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ABSTRACT   
The effect of a magnetic field on the natural convection of a paramagnetic fluid is numerically studied 
between vertical heated parallel plates. The magnetic field is presumed by the Ampere’s law from 
electric wires. The heat and fluid flow is simultaneously solved by the lattice Boltzmann method (LBM). 
For the evaluation of the natural convection by the LBM, a validation is firstly carried out in a square 
cavity in the absence of the magnetic field. It is confirmed that single-relaxation-time LBM has a 
comparable validity to the reference data. For the natural convection between the parallel plates under 
the magnetic field, the magnetothermal force is induced as a repelling force from the magnet. This is 
because the hotter fluid receives weaker magnetic force than the fluid at reference temperature. This 
magnetothermal force locally affects the heat and fluid flow near the walls, resulting in enhancement and 
suppression of the natural convection. In this study, the effect of the magnetic field by electric wires is 
investigated for two cases; facing different magnetic poles (N-S) and same poles (N-N).  It is found that, 
when the magnetic field is presumed by electric wires, the magnetothermal force becomes similar in 
both cases, resulting in the similar effects on the heat and fluid flow. This is because that the force in the 
vicinity of the wire is dominant on the effects.  
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INTRODUCTION 

 

The magnetic susceptibility is a physical property which represents how a material is affected by a 
magnetic field. The positive susceptibility means that, the material is attracted to the magnet. The 
ferromagnetic materials (iron, cobalt, nickel) have large positive magnetic susceptibility. The 
paramagnetic materials (oxygen, air, etc.) also have positive value, but much smaller value than that of 
ferromagnetic materials. Although this characteristic was found in the past [1] and applied to the gas 
sensors, the magnetic force on the paramagnetic material has not been under the spotlight for a long time 
because the attraction force is not remarkable by using weak permanent magnets.  
Since the emergence of superconducting magnet, tesla-order magnetic induction has become available. 
Various new findings have been reported such as the levitation of a water droplet [2], a nitrogen jet [3], 
magnetoarchimedes effect [4]. The application of the strong magnetic field has been also discussed on 
the protein crystallization [5], convection enhancement / suppression in Rayleigh-Benard convection [6], 
natural convection in a cubic enclosure [7], and inside concentric annuli [8]. The magnetic force was 
found to be comparative to the natural convection [9].  
The convection control by the magnetic field owes another characteristic. The magnetic susceptibility of 
the paramagnetic materials depends on the inverse of the absolute temperature, which is called Curie’s 
law. In other words, colder paramagnetic materials can be attracted stronger to the magnet than hotter 
ones. Therefore, this magnetic force is called magnetothermal force.  
As reviewed, the effect on the convection was examined to closed system. This is because that the 
magnetic force can be enhanced when the enclosure is sandwiched by two magnets. Also, the effect can 
be discussed by comparing with exiting Nusselt-Rayleigh correlations. Therefore, the study on open 
systems are not found except open-ended pipe [3, 10-14]. In the numerical simulation, magnetic field 
can be modelled by an electric coil which is concentric to the pipe. Thus the phenomenon can be 
considered in axisymmetric. For an engineering applications, other open systems should be also 



considered such as the natural convection between heated parallel plates because this phenomenon is 
observed in the fin heat exchanger and its heat transfer characteristic is important.  
In this study, therefore, effect of the magnetic field is numerically investigated for air convection between 
vertical heated parallel plates. In this study, two magnetic fields are employed both are induced by 
electric wires. 
 

COMPUTATIONAL METHOD 

 
Magnetothermal Lattice Boltzmann Method  The heat and fluid flow is simultaneously solved by 
the lattice Boltzmann method (LBM). In the present study, two-dimensional nine-discrete velocity 
(D2Q9) model is employed, which is illustrated in Fig. 1. Two distribution functions are respectively 
employed for the density fα and the thermal energy gα. The time evolution equations of both 
distribution functions at the lattice site r and time t are as follows in the single-relaxation-time BGK 
model.  
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The superscript eq represents the equilibrium state. The discrete vector is e. f and g are the 
relaxation times for fα and gα, respectively. In the density distribution function (Eq.(1)), external 
forces due to the buoyancy Fg and magnetothermal forces Fm are considered. The expression of the 
external force is referred to He et al. [15].  
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Where, 
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These suggest followings. The buoyancy force works due to temperature difference modelled by the 
Boussinesq approximation. The magnetothermal force depends on the magnetic susceptibility , the 
temperature difference from the reference temperature, and the local gradient of the squared magnetic 
induction. The derivation of the magnetothermal force is referred from Kaneda et al. [16]. 
The macroscopic parameters are related to density distribution functions and relaxation times as 
follows. 
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Where, D is the thermal diffusivity. 
 



 
 

Fig. 1  D2Q9 model. 
 

