumption cannot be appli- 15

cable in this region. Accordingly, in order to account for the influence of 16

velocity fluctuations on the squared velocity ⟨uk⟩f⟨uk⟩f , we choose the more 17

sophisticated model proposed by Getachew et al. (2000). They assumed 18

that
(
⟨ūk⟩f

)2
>>

(
⟨u′

k⟩
f
)2

and applied the binomial series expansion to 19

15



{(
⟨ūk⟩f

)2
+ 2⟨ūk⟩f⟨u′

k⟩
f

}1/2

, yielding 1

{(
⟨ūk⟩f

)2}1/2

1 + ⟨ūl⟩f⟨u′
l⟩
f(

⟨ūm⟩f
)2 − 1

2

⟨ūl⟩f⟨u′
l⟩
f(

⟨ūm⟩f
)2


2

+
1

2

⟨ūl⟩f⟨u′
l⟩
f(

⟨ūm⟩f
)2


3

. . .

 ,

(13)

and we can expand the double averaged drag force term as follows: 2

f i = νCD
1 ⟨ui⟩f + CD

2 ⟨ui⟩f
√
⟨uk⟩f⟨uk⟩f + CD

2

⟨uk⟩f√
⟨ul⟩f⟨ul⟩f

Rik. (14)

In addition to the second term on the right-hand side of Eq.(12), which rep- 3

resents the contribution from the mean velocity, the binomial expansion gen- 4

erates an additional higher-order term (the third term on the right-hand side 5

of Eq.(14)) that models the effect of velocity fluctuations on the quadratic 6

term. One may suppose that faithfully averaging the form may be worthless 7

because the plane-averaged drag force in Eq.(5) is just a model. However, 8

Forooghi et al. (2018a) conducted DNS of turbulence over a macro-rough 9

wall and solved the spatially-averaged equations with the similar drag force 10

model; the results show that the simple model of Eq.(12) substantially un- 11

derpredicts as it does not account for velocity fluctuations (the contribution 12

from the higher order term will be discussed in detail in §4.1.4). 13

In contrast to f i, the Reynolds-averaged form gφi straightforwardly writ- 14

ten as follows: 15

gφi = − ν

φ

∂φ

∂xj

∂⟨ui⟩f

∂xj

, (15)

where gφi does not require an approximation. 16
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3.1. Modeling the Reynolds stress transport equation 1

A second moment closure route was chosen to elaborately model the 2

Reynolds stress in this study because this route can directly account for 3

the effects of roughness on the Reynolds stress components. The transport 4

equation of Rij may be written as 5

∂Rij

∂t
+ ⟨uk⟩f

∂Rij

∂xk

= Dij +Πij + Pij + Fij +Gφ
ij − εij, (16)

where 6

Dij =
∂

∂xk

(
ν
∂Rij

∂xk

)
︸ ︷︷ ︸

Dν
ij

− 1

φ

∂

∂xk

(
φ⟨u′

i⟩
f⟨u′

j⟩
f⟨u′

k⟩
f
)

︸ ︷︷ ︸
Dt

ij

, (17)

Πij = −1

ρ

(
⟨u′

j⟩
f ∂⟨p′⟩f

∂xi

+ ⟨u′
i⟩

f ∂⟨p′⟩f

∂xj

)
, (18)

Pij = −Rik
∂⟨ūj⟩f

∂xk

−Rjk
∂⟨ūi⟩f

∂xk

, (19)

εij = 2ν
∂⟨u′

i⟩
f

∂xk

∂⟨u′
j⟩

f

∂xk

. (20)

The terms Dν
ij, Dt

ij, Πij, Pij, and εij are the molecular diffusion, turbulent 7

diffusion, pressure-correlation, mean shear production, and dissipation rate 8

terms, respectively. The additional source terms due to roughness are the 9

drag force contribution term Fij = fi⟨u′
j⟩

f + fj⟨u′
i⟩

f and the inhomogeneous 10

roughness density term Gφ
ij = gφi ⟨u′

j⟩
f + gφj ⟨u′

i⟩
f , which are respectively writ- 11
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ten as 1

Fij = −2νCD
1 Rij

− CD
2 ⟨uk⟩f√

⟨um⟩f⟨um⟩f

(
2⟨uk⟩fRij + ⟨ui⟩fRjk + ⟨uj⟩fRik − csτRkl

∂Rij

∂xl

)
.

Gφ
ij =

ν

φ

(
2Rij

∂2φ

∂x2
k

+
∂Rij

∂xk

∂φ

∂xk

)
, (21)

Note that Gφ
ij can be treated in an exact manner in the second moment clo- 2

sure because Rij is given by solving its transport equation, whereas the bino- 3

mial expansion is used to derive Fij, as in Getachew et al. (2000). The present 4

model adopts the usual generalized gradient diffusion hypothesis (GGDH) of 5

Daly and Harlow (1970) to model the triple velocity correlations in Dt
ij: 6

Dt
ij =

1

φ

∂

∂xk

{
φ (csτRkl)

∂Rij

∂xl

}
, (22)

where τ is the turbulent time scale τ = k/ε, and the model constant is 7

cs = 0.22. Here, the turbulent kinetic energy is k = Rkk/2 and the isotropic 8

dissipation rate is ε. 9

The pressure correlation term Πij can be split into a re-distribution term 10

ϕij and pressure diffusion Dp
ij as follows: 11

−1

ρ

(
⟨u′

j⟩
f ∂⟨p′⟩f

∂xi

+ ⟨u′
i⟩

f ∂⟨p′⟩f

∂xj

)
=

⟨p′⟩f

ρ

(
∂⟨u′

j⟩
f

∂xi

+
∂⟨u′

i⟩
f

∂xj

)
︸ ︷︷ ︸

ϕij

− ∂

∂xm

⟨u′
j⟩

f⟨p′⟩f

ρ
δim +

⟨u′
i⟩

f⟨p′⟩f

ρ
δjm


︸ ︷︷ ︸

Dp
ij

(23)
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As Lumley (1978) noted, splitting the pressure correlation terms into pressure- 1

strain and pressure diffusion terms is not unique, and the following form is 2

also possible (Mansour et al., 1988; Craft and Launder, 1996): 3

Πij = ϕ∗
ij +

Rij

k

Dp
kk

2︸ ︷︷ ︸
Dp∗

ij

, (24)

where ϕ∗
ij and Dp∗

ij are the re-defined pressure-strain and pressure-diffusion 4

terms, respectively. Following Craft and Launder (1996); Suga (2004), Dp∗
kk 5

is modeled as 6

Dp∗
kk = Dp∗

kk1 +Dp∗
kk2. (25)

Craft and Launder (1996) provides the modeled slow part Dp∗
kk1: 7

Dp∗
kk1 =

∂

∂xk

{
cpd(0.5dk + 1.1dAk )(νεkAA2)

1/2
}
, (26)

where di is the inhomogeneity indicator: 8

di =
Ni

0.5 + (NkNk)
1
2

, Ni =
∂ℓ

∂xi

. (27)

