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Abstract This study aims to show that a multiple de-
lay feedback control method can stabilize unstable fixed
points of time-delay nonlinear oscillators. The bound-
ary curves of stability in a control parameter space are
derived using linear stability analysis. A simple pro-
cedure for designing a feedback gain is provided. The
main advantage of this procedure is that the designed
controller can stabilize a system even if the controller
delay times are long. These analytical results are exper-
imentally verified using electronic circuits.
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1 Introduction

Various methods for controlling chaos have been pro-
posed and applied to real systems, such as electronic
circuits, mechanical systems, and chemical reactions [1–
5]. One such method, delayed feedback control (DFC),
proposed by Pyragas [6], has created considerable inter-
est in the field of nonlinear science [7] and the control
theory [8]. The DFC method has been used to stabi-
lize unstable periodic orbits (UPOs) and unstable fixed
points (UFPs). Recently, the stabilization of UFPs has
been investigated theoretically [9–13], and applied to
inverted pendulums [13,14] and laser systems [15].

Multiple delay feedback control (MDFC), in which
the controller has two or more time delays, was pro-
posed by Ahlborn and Parlitz [16–18]. The UFPs are
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stabilized using the MDFC, with an appropriate com-
bination of time delays. This method can achieve stabi-
lization even for long delay times. Therefore, it is useful
when controlling fast dynamic systems [16] or when ei-
ther a computer with an AD/DA converter [19] or a
bucket brigade delay (BBD) device [20] (i.e., a series
of sample and hold circuits) are used to implement the
time delays. The MDFC has been studied in detail from
physical [16] and theoretical [17,21,22] viewpoints.

The dynamics of time-delay nonlinear oscillators have
gained increasing attention both from the theoretical
viewpoint [23,24] as well as for practical applications
[25–33]. In particular, as time delays in engineering non-
linear systems such as the metal cutting process [32,33]
and the contact rotating systems [34] can induce unde-
sirable oscillations, it would be important to investigate
the stabilization of the time-delay induced oscillations.
In order to avoid oscillations, the system parameters
must be chosen on the basis of stability analysis. If
this avoidance requires a major system change, it might
have to be abandoned due to practical restrictions. An
alternative method is to suppress the oscillations using
feedback control. This is a practical method, since it
does not require a major system change.

In 1995, Namajūnas et al. showed that the DFC
method can stabilize UFPs in time-delay chaotic oscil-
lators both theoretically and experimentally [35]. How-
ever, it is not easy to provide a procedure for design-
ing the controller parameters, the feedback gain and
the controller delay, since the characteristic equation
includes the two delay terms (i.e., the oscillator delay
and the controller delay). Furthermore, the controller
delay must be chosen within several narrow stability
intervals. Since these intervals are almost smaller than
the oscillator delay, the controller delay should be set
to around the oscillator delay or less than it. These
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features make controller design difficult; for example,
(a) numerical calculations for solving the characteristic
equation including the two delay terms are needed to
determine the controller parameters; (b) the controller
delay should be set within the narrow stability intervals;
(c) the controller delay cannot be longer than around
the oscillator delay.

In recent years, these problems of the DFC method
have been partially solved. For problem (a), Guan et al.
provided a systematic procedure for designing the de-
layed feedback controller on the basis of the Lyapunov–
Krasovskii functional approach [36]. However, this pro-
cedure cannot be used for long time-delay oscillators.
For problem (b), Gjurchinovski and Urumov proposed a
time-varying delay feedback control [37]. Although the
main advantage of this proposal is that the stability re-
gions in a controller parameter space increases when
compared with those for the original delay feedback
control, it is not easy to show a procedure for designing
the controller and to employ the long controller delay.
From problem (c), we notice that, for short time-delay
oscillators, the controller delay of the DFC method has
to be short. However, it is difficult to realize the short
controller delay by the computer or the BBD device,
since they have a finite speed operation.

The present study shows that the MDFC method
provides answers to such unsolved problems for the sta-
bilization of UFPs in time-delay nonlinear oscillators.
The stability boundary curves in a control parameter
space are derived using linear stability analysis. A sim-
ple procedure for designing the feedback gain and the
controller delays, which is based on the observation of
the root locus movement of the characteristic equation,
is provided. The main advantages of this procedure are
as follows: it is guaranteed that the UFPs can be stabi-
lized by the designed controller for any oscillator delay if
the oscillator parameters are within a large region in an
oscillator parameter space; the controller delays, which
retain a proportional relation with a certain bias, can be
freely selected. These advantages are useful for the fol-
lowing practical situations: the UFPs in long time-delay
oscillators can be stabilized by the designed controller;
there is no need to numerically solve the characteristic
equation in designing the controller; the controller de-
lays can be arbitrarily chosen. This arbitrarily chosen
indicates that the UFPs in short time-delay oscillators
can be stabilized even by the slow computer or the slow
BBD device. Furthermore, these analytical results are
experimentally verified by electronic circuits.

2 Time-delay nonlinear oscillators

Consider a first-order delay differential equation [23],

ẋ = −αx + f(xτ ) + u, (1)

where x ∈ R is the state variable and xτ := x(t−τ) rep-
resents the delayed one. α > 0 is the system parameter.
f : R → R is the nonlinear function. The fixed point
is described by x∗ : 0 = −αx∗ + f(x∗). The multiple
delayed feedback control signal u ∈ R is given by

u = k(2x − xT1 − xT2), (2)

where xTi = x (t − Ti) , i = 1, 2 are the delayed state
variables and k ∈ R is the feedback gain (see Fig. 1).
Note that controller (2) with T1 = T2 is identical to the
original (i.e., single) delayed feedback controller. Oscil-
lator (1) with controller (2) also has the fixed point x∗.