Evaluation of Lattice Boltzmann Method on Natural Convection in a Square Cavity  Firstly, the 
validation exercise is carried out for the natural convection in a square cavity. In the LBM, the Prandtl 
number is adjusted by the relaxation times since they are related to the kinematic viscosity and the 
thermal diffusivity, respectively. In this section, the Prandtl number is presumed to 0.71. The Rayleigh 
number can be set by giving the corresponding value to the gravity acceleration and volumetric 
expansion coefficient because the dimensionless temperature is respectively given as boundary 
conditions on hot and cold walls, and other dimensionless physical properties are fixed due to the 
relaxation times. The boundary conditions are given by the half-way bounce-back manner. The node 
number for the fluid domain is 2002, which is sufficient for the grid independent result. 
The resulted average Nusselt number on the hot wall is listed in Table 1. The results depend on the 
combination of the relaxation time even though the estimated Prandtl number is identical. After some 
numerical tests, the appropriate combination of the relaxation times is confirmed, which are f = 0.08875 
and g = 0.1250. For the comparison, well-known benchmarks by Hortmann et al. [17] and de Vahl Davis 
[18] are referred. It is confirmed that the present scheme has sufficient validation.  

Table 1  
Average Nusselt Number on Heated Wall in a Square Cavity 

 
 Rayleigh number 
 104 105 106 

Present model 2.245 4.522 8.821  
Hortmann et al.  2.245 4.521 8.825 
de Vahl Davis  2.238 4.509 8.817 

 

Computational Domain  The computational domain is shown in Fig.2. Two vertical heated plates 
are located at the center of an enclosure. The grid number of the enclosure is 20001000. The 
length of the heated plate in the enclosure is 262, and the gap of two plates is 82. The enclosure wall 
is non-slip and kept at a constant temperature (T=1.0). Two vertical plates are heated at a constant 
heat flux. This model, therefore, considers not only the natural convection along the heated plate but 
also the descending flow along the domain. This is because that, the lattice Boltzmann method has 
less precision for the free-inlet boundary condition which can be applied at the bottom of the heated 
walls. To improve the computational speed, the computation is carried out by CUDA fortran up to 
5105 timesteps. 
The computational grid numbers are decided by the following strategies. First, the buoyant upflow 
between the plates are not interrupted by the top and bottom walls. Thus the parallel plates are 
located in the center of the computational domain, and the height of the domain is sufficiently large. 
Second, the descending flow out of the parallel plates should be far away from the parallel plates. If 
the width of the domain is small, the descending flow is found to affect the upflow above the 
parallel plates are affected and the buoyant flow becomes unsteady. By the preliminary test, the grid 
numbers in the X direction is decided.  



As shown in Fig. 2(a), the buoyancy flow is induced by the heated plates, and the fluid is cooled by 
the enclosure wall (Note that the number of vector is reduced for a better understanding). Thus the 
natural convection occurs inside the computational domain. It is confirmed that, a steady-state 
convection is attained and the heat balance is kept in the enclosure. The natural convection between 
the parallel plates is also in steady state and reasonable as shown in Fig. (b). Subsequent discussion 
is imposed on between the parallel plates with magnetic fields. For reference, the schematic 
drawing is shown in Fig.2(c) with locations of electric wires to induce the magnetic field. 
 

 
(a) whole computational domain 

 

 
(b) enlarged image between parallel heated plates 



 
(c) schematic drawing of the heated parallel plates and electric wires 

 
Fig. 2  Induced natural convection in the computational domain without magnetic field. The number in 
axis corresponds to the node number and length. 
 
Magnetic Field  The magnetic field from one virtual magnet is considered by four electric wires 
located at four edges of the square block magnet whose size is 8282 nodes. In the present study, a 
pair of magnets is presumed, thus 8 wires are employed. The induced magnetic field is defined by 
Ampere’s law, and the direction of the magnetic field depends on the direction of the electric current. 
In the present study, two virtual magnets are employed with two different magnetic field; a cusp-
shaped magnetic field by facing same magnetic poles, and a uniform magnetic field facing opposite 
magnetic poles. Since this study aims to investigate the effect of the magnetothermal force on the 
natural convection between parallel heated plates, the heat and fluid flow inside the gap of heated 
plates are imposed.  
 
 

RESULTS AND DISCUSSION 

 
Computed Magnetic Field and its Gradient  The resulted magnetic field and the gradient of 
squared magnetic induction B2 are shown in Fig.3 for both magnetic fields. In the cases, four 
electric wires are placed on the apexes of a square of 8080. To avoid the divergence of the 
magnetic field calculation, offset of wire is 5 nodes from the heated walls. As represented in Eq.(5), 
B2 is an important component of the magnetothermal force. 
In Fig. 3(a), the uniform magnetic field is attained to some extent. However, even within the 
magnet-covered area, the magnetic induction has a distribution. This is due to the assumption of the 
magnetic field by electric wires and leakage of the magnetic field toward another magnetic pole. 
For the cusp-shape magnetic field (Fig. 3(b)), the magnetic induction is cancelled at mid-centre 
inbetween magnets, and the magnetic field spreads towards another pole of each magnet.  
It is obvious that, the maximum magnetic induction |B|max is identical due to the same magnitude of 
the presumed electric current in the wire. In the conventional study using magnetic field, it has been 



reported that the cusp-shape magnetic field is more effective than the uniform magnetic field. This is 
because that, the magnitude of B2 becomes large for cusp-shape magnetic field by using block 
magnets or existing electromagnets. However, when the magnetic field is presumed by electric coils, 
it is found that the profile of B2 is similar each other. For the maximum value of B2, it is interesting 
that the case of uniform magnetic field has a bit larger than the cusp-shape field at the nearest points 
to the electric wire. 