Here, ℓ = k1.5/ε is the turbulent length scale. The magnitude of the applied 9

coefficient is 10

cpd = 1.5(1− A2)[{1 + 2 exp(−Rt/40)}A2 + 0.4R
−1/4
t exp(−Rt/40)], (28)

where the flatness parameterA, which converges to zero in the two-component 11

limit (TCL), is A = 1− (9/8)(A2 −A3), A2 = aijaji, A3 = aijajkaki, and the 12

Reynolds stress tensor is aij = Rij/k − (2/3)δij. Here, Rt = k2/(νε) is the 13

turbulent Reynolds number. 14
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Suga (2004) gave the rapid part Dp∗
ij2 as 1

Dp∗
ij2 =

∂

∂xm

[
∂⟨ūk⟩f

∂xl

β1k

{(
ℓkδjl −

1

4
(ℓlδjk + ℓjδkl) +

3

2
ℓkajl

−3

8
ℓm(almδjk + ajmδkl)

)
δim +

(
ℓkδil −

1

4
(ℓlδik + ℓiδkl) +

3

2
ℓkail

−3

8
ℓm(almδik + aimδkl)

)
δjm

}]
, (29)

where 2

ℓi = ℓdAi , dAi =
NA

i

0.5 + (NA
k N

A
k )

0.5 , NA
i =

∂ (A0.5ℓ)

∂xi

, (30)

and dAi is another inhomogeneity indicator of Craft and Launder (1996). The 3

model coefficient is β1 = −0.05 as given by Suga (2004). 4

Following the modeling strategy described in Craft and Launder (1996, 5

2001), the re-distribution term ϕ∗
ij is split into a slow term ϕij,1, rapid term 6

ϕij,2, force production term ϕij,3, and inhomogeneous correction term ϕinh
ij,1 7

and ϕinh
ij,2 as follows: 8

ϕ∗
ij = ϕij,1 + ϕij,2 + ϕij,3 + ϕinh

ij,1 + ϕinh
ij,2. (31)

For the terms ϕij,1 and ϕij,2, we adopt the cubic quasi-isotropization non- 9

linear form with two-component limit (TCL) constraints such that the cor- 10

responding component of the re-distribution term should go to zero as the 11

velocity fluctuations approach zero along a particular direction. As in Craft 12
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and Launder (1996), the resulting forms of ϕij,1 and ϕij,2 are 1

ϕij,1 = −c1ε̃

{
aij + c′1

(
aikajk −

1

3
A2δij

)}
− c′′1 ε̃aij, (32)

ϕij,2 = −0.6

(
Pij −

1

3
Pkkδij

)
+ 0.3aijPkk − 0.2

{
RjkRil

k
Skl

−Rkl

kA

(
Rik

∂⟨ūj⟩f

∂xl

+Rjk
∂⟨ūi⟩f

∂xl

)}
−c2 {A2 (Pij −Dij) + 3amianj (Pmn −Dmn)}

+c′2

[(
7

15
− A2

4

)(
Pij −

1

3
δijPkk

)
+ 0.1

{
aij −

1

2

(
aikakj −

1

3
δijA2

)}
Pkk

−0.05aijaklPkl + 0.1

{(
Rim

k
Pjm +

Rjm

k
Pim

)
− 2

3
δij

Rlm

k
Plm

}
+0.1

(
RjkRil

k2
− 1

3
δij

RlmRkm

k2

)
(6Dkl + 13kSkl) + 0.2 (Dkl − Pkl)

RjkRil

k2

]
,

(33)

where Sij =
∂⟨ūj⟩f

∂xi
+ ∂⟨ūi⟩f

∂xj
and Dij = −

(
Rik

∂⟨ūk⟩f
∂xj

+Rjk
∂⟨ūk⟩f
∂xi

)
. The 2

isotropic dissipation rate that approaches zero at a wall and is defined as 3

ε̃ = ε− 2ν
∂
√
k

∂xk

∂
√
k

∂xk

. (34)

Although the wall-reflection model is usually used for the basic SMC model 4

(Gibson and Launder, 1978), the present TCL model applies correction terms 5

for inhomogeneity effects (ϕinh
ij,1 and ϕinh

ij,2) in place of the traditional wall reflec- 6

tion term. Those terms are basically modeled using gradients of the turbulent 7

length scales and do not require the wall-normal distance. Following Craft 8
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(1998), those forms are 1

ϕinh
ij,1 = fw1

ε

k

(
Rlkdldkδij −

3

2
Rikdjdk −

3

2
Rjkdidk

)
+fw2

ε

k2

(
RmnRmldndlδij −

3

2
RimRmldjdl −

3

2
RjmRmldidl

)
+f ′

w1

k

ε2

(
Rkl

∂
√
A

∂xl

∂
√
A

∂xk

δij −
3

2
Rik

∂
√
A

∂xk

∂
√
A

∂xj

−3

2
Rjk

∂
√
A

∂xk

∂
√
A

∂xi

)
,

(35)

ϕinh
ij,2 = fIk

∂⟨ūl⟩f

∂xn

dldn

(
didj −

1

3
dkdkδij

)
, (36)

Following Craft (1998), the dissipation tensor εij is modeled as 2

εij = (1− fε)(ε
′
ij + ε′′ij + ε′′′ij)/D +

2

3
δijfεε, (37)

with 3

ε′ij = 2ν
∂
√
k

∂xm

(
∂
√
k

∂xi

Rjm

k
+

∂
√
k

∂xj

Rim

k

)
+ 2ν

∂
√
k

∂xk

∂
√
k

∂xm

Rkm

k
δij +

Rij

k
ε,

(38)
4

ε′′ij = fRε
A

(
2
Rlk

k
dAl dkδij −

Ril

k
dAl d

A
j − Rjl

k
dAl d

A
i

)
, (39)

5

ε′′′ij = cεsνk

(
∂
√
A

∂xk

∂
√
A

∂xk

δij + 2
∂
√
A

∂xj

∂
√
A

∂xi

)
, (40)

where D = (ε′kk + ε′′kk + ε′′′kk)/(2ε). A set of model coefficients and functions 6

are summarized in Table 1. 7

The direct effects of the additional force terms (fi and gφi ) on the Reynolds 8

stress are modeled as the additional source terms Fij and Gφ
ij in Eq.(21). 9

However, other corresponding effects on the Reynolds stress, which need 10
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modeling, arise as a force production term ϕij,3 in the re-distribution term, 1

which is mathematically expressed as 2

ϕij,3 =
1

4π

∫
V

(
∂(fm + gφm)