The control system linearized at x = x∗ is described
by

ż = −αz + βzτ + k {2z − zT1 − zT2} , (3)

where z ∈ R is the variation of state x around x = x∗,
that is, z := x − x∗. Here β is the slope of f(x) at
x∗, that is, β = {df(x)/dx}x=x∗ . The characteristic
equation of linear system (3),

g(λ) := λ+α−βe−λτ −k
(
2 − e−λT1 − e−λT2

)
= 0, (4)

can be used to evaluate the stability of x = x∗; the
fixed point x∗ is stable if and only if all of the roots of
Eq. (4) lie in the open left-half of the complex plane. It
should be noted that the stability analysis is valid only
in the vicinity of x∗; this fact implies that our stability
analysis cannot guarantee the global stability of x∗.

Fig. 1 Block diagram of multiple delayed feedback control of

time-delay oscillators.
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(a)

(b)

Fig. 2 Sketches: (a) stability domain of x∗ without control (i.e.,

T1 = T2 = 0) in the α-β plane; (b) function g(λ) with the odd
number property.

3 Stability analysis

The present paper assumes that oscillator (1) without
control (i.e., T1 = T2 = 0) behaves oscillatory; hence,
the fixed point x∗ is assumed to be unstable through-
out this paper. The stability of x∗ is governed by the
characteristic equation, λ + α − βe−λτ = 0. According
to the well-known results of the first-order delay differ-
ential equation [38], in the oscillator parameter plane
as sketched in Fig. 2(a), we know that there are three
conditions: (C-0) |β| < α; (C-1) α < β; (C-2) β < −α.
Since x∗ is stable for any τ ≥ 0 under condition (C-
0), there is no need to stabilize x∗. Hence, we remove
this condition from consideration. In contrast, x∗ is un-
stable for any τ ≥ 0 under condition (C-1). Further,
the stability of x∗ depends on τ under condition (C-2);
thus, β < −α is a necessary condition for x∗ to be un-
stable. From these arguments, we have to focus only on
the two conditions, (C-1) and (C-2).

For oscillator (1) with control (i.e., T1,2 > 0), it is
straightforward to derive a simple instability condition:
if limλ→+∞ g(λ) = +∞ and g(0) = α−β < 0, then g(λ)
crosses the positive real axis λ ∈ [0;+∞) at least once

as sketched in Fig. 2(b), that is, there exists at least one
positive real root for g(λ) = 0. This fact yields that, if
condition (C-1) is satisfied, the fixed point x∗ in oscil-
lator (1) cannot be stabilized by control signal (2) for
any k ∈ R and T1,2 > 0. Therefore, throughout this
paper, we focus only on the fixed points that satisfy
condition (C-2). The instability condition (C-1) can be
considered as the odd-number property for time-delay
oscillators. It should be noted that the previous meth-
ods, such as the original DFC [35] and the time-varying
DFC [37], never stabilize x∗ under condition (C-1) due
to their odd-number property. Section 6.3 mentions the
property in detail.

Let us estimate the stability region in a control pa-
rameter space (T1, T2) on the basis of Eq. (4). The sta-
bility changes only when at least one root crosses the
imaginary axis. To simplify the stability analysis, the
roots on the axis are checked. Substituting λ = iλI

into Eq. (4), its real and imaginary parts are obtained:

−2k + α − β cos λIτ + k(cos λIT1 + cos λIT2) = 0,

λI + β sinλIτ − k(sin λIT1 + sin λIT2) = 0.

(5)

The marginal stability curves are given by roots T1,2

of Eqs. (5). The procedure for obtaining the curves is
as follows: set a value of T1; solve Eqs. (5) numerically
for T2 and λI ; plot (T1, T2); change the value of T1, and
then return to the first step. To investigate the direction
in which the roots cross the imaginary axis, the sign of
the real part of dλ/dT2,

Re
[

dλ

dT2

]
λ=iλI

=

Re
[

iλIke−iλIT2

1 + τβe−iλIτ − k (T1e−iλIT1 + T2e−iλIT2)

]
, (6)

is checked, where T2 and λI are the values estimated
in the above procedure. With increasing T2, a positive
(negative) value of Eq. (6) corresponds to a root cross-
ing the axis from left to right (right to left).

A numerical example illustrates the above proce-
dure. The parameters are fixed at

α = 1.0, β = −3.0, τ = 5.0. (7)

Let the feedback gain be fixed at k ≈ −6.4641; the
reason for setting this value will be explained in Sec.
5.2. Figure 3 (a) shows the marginal stability curves es-
timated by this procedure. The bold (thin) lines express
the curves with negative (positive) term (6). These curves
separate the parameter space into several regions. We
know that when T2 increases and crosses the bold (thin)
line upward, we subtract (add) 2 from (to) the number
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Fig. 3 Marginal stability curves of x∗ (α = 1.0, β = −3.0, τ =
5.0, k ≈ −6.4641): (a) T1,2 ∈ [0, 5], (b) T1,2 ∈ [0, 20]
.

of unstable roots. Obviously, for T1 = T2 = 0, Eq. (4)
is reduced to g(λ) = λ + α − βe−λτ . According to the
stability analysis on scalar delayed systems [39], we no-
tice that the number of unstable roots is 4. From these
results, the numbers