Magnetothermal force  The magnetothermal force is resulted from the temperature and B2 
distributions as Eq.(5) suggests. The dimensionless parameters are Prandtl Pr, modified Rayleigh Ra* 
and magnetization numbers γ. The air is presumed as the working fluid in this study, thus the Prandtl 
number is fixed at 0.71. The modified Rayleigh number is fixed at 103 and its definition is as follows. 
 

                           DqgRa 4*    (12) 
 

The dimensionless magnetic induction  defined as follows, 
 

                            mm gb  2  (13) 
 

The magnetothermal force with isothermal contours are shown in Fig. 4 at γ = 104. The applied 
magnetic field is identical to Fig.3. As expected, the force becomes remarkable where the B2 
becomes large. In other words, the magnetothermal force is effective near the electric wires. The 
distribution of the magnetothermal force is also similar each other. For both cases, the force is induced 
along the magnet area, and is directed to the center. At the upper and lower magnet edges, the 
magnetothermal force becomes large. Since the distribution of  B2 is similar in both cases, the 
magnetothermal force distribution is almost same except in the vicinity of the electric wire location. 
Heat and fluid flow  The isothermal contours and velocity profiles are shown in Fig.5. Since the 
profile of the magnetothermal force is similar in both cases, the velocity and temperature profiles are 
similar. It is found that, the thermal boundary layer is interrupted at the wire elevation. A small vortex 
can be observed at this location. The buoyant flow goes up detouring this vortex region. This occurs 
four locations corresponding to the wire location. However, the effect is remarkable at the upper wires 
since the force becomes stronger by higher temperature. Additionally, this vortex and detouring flow 
is similar to the forced convection inside the pipe under the one-turn coil magnetic field [12].  
When the magnetic field becomes stronger, the vortex becomes large. Fig.6 shows the results at 
γ=5104. It can be concluded that, when the electric wire is employed to induce the magnetic field, the 
effect of the magnetic field on the natural convection is comparable regardless of the direction of the 
magnetic field. 

 
 



 

Magnetic field   B2 

(a) uniform magnetic field 

 
Magnetic field   B2 

 (b) cusp-shape magnetic field 

Fig. 3  Magnetic field and B2  



 

 

 
(a) uniform magnetic field (b) cusp-shape magnetic field 

Fig. 4  Magnetothermal force with isotherms at Pr=0.71, Ra*=103, and γ=104. 

 
 
 



 
(a) uniform magnetic field 

 
(b) cusp-shape magnetic field 

Fig. 5  Isotherms and velocity vectors at Pr=0.71, Ra*=103, and γ=104. 



 
(a) uniform magnetic field 

 
(b) cusp-shape magnetic field 

Fig. 6  Isotherms and velocity vectors at Pr=0.71, Ra*=103, and γ=5104. 

 
 



         

 

Local Nusselt Number along the Wall  Finally, the effect on the local heat transfer is investigated 
by the local Nusselt number. Figure 8 shows the local Nusselt number along the heated wall. The 
definition of the local Nusselt number is as follows, 
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where Tave is local mixed mean temperature. 
The heat transfer is suppressed below the wire elevation and it is enhanced above the wire elevation. 
In cases of weak magnetic induction (γ=104), the effect is small and the enhancement and suppression 
is in the same magnitude. As the magnetic induction becomes stronger (γ=5104), the enhancement 
becomes remarkable. This is due to the enhancement of the vortex near the wall, which facilitates the 
local convection. As shown in aforementioned sections, the effect has the similar profile regardless 
of the magnetic direction. Therefore, the magnetic field induced by electric wires has the similar 
tendency of the effect. 
 

 

Fig. 7  Local Nusselt number along the heated wall. 
 

 

 CONCLUSION 
 
The magnetothermal convection of air is numerically investigated in the natural convection between 
parallel plates. The computations are carried out by the lattice Boltzmann method. Firstly, the appropriate 
relaxation times are obtained by the numerical test in the natural convection inside a square cavity. For 
the computation of the parallel plates, it is found that the thermal boundary layer is affected at the wire 
elevation where the magnetic field is induced. The natural convection is suppressed below the wire 



elevation whereas it is enhanced above it. This is due to the vortices induced by the magnetothermal 
force under the buoyancy flow. It is found that, the magnetic field direction is not a dominant factor on 
these phenomena as far as the magnetic field is induced by electric wires. In other words, the magnetic 
field in the vicinity of the electric wire is dominant on the heat and fluid flow. These results suggest that 
the application of the strong magnetic field is effective to enhance the heat transfer of such as the small-
sized heat sinks, where the natural convective heat transfer occurs.  
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