∂xm

′)(∂⟨uj⟩f

∂xi

+
∂⟨ui⟩f

∂xj

)
dV (x′ )

r
(41)

where the integration is performed over r = |x − x′|; values with a prime 3

superscript, herein, are the values at the position of x′ while those without 4

are values at x. The simplest and widely used form for ϕij,3 is based on the 5

assumption of isotropization of production (IP) as follows: 6

ϕij,3 = −c3

(
−Gij +

Gkk

3
δij

)
(42)

where c3 is a proportionality constant that is usually taken as c3 = 0.5 ∼ 0.6, 7

and Gij = Fij + Gφ
ij. Another more analytical route is based on the quasi- 8

isotropy assumption. However, this approach leads to the same form as 9

that in Eq.(42), but with an analytically determined coefficient equal to 1/3 10

(Launde et al., 1975). Although the simple IP strategy has been widely used 11

to model buoyant (Launde et al., 1975) or magnetic (Kenjereš et al., 2004) 12

effects, we apply the TCL constraints to ϕij,3 as with the other re-distribution 13

terms, rather than applying the IP model. Given the analogy of a modeling 14

strategy for the buoyant force production with TCL constraints (Craft and 15

Launder, 2001) (i.e., simply replacing the buoyant force term in ϕij,3 with 16
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the Gij), ϕij,3 may be modeled as follows: 1

ϕij,3 = −
(

4

10
+

3

80
A2

)(
−Gij +

1

3
Gkkδij

)
− 1

4
aijGkk

− 1

20

(
Gim

Rmj

k
+Gjm

Rmi

k
+ δij

Rmn

k
Gmn

)
− 1

10

(
Rmn

k

Rmj

k
Gin +

Rmn

k

Rmi

k
Gjn −

1

4
δij

Rmn

k

Rnl

k
Glk

)
+

1

16

(
Rmi

k

Rnj

k
Gmn +

Rmj

k

Rni

k
Gmn + 2

Rij

k

Rmn

k
Gmn

)
, (43)

Unlike the IP model in Eq.(42), the above form interestingly does not in- 2

clude any empirical coefficients to adjust (the reader is referred to Craft and 3

Launder (2001) for a detailed derivation of ϕij,3). The influence of the choice 4

of ϕij,3 models on the prediction results is discussed in §4.1.4 5

3.2. Modelling the energy dissipation rate transport equation 6

To complete the closure model, the transport equation for the isotropic 7

dissipation rate is modeled as shown in Suga (2003) 8

∂ε̃

∂t
+ ⟨uk⟩f

∂ε̃

∂xk

=
∂

∂xk

{
(νδkl + 0.18Rklτ)

∂ε̃

∂xl

}
+ cε1

Pkk +Gφ
kk

2τ

−cε2
ε̃

τ
− ε− ε̃

τ
+ fε3Pε3 + Fε, (44)

where Pk = Pkk/2 is the turbulence production for the turbulent kinetic 9

energy. Although the original paper employed elaborate forms for the model 10

coefficient cε2, which was tuned after several application tests, we simply 11

assign the model cε1 = 1.44 and cε2 = 1.92 as a first step for the rough 12

wall model. The length-scale correction term in Iacovides and Raisee (1999), 13

which corrects the energy dissipation in the vicinity of the wall and was 14

included in the original paper, is omitted in the present study. 15
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The production term that contains the second derivative of the mean 1

velocity is modeled as in Jakirlić and Hanjalić (2002): 2

Pε3 = −2ν

(
∂Rkl

∂xl

∂2⟨uj⟩f

∂xk∂xl

+ cε3
k

ε

∂Rkl

∂xj

∂⟨ui⟩f

∂xk

∂2⟨ui⟩f

∂xj∂xl

)
(45)

A preliminary a priori test for the energy dissipation equation (results are not 3

shown here) confirms that the modeled form of Pε3 yields an excessive value 4

inside the rough wall relative to the value computed from DNS, especially 5

for surfaces with densely distributed roughness elements. Accordingly, fε3 = 6

φ2
{
1− exp

(
−
(
Rt
30

)2)}
is multiplied by Pε3 in order to restrict the effects 7

within a rough wall. However, a further modification for Pε3 may be required 8

for applying to various rough surfaces or flow configurations. The effect of 9

the inhomogeneous roughness density term is introduced by dividing the 10

turbulence time scale, in analogy to the model for the turbulence production 11

term. The drag force is modeled in a similar fashion as follows: 12

Fε = −2νcfε1C
D
1 ε̃− cfε2

CD
2 ⟨uk⟩f√

⟨um⟩f⟨um⟩f

(
2⟨uk⟩f ε̃+

⟨uj⟩fRjk

τ
− csRkl

∂k

∂xl

)
,

(46)

where we introduce the two model coefficients to model the dependence on the 13

Reynolds number, which are given as cfε1 = 2.3exp
(
−
(
Rt

25

)2)
and cfε2 = 0.6. 14

4. Validation results and discussions 15

The developed model is validated in turbulent flows over two types of 16

rough walls. One is a surface with randomly distributed semi-spheres. Kuwata 17

and Kawaguchi (2018b) provides DNS and PANS results for such rough sur- 18

faces; thus, we can rigorously validate the developed model. The other is a 19
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rough surface with marine paint, which we use to assess the predictive perfor- 1

mance for higher Reynolds number turbulent flows over real rough surfaces. 2

The CFD code used in this study is an in-house finite-volume code STREAM 3

(Lien and Leschziner, 1994a), developed by a group at the University of 4

Manchester. It uses the SIMPLE pressure-correction algorithm of Patankar 5

(1980) with non-orthogonal collocated one employing Rhie and Chow (1983) 6

interpolation and the third order MUSCL type scheme for convection terms 7

(Lien and Leschziner, 1994b). 8

4.1. Flows over surfaces with randomly distributed semi-spheres 9

The first model validation considers turbulent open channel flows over 10

surfaces with randomly distributed semi-spheres. Simulation results from the 11

presently developed model (DANS) are compared with results from the DNS 12

and PANS simulations of Kuwata and Kawaguchi (2018a). Schematic figures 13

for DANS, PANS, and DNS are presented in Fig.2. The DANS model does 14

not directly solve either turbulence or the rough wall geometry, as illustrated 15

in Fig.2(a). The PANS in Fig.2(c) does not resolve the rough wall geometry 16

as is the case with the DANS but it does directly resolve turbulent eddy 17

motion, whereas the DNS in Fig.2(b) directly resolves full details of the 18

rough wall geometry and turbulence. The aim of the present study is to 19

correctly predict the rough wall turbulence; therefore, the comparison with 20

the DNS results is comprehensible. However, it should be remarked that 21

the validity of the present DANS model should be evaluated through the 22

comparison with the PANS results because the start of the present DANS 23

model is the PANS equation without dispersive stress and with the drag force 24

model. In other words, even if the unknown terms in the DANS equation are 25
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perfectly modeled, the simulated results do not accord with the DNS results, 1

but rather with the PANS results. 2

We consider three rough surfaces (cases I, II, and III in Fig.3) with dif- 3

ferent root-mean-square roughness hrms and skewness Sk values. The rough 4

surfaces geometries are the same as those used in the DNS and PANS simu- 5

lations in Kuwata and Kawaguchi (2018c,a). The statistical moment of hrms 6

measures the standard deviation of the rough surface elevation, whereas Sk 7

characterizes whether the surface is valley-dominated or peak-dominated, 8

which are defined as follows: 9

h2
rms =

1

LxLz

∫
z

∫
x

(h− hm)
2 dxdz, (47)

Sk =
1

h3
rmsLxLz

∫
z

∫
x

(h− hm)
3 dxdz, (48)

where Lx and Lz are the streamwise and spanwise lengths for the reference 10

plane, respectively, and h and hm are the surface height and mean surface 11

height, respectively. Those statistical moments do not contain information 12

regarding the rough surface slope. Accordingly, the effective slope (ES) of 13

the roughness corrugation is introduced as follows (Napoli et al., 2008): 14

ES =
1

Lx

∫ ∣∣∣∣∂h∂x
∣∣∣∣ dx. (49)

Those roughness parameters (hrms, Sk, and ES) for cases I, II, and III are 15

detailed in Table 2. It is confirmed from the table that hrms and Sk increase 16

as the case number increases from I to III. This indicates that, as the case 17

number increases, the amplitude of the rough surface elevation increases and 18

the rough surfaces change to peak-dominated structures, which can be seen 19

in Fig.3. In contrast to the statistical moments, the value of ES does not 20
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significantly vary (the values are in the range ES ≃ 0.23−0.28) among these 1

cases. Those roughness parameters suggest that the presently tested rough 2

surfaces have significant differences in the roughness amplitude and the peak 3

distribution, while the slope of the undulations remains nearly unchanged. 4

The geometric roughness parameters required by the present model are 5

the plane porosity φ and plane hydraulic diameter Dm, which are both given 6

as functions of the wall-normal coordinate because the REP is considered as 7

the plane parallel to the rough surface (Kuwata and Kawaguchi, 2018a). The 8

profiles of φ and Dm are shown in Fig.4. Since φ and Dm respectively ap- 9

proach unity and zero as they separate from the bottom wall at y/δ = 0, the 10

additional force terms correspondingly weaken and eventually vanish outside 11

the rough wall. As the case number increases from I to III, φ converges to 12

unity at a slower rate, as shown in Fig.4(b). Meanwhile, the region where 13

Dm plateaus (0.1 < y/δ < 0.15 in case II and 0.1 < y/δ < 0.2 in case 14

III) extends, as shown in Fig.4(a). These observations indicate a moderate 15

change in the model coefficients for the plane-averaged drag force model be- 16

low the roughness peak in case III. The presently used profiles of φ and Dm 17

are the same as those in the PANS simulation of Kuwata and Kawaguchi 18

(2018a). The detailed behavior of the drag force model coefficients in Eq.(6) 19

are available in Kuwata and Kawaguchi (2018a). 20

Simulations are performed under constant friction Reynolds number of 21

Reτ = 300 based on the half channel height δ and the friction velocity. Al- 22

though the definition of the wall-shear stress is not unique, we adopt the same 23

definition of the wall-shear stress used in Kuwata and Kawaguchi (2018a). 24

The wall-shear stress τw in Kuwata and Kawaguchi (2018a) is given by a 25
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relation between the streamwise pressure gradient and τw as follows: 1

τw = −1

ρ

∂P

∂x
(δ − hm) (50)

where δ − hm stands for the effective half channel height from the virtual 2

origin at y = hm to y = δ. Kuwata and Kawaguchi (2018b) proved that this 3

procedure was comparable to a widely employed procedure wherein τw was 4

computed by extrapolating the total shear stress (viscous and Reynolds shear 5

stresses) to the virtual origin at y = hm (Busse et al., 2015; Forooghi et al., 6

2017, 2018b). It is beyond the scope of this paper to go into the details of 7

the shear stress at the wall; therefore, the details are not described here. The 8

reader is referred to Kuwata and Kawaguchi (2018b) for the validity of the 9

determination procedure. We apply the slip boundary condition at the top 10

wall and the non-slip condition at the most bottom wall. Periodic conditions 11

are applied to the inlet and outlet boundaries to simulate the fully-developed 12

flow. The non-uniform meshes have 120 nodes across the half-channel and 4 13

nodes along the streamwise direction. The rough wall region is covered by 14

70 nodes. The grid resolution near the interface region between the macro 15

rough wall and clear fluid regions is refined such that the first grid point over 16

the macro rough wall should be located at y′+ < 1 with y′ being the normal 17

distance from the macro rough wall. In addition, a sufficient number of 18

grids is required inside the macro rough wall in order to accurately compute 19

the derivative of the roughness parameters as they steeply change inside the 20

rough wall. The grid independence test for case I confirms that the number of 21

required grids inside the macro rough wall region decreases by 40%, producing 22

a negligible difference on the skin friction coefficient (less than 1% difference). 23

This indicates that we can choose a coarser grid inside the macro rough wall. 24
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However, it is noted that we encounter numerical instability when we apply 1

the too coarse grid to the rough wall region (reduced to 20%). Also, the 2

adequate number of the grid points depends on the roughness geometry and 3

we do not change the grid number when the roughness geometry changes; 4

thus we adopt a sufficiently large number of grid points inside the rough wall. 5

4.1.1. Mean velocity 6

Figure 5 compares the superficial plane-averaged streamwise mean veloc- 7

ity U = φ⟨u⟩f normalized by the friction velocity together with the DNS data 8

for a smooth wall from Iwamoto et al. (2002). The position of the roughness 9

peak is also indicated using a thin line. The streamwise mean velocity within 10

the rough wall is significantly damped due to the presence of the rough wall. 11

One can see in the enlarged profiles in Fig.6 that the damping of U+ is abrupt 12

in case I, while the damping tends to be relaxed as the case number increases 13

from I to III. This is the result of the moderate change in the roughness pa- 14

rameters φ and Dm near the roughness peak in case III, as shown in Fig.4. 15

Figure 6 shows that those behaviors are quite well captured by the present 16

DANS model. Fig.5 shows that the streamwise mean velocity in the rough 17

wall cases substantially shifts downward compared to a smooth wall, which 18

is due to an increase in the skin friction coefficient at the rough wall. The 19

downward shift of U+ is more pronounced as the case number increases, and 20

the results in Fig.5 confirm that the DANS model closely reproduces the 21

DNS and PANS results. 22

The most important required capability for a rough wall turbulence model 23

is accurately predicting a skin friction coefficient. Accordingly, to evaluate 24

the DANS model, the predicted skin friction coefficient Cf and the rough- 25
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ness function ∆U+ are compared in Table 3. As reported by Kuwata and 1

Kawaguchi (2018c,a), ∆U+ by the DNS ranged from 3.5 ∼ 6.8, indicating 2

that the simulated flows are considered to be in the transitionally rough 3

regime. Generally speaking, in the fully rough regime, ∆U+ can be reason- 4

ably estimated from the inner-scaled equivalent roughness k+
s by applying a 5

well-known relation between ∆U+ and k+
s (Nikuradse, 1933). On the other 6

hand, there is no general relation between ∆U+ and k+
s in the transitionally 7

rough regime (Jiménez, 2004; Flack et al., 2016), although some asymptotic 8

curves have been proposed (Nikuradse, 1933; Colebrook et al., 1939). Thus, 9

predicting the skin friction in this regime is not straightforward. However, 10

interestingly, we can confirm from the table that Cf from the present DANS 11

model is consistent with the DNS and PANS results, although the DANS 12

model underpedicts Cf in case I (the maximum difference in Cf between the 13

DANS and DNS results is approximately 20% in case I). 14

4.1.2. Reynolds stress 15

The superficial plane-averaged Reynolds normal stresses
√
φRij normal- 16

ized by the friction velocity are compared in Fig.7. The Reynolds stresses 17

are damped as they approach the rough walls. As can be seen in the DNS 18

and PANS simulation results, the maximum peak of R11 decreases as the 19

case number increases from I to III, whereas R22 and R33 are insensitive to 20

difference in the roughness geometry. The figure confirms that the developed 21

DANS model successfully predicts the turbulence anisotropy near the rough 22

walls. Moreover, the developed DANS model captures the damping behavior 23

of Rij in the region 0.1 < y/δ < 0.15. However, when one looks inside the 24

rough wall region 0 < y/δ < 0.1, one can see that the Reynolds stresses 25
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predicted by the present DANS model decay too rapidly compared with the 1

DNS results. One may expect that the underprediction of Rij is attributed 2

to neglecting the dispersive stress. However, the PANS simulation also ne- 3

glects the dispersive stress, yet it shows fairly good agreement with the DNS 4

results. Thus, the influence of dispersive stress is considered to be marginal 5

(see Kuwata and Kawaguchi (2018a) for detailed discussions on the influence 6

of velocity dispersion on the turbulent transport mechanism). The other 7

possible reason is insufficient turbulence and pressure diffusion in the DANS 8

model. Recent DNS studies suggested that pressure and turbulence diffusion 9

played an important role in turbulent transport within the roughness (Ikeda 10

and Durbin, 2007; Yuan and Piomelli, 2014; Kuwata and Suga, 2016; Kuwata 11

and Kawaguchi, 2018a). However, it is well known that modeling the triple 12

correlation of the velocity fluctuations and the pressure-velocity correlations 13

in the Reynolds averaged Navier–Stokes framework presents some difficulties. 14

Indeed, although Kuwata et al. (2014); Kuwata and Suga (2015) developed a 15

turbulence model for a porous wall based on a similar strategy (modeling the 16

double averaged equations), they also reported that damping of the predicted 17

Reynolds normal stresses within porous media is too rapid. 18

4.1.3. Energy dissipation rate 19

In order to assess the developed model in detail, the superficial plane- 20

averaged energy dissipation rates εA in each model (non-dimensionalized by 21

the friction velocity and kinematic viscosity) are compared in Fig.8. The 22

definition of the plane-averaged energy dissipation rate is 23

εA = φ

⟨
ν
∂u′

i

∂xk

∂u′
i

∂xk

⟩f

. (51)
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As in Kuwata and Kawaguchi (2018a), the double averaging process splits the 1

energy dissipation εA into contributions from the macro-scale velocity fluctu- 2

ation and velocity dispersion. However, the PANS and DANS models neglect 3

the dispersion-related energy dissipation because those models neglect terms 4

related to the velocity dispersion. Nevertheless, it was demonstrated by 5

Kuwata and Kawaguchi (2018a) that the unresolved part (dispersion-related 6

energy dissipation) could be recovered by the drag force contribution term 7

Fkk/2. Accordingly, φ(ε+Fkk/2) for the PANS and DANS results is plotted 8

in Fig.8 in order to compare εA with the DNS data. The DNS results show 9

that the maximum peak value of εA decreases as the case number increases 10

from I to III, which is successfully captured by the DANS model despite 11

the fact that the dispersion-related energy dissipation is not directly treated. 12

However, the DANS model shows an unphysical secondary peak just above 13

the rough surface in case I, which does not appear in the PANS results. The 14

unphysical secondary peak occurs outside the rough wall region where the 15

additional terms in the double averaged equation vanish. Thus, it can be said 16

that the presently modeled roughness terms do not cause such an unphysical 17

peak, but the unphysical peak may originate from some terms in the base 18

turbulence model. 19

4.1.4. Drag force effects 20

In order to evaluate the modeled terms in the double averaged Navier– 21

Stokes equation, we discuss the budget terms appearing in the streamwise 22

DANS equation. In addition to the Reynolds shear stress, viscous shear 23

stress, and pressure terms, additional roughness terms appear, namely the 24

inhomogeneous roughness density and drag force terms. However, we only 25
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focus on the Reynolds shear stress and drag force contribution terms be- 1

cause the other terms do not include any approximation. Following Kuwata 2

and Kawaguchi (2018a,b), the drag force contribution term DF (y) in the 3

integrated momentum equation is expressed as follows: 4

DF (y) = −
(∫ y

0

φfxdy −
∫ δ

0

φfxdy

)
. (52)

since the term fx is modeled as shown in Eq.(14) by applying the binomial 5

expansion to the quadratic term with respect to the fluid velocity, we can 6

decompose DF (y) into the mean velocity contributor DFm(y) and the fluc- 7

tuation velocity contributor DFt(y) as DF (y) = DFm(y) +DFt(y): 8

DFm(y) = −
(∫ y

0

φfm
x dy −

∫ δ

0

φfm
x dy

)
.

DFt(y) = −
(∫ y

0

φf t
xdy −

∫ δ

0

φf t
xdy

)
. (53)

where fm
x (first and second terms on the right hand side of Eq.(14) ) and f t

x 9

(third term on the right hand side of Eq.(14)) in the present flow system can 10

be reduced as follows: 11

fm
x = −νCD

1 ⟨u⟩f − CD
2

(
⟨u⟩f

)2
f t
x = −CD

2 R11, (54)

Figures 9 and 10 respectively compare DF (y) and −φR12, which are both 12

normalized by the friction velocity. The drag force contribution DF (y) and 13

its mean DFm(y) from the DANS results are plotted in Fig.9, and the total 14

stress profiles are also included in fig.9. As shown in Figures 9 and 10, mo- 15

mentum transfer is dominated by Reynolds stress far from the rough walls, 16
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whereas inside the rough wall the Reynolds stress is damped by the wall- 1

roughness and DF (y) is generated instead. The DNS results show that the 2

Reynolds stress is damped and DF (y) increases at a slower rate as the case 3

number increases from I to III. Although the Reynolds stress in case III is 4

slightly overpredicted near y/δ = 0.2 compared with the DNS and PANS re- 5

sults, the predicted results are generally consistent with the DNS and PANS 6

results. Figure 9 shows that the mean velocity contribution DFm(y) domi- 7

nates, meanwhile, the turbulent partDFt(y) is found to somewhat contribute 8

especially in case III, in which the streamwise Reynolds normal stress con- 9

siderably penetrates the rough wall as shown in Fig.7. We can also confirm 10

that the drag force contribution DF (y) accords quite well with the PANS 11

results, while the mean part DFm(y) slightly underpredicts, suggesting the 12

importance of taking turbulence for the drag force into account. Despite the 13

marginal contribution of DFt(y) in the presently simulated cases (the con- 14

tribution of DFt(y) in case III occupies 9% of DF (y) at the bottom wall), 15

it is probable that the contribution of DFt(y) is largely enhanced in higher 16

Reynolds number flows due to increased turbulent penetration, which was 17

also implied from the DNS study of fully-rough turbulence over modeled 18

rough walls (Forooghi et al., 2018a). 19

The external forces also generate an additional force production term 20

ϕij,3 in the pressure-velocity correlations. Although it is possible to model 21

ϕij,3 based on the assumption of the isotropization of production, the present 22

study chooses a more elaborate route for modeling ϕij,3, as in the other 23

re-distribution terms in the TCL model. Accordingly, in order to assess 24

the influence of the force production model on the prediction results, Rij is 25
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predicted with the IP model (Eq.(42)) and compared with the present TCL 1

model (Eq.(43)) in Fig.11. Clearly, the IP model predicts excessive damping 2

of Rij, which is particularly notable in the wall-normal component R22 in 3

Fig.11(b). The wall-normal component predicted with the IP model exhibits 4

a significant drop near y/δ = 0.2, while the other components R11 and R33 5

still exist. Hence, the predicted turbulence reaches the two-component limit 6

inside the rough wall, which is inconsistent with the PANS results. The 7

primary reason is the significant sink effect provided by ϕ22,3 in the IP model. 8

The force production in the wall-normal component in the IP model is written 9

as follows: 10

ϕ22,3 = −c3

(
−G22 +

G11 +G22 +G33

3

)
= −c3

G11 −G22

3
− c3

G33 −G22

3
.

(55)

In the present flow system, R22 is smaller than the other component and the 11

drag force Fij is considerably larger than Gφ
ij; thus, these correspondingly 12

yield G11 − G22 ≃ F11 − F22 > 0 and G33 − G22 ≃ F33 − F22 > 0. This 13

evidently leads to ϕ22,3 < 0 from Eq.(55), and also suggests that the IP 14

model evidently violates the TCL constraints because ϕ22,3 continues to act 15

as a sink term, even though R22 becomes zero. In contrast to the IP model, we 16

can find from the figure that the force production with the TCL constraints 17

provides a more accurate prediction of the Reynolds stress within the rough 18

wall. Therefore, one can conclude that the TCL constraints are essential to 19

predict the damping behavior of the Reynolds stress within rough walls. 20

4.2. Flows over spray marine paint rough surfaces 21

In order to demonstrate the potential of the developed DANS model for 22

predicting higher Reynolds number turbulent flows over complicated real 23
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rough surfaces, a second calibration is performed in turbulent channel flows 1

over rough walls with marine paint (cases P1, P2, P3, and P4), as shown 2

in Fig.12. The three-dimensional topographical map is measured with a 3D 3

scanning system (Keyence VR3000) in order to obtain the geometry of the 4

painted surfaces. The measured vertical resolution is 0.1µm, and the data is 5

digitized at an increment of 11.7 µm in the lateral directions. The sampling 6

area is 12mm× 9mm corresponding 1024× 768 point data. Snapshots of the 7

measured rough surface elevation h− hm are visualized in Fig.13. Five sam- 8

ples are obtained at different locations and used to calculate the roughness 9

parameters required in the present model (φ and Dm) and the characteristic 10

roughness values (hrms, S, and ES). Table4 summarizes the characteristic 11

roughness values for the paint surfaces. The maximum roughness height 12

normalized by the half channel height hmax/δ is also included in the table. 13

One can see that the rough surfaces have nearly the same root-mean-square 14

height hrms but a significant difference in skewness Sk and effective slope 15

ES. Table 4 and Fig.12 show that the rough surfaces in cases P1, P2, and 16

P3 have positive Sk, reflecting their peak-dominated structure, while the 17

rough surface in case P4 has relatively mild negative skewness due to its 18

valley-dominated structure. The rough surface in case P1 has sharp peaks 19

with small wavelength while the rough surfaces in cases P2 and P3 have 20

relatively rounded peaks. The difference in the shape of the peaks is charac- 21

terized by the effective slope ES. Indeed, we find from the table that ES in 22

case P1 is larger than those in cases P2 and P3. Although there is a variation 23

in the ES values, the values in all samples are less than 0.20, indicating that 24

the presently employed painted surfaces are categorized as a wavy surface 25
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rather than a rough surface (Napoli et al., 2008). We can also confirm that 1

the roughness height occupies a relatively small fraction of the half channel 2

height (hmax/δ = 0.0045 ∼ 0.0073), suggesting that the roughness effects are 3

expected to be confined near the rough wall region. 4

Simulations are performed at the bulk mean Reynolds number of Reb = 5

5×104 ∼ 5×106. Periodic boundary conditions are applied in the streamwise 6

direction, reducing the number of nodes in the streamwise direction to 4. The 7

non-uniform mesh along the vertical direction is clustered near the rough wall. 8

The number of nodes is 240 across the channel, which ensures the solutions 9

are grid-independent. 10

4.2.1. Reynolds number dependence of roughness effects 11

Figure 14 shows the predicted streamwise mean velocity at Reb = 106 12

with wall-scaling, together with the predicted result for a smooth wall. In 13

Fig.14(a) U+ in the logarithmic region y+ > 200 shifts downward due to 14

increased wall-friction at the rough surfaces. The profiles of U+ plus the 15

downward shift U+ + ∆U+, shown in Fig.14(b), indicates that a slope of 16

U+ remains unchanged in the logarithmic region irrespective of the surface 17

geometry. In contrast, when we focus on the damping behavior of U+ near the 18

rough surfaces in Fig.14(a) , we find that the damping behavior toward the 19

rough wall strongly depends on the roughness topology. This observation 20

is consistent with results from many other DNS and experimental studies 21

(e.g., Schultz and Flack, 2005; Forooghi et al., 2017; Kuwata and Kawaguchi, 22

2018b). 23

To evaluate whether the DANS model can correctly reproduce the Reynolds 24

number dependence of the roughness effects on turbulence, the skin friction 25
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coefficient Cf and downward shift value ∆U+ are plotted against the bulk 1

mean Reynolds number in Fig.15(a) and the inner-scaled equivalent rough- 2

ness k+
s in Fig.15(b), respectively. Fig.15(a) also includes an empirical corre- 3

lation for a smooth wall skin friction coefficient in turbulent channel flow pro- 4

posed by Dean (1978). The plots in the figure correspond to Reb = 1.0×105, 5

5.0 × 105, 1.0 × 106, and 5 × 106. In Fig.15(b), the equivalent roughness 6

ks/δ for each surface is uniquely determined by fitting the computed ∆U+
7

for Reb = 106 values to the following relationship in the fully rough regime 8

Flack and Schultz (2010): 9

B −∆U+ +
1

κ
ln(k+

s ) = 8.5. (56)

where κ and B stand for the von Kármán constant and logarithmic intercept 10

for a smooth wall, respectively; κ = 0.4 and B = 5.0 are chosen in the present 11

study, following Flack and Schultz (2010). It should be stressed that k+
s for 12

each Reynolds number case in Fig.15(b) is calculated based on the uniquely 13

determined value of ks/δ and predicted uτ , and we do not directly compute 14

k+
s (except when Reb = 106) from Eq.(56). This means that the computed 15

∆U+ and k+
s values (except when Reb = 106) follows the correlation in 16

Eq.(56), provided that the dependence of Reynolds number on the rough 17

wall skin friction is correctly captured by the model. What can be seen 18

immediately in Fig.15(a) that Cf in the rough wall cases shows significantly 19

higher compared with the correlation for a smooth wall. Additionally, while 20

Cf in Fig.15(a) shows the Reynolds number dependence in the relatively low 21

Reynolds number region (Reb < 106), Cf in the higher Reynolds number 22

regions exhibits a nearly constant value, regardless of Reb. This is consistent 23

with the well-known observation that the friction factor is expressed as a 24
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function of the equivalent roughness (Nikuradse, 1933). 1

In Fig.15(b), the predicted k+
s is all larger than 70 wall units (Reb > 2

1.0 × 105), indicating that the simulated flows are all in the fully-rough 3

regime, according to Nikuradse (1933). This also rationalizes the use of 4

the correlation of Eq.(56), which is only valid in the fully-rough regime. In- 5

deed, k+
s > 800 when Reb = 106. Although it is true the actual range 6

of the transitionally rough regime depends on roughness type (Flack et al., 7

2012), Figure 15 (b) suggests that the predicted results reasonably follow the 8

correlation in Eq.(56), and we can conclude that the present DANS model 9

reasonably reproduces the dependence of Cf and ∆U+ on Reynolds number 10

in the fully-rough regime. 11

4.2.2. Friction increase ratio 12

Finally, to evaluate the predicted value of Cf compared with other em- 13

pirical methods, we compare predicted Cf values with the experimental data 14

in Gunji et al. (2016). However, the experimental data were obtained in a 15

Taylor-Couette (TC) flow system whose inner wall was made of the same 16

painted rough surface used in the present study. Thus, the measured Cf 17

value is not directly compared with that obtained in a channel flow system. 18

However, it is beyond the scope of this paper to simulate rough-walled TC 19

flows, and the choice of the TC flow system does not allow us to evaluate 20

other empirical methods. Accordingly, instead of discussing Cf itself, we dis- 21

cuss the friction increase ratio (FIR), defined as a ratio of a rough wall skin 22

friction coefficient Cf to that at a smooth wall Cf0 at the corresponding Reb 23
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value: 1

FIR =
Cf

Cf0

. (57)

This value simply measures the effect of roughness on increasing wall fric- 2

tion and is easily defined, even in the TC flow system. In the experiments, 3

the Reynolds number was based on the mean centerline velocity and a gap 4

between the inner and outer walls and was approximately 5 × 104, thus the 5

bulk mean Reynolds number is set to Reb = 5 × 104 in the present simula- 6

tion. For the experiments, the mean centerline velocity was used to compute 7

Cf . For a comparison, FIR values based on other empirical methods are 8

discussed here. One of the most promising approaches for predicting FIR in 9

the present rough surfaces is to use the slope-based method because many 10

DNS and experimental studies support the contention that ∆U+ increases 11

linearly with ES for a wavy surface when ES is less than 0.2 (Napoli et al., 12

2008; Schultz and Flack, 2009; De Marchis et al., 2010; Chan et al., 2015). 13

Using the DNS data for ∆U+ for the rough surfaces with ES < 0.2 in Napoli 14

et al. (2008), we approximate the linear correlation as ∆U+ = 0.2ES. Fur- 15

thermore, to compute the FIR from ∆U+, we use the relation between ∆U+
16

and a difference in the skin friction coefficients at smooth and rough walls, 17

as proposed in Hama (1954): 18

∆U+ =

√
2

Cf0

−

√
2

Cf

. (58)

Here, the skin friction coefficient at a smooth wall Cf0 is given as in Dean 19

(1978): 20

Cf0 = 0.073Re−0.25
b . (59)
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We can compute Cf from ∆U+ using Eqs. (58) and (59), yielding FIR values 1

from the definition of Eq.(57). 2

Another well-known empirical correlation for the roughness effects (quan- 3

tified as ks) is the statistical moment-based method, in which ks is expressed 4

as a function of hrms and Sk as in Flack and Schultz (2010): 5

ks = 4.43hrms(1 + Sk)1.37. (60)

It is also possible to determine FIR from Eq.(60) with the help of Eqs. (56) 6

and (58), although some iterative calculations are required because FIR is 7

not explicitly expressed in terms of ks. One might criticize the statistical 8

moment-based method in that it may not be a suitable choice for surfaces 9

with lower ES values, as reported by Flack and Schultz (2010). However, we 10

merely choose this method to compare the prediction performance provided 11

by the present DANS model, but we do not intend to use this method to 12

obtain precise FIR values. 13

Figure 16 compares the predicted FIR with measured data from Gunji 14

et al. (2016). A line corresponding to FIRpredicted = FIRexp is also shown 15

in Fig.16. One can clearly see from Fig.16(a) and (b) that the moment-based 16

method overestimates FIR in all cases compared to the present DANS model. 17

In particular, FIR is significantly overestimated in case P3. This observa- 18

tion is, however, not surprising because the correlation function in Flack and 19

Schultz (2010) was originally determined for rough surfaces with higher ES 20

values. It should be noted that k+
s ranges from 40 (case P4) to 99 (case P1) 21

in the simulation at Reb = 5 × 104, implying that the simulated Reynolds 22

number may not be not sufficiently high to apply the relation Eq.(56). How- 23

ever, the FIR value for case P3 is substantially larger than that for case P4 24
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despite the fact k+
s for cases P3 and P4 take nearly the same values (40 wall 1

units). This indicates that the overprediction for case P3 is not attributed 2

to the use of Eq.(56), but the largely positive skewness in case P3 as seen in 3

Table 4 causes the overprediction of FIR. 4

Another interesting observation from Fig.16(a) and (c) is that the DANS 5

model results exhibit a similar trend as the results from the slope-based 6

method. The DANS and slope-based methods both predict that the FIR is 7

largest in case P1, and those for the other cases are relatively close. This 8

trend is also consistent with the experimental data, although all predicted 9

values are somewhat larger than the experimental data. The possible reason 10

for the overprediction may come from a difference in the flow system. We 11

assume the channel flow system when determining FIR, whereas it should be 12

remarked that measurements were conducted in the rough-walled TC flow 13

system whose wall-friction quantitatively differs from that in a channel flow. 14

Nevertheless, the predicted FIR trend is reasonably consistent with the ex- 15

perimental data, suggesting that the present model can successfully reflect 16

the influence of the roughness geometry on turbulence. Furthermore, the 17

observation that the DANS and slope-based methods yield close prediction 18

results is encouraging as this demonstrates that the present model can accu- 19

rately predict an increase in the skin friction for the wavy surface as well as 20

the well-established slope based method. However, we must emphasize that 21

another comprehensive test is essentially required to extend the applicability 22

of the DANS model because the presently tested rough surfaces are limited. 23

This will be the focus of our future work. 24
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5. Conclusions 1

In order to predict turbulent flows over rough surfaces without relying 2

on the traditionally-used empirical correlation based on equivalent rough- 3

ness, spatial and Reynolds-averaged equations are modeled based on the 4

two-component limit second moment closure. The additional terms appear- 5

ing in the double averaged equations are the drag force and inhomogeneous 6

roughness density terms. The inhomogeneous roughness density terms do 7

not require any approximation, whereas the drag force effects, which play 8

a significantly important role in momentum and turbulence transport, are 9

modeled in terms of the plane porosity and plane hydraulic diameter. The 10

effects of velocity fluctuations on external drag force are modeled with the 11

help of a binomial expansion, and the effects on the pressure-strain term are 12

modeled with two-component limit constraints. 13

The developed model was first validated in turbulence over surfaces with 14

randomly distributed semi-spheres. Although the simulated flows are in the 15

transitionally-rough regime where the equivalent roughness-based approach 16

cannot be easily applied, the predicted mean velocity, Reynolds stress, and 17

energy dissipation are consistent with the direct numerical simulation data. 18

Furthermore, two-component limit constraints are found to be essential for 19

modeling effects of the additional forces on the pressure-strain term. 20

To evaluate the predictive performance for turbulent flows over real rough 21

surfaces with higher Reynolds number, a second validation was conducted in 22

turbulence over marine paint rough surfaces. The developed model success- 23

fully reproduces the dependence of the skin friction coefficient and roughness 24

functions on Reynolds number in the fully-rough regime. Moreover, the re- 25
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sults were found to qualitatively agree with the experimental data as the skin 1

friction ratio increased. 2

The present study shows the great potential of the double averaged Navier- 3

Stokes model for predicting rough wall turbulence. However, the tested sur- 4

faces in the present study are limited, and thus further calibration test is 5

essential to extend the applicability of the DANS model for generic rough 6

surfaces. 7
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Representative Elementary Planep y
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Figure 1: Schematic of a representative elementary plane.
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Figure 2: Computational geometry of rough-walled open channel flows: (a) double-

averaged Navier-Stokes (DANS) simulation, (b) direct numerical simulation (DNS), (c)

plane-averaged Navier-stokes (PANS) simulation.
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Figure 3: Surfaces with randomly distributed semi-spheres (Kuwata and Kawaguchi,

2018a) colored by their height elevation h − hm: (a) case I, (b) case II, (c) case III.
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Figure 4: Profiles of characteristic rough wall parameters (Kuwata and Kawaguchi, 2018a)

: (a) plane hydraulic diameter Dm, (b) plane porosity φ.
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(a)                                                    (b)                                                     (c)

Figure 5: Comparison of the superficially plane-averaged streamwise mean velocity in the

PANS and DNS results from Kuwata and Kawaguchi (2018a): (a) case I, (b) case II, (c)

case III.

case I

case II

case II

Figure 6: Comparison of the superficially plane-averaged streamwise mean velocity near

rough surfaces in the PANS and DNS results from Kuwata and Kawaguchi (2018a).
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Figure 7: Comparison of the superficially plane-averaged Reynolds stresses in the PANS

and DNS results from Kuwata and Kawaguchi (2018a): (a) case I, (b) case II, (c) case III.
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Figure 8: Comparison of the superficially plane-averaged isotropic energy dissipation rate

in the PANS and DNS results from Kuwata and Kawaguchi (2018a): (a) case I, (b) case

II, (c) case III.
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Figure 9: Comparison of the drag force contribution term DF (y) in the PANS and DNS

results from Kuwata and Kawaguchi (2018a): (a) case I, (b) case II, (c) case III.
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Figure 10: Comparison of the superficially plane-averaged Reynolds shear stress in the

PANS and DNS results from Kuwata and Kawaguchi (2018a): (a) case I, (b) case II, (c)

case III.

51



(a)                                                    (b)                                                     (c)

+ 1
1

R
j

+ 2
2

R
j

+ 3
3

R
j

rough wallrough wallrough wall

Figure 11: Superficially plane-averaged Reynolds normal stresses predicted with the IP

and TCL models for the force production term in case III: (a) streamwise, (b) wall-normal,

(c) spanwise components.
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Figure 12: Computational geometry of rough-walled turbulent channel flows.
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Figure 13: Snapshots of the measured rough surfaces colored by their height elevation

h− hm in cases P1 to P4.

(a)                                                    (b)         

Figure 14: Streamwise mean velocity: (a) U+ with wall-scaling, (b) U+ + ∆U+ with

wall-scaling.

53



Dean (1978)
Flack and Schultz  (2010)

(a)                                                                           (b)

Figure 15: Dependence of the roughness effects on Reynolds number: (a) skin friction

coefficient Cf together with an empirical correlation for Cf at a smooth wall from Dean

(1978); (b) roughness function ∆U+ together with a correlation function in the fully-rough

regime from Flack and Schultz (2010).

(a) DANS model                                                         (b) moment based method                                    (c) slope based method
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Figure 16: Comparison of the friction increase ratio (FIR) with the experimental data

from Gunji et al. (2016): (a) present, (b) moment based method of Flack and Schultz

(2010), (c) slope based method from Napoli et al. (2008). The solid line indicates FIR

precited=FIR exp.
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Table 2: Characteristic parameters for surfaces with randomly distributed semi-spheres.

case hrms/δ Sk ES

I 0.026 -1.7 0.28

II 0.032 -0.73 0.25

III 0.047 0.21 0.28

Table 3: Comparison of the skin friction coefficient Cf and the roughness function ∆U+

with the DNS data from Kuwata and Kawaguchi (2018a).

to Case Cf ∆U+ relative difference of Cf

to the DNS data

DNS 0.0113 3.5 –

case I PANS 0.0105 2.9 -7 %

DANS 0.0092 2.0 -19%

DNS 0.0145 5.1 –

case II PANS 0.0140 4.8 -3%

DANS 0.0131 4.6 -10%

DNS 0.0201 6.8 –

case III PANS 0.0201 6.8 0%

DANS 0.0224 7.7 +11%
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Table 4: Characteristic parameters for rough surfaces with marine paint.

case hrms [µm] hmax/δ Sk ES

P1 27 0.073 0.22 0.18

P2 25 0.045 0.13 0.12

P3 27 0.045 0.68 0.084

P4 27 0.046 -0.15 0.081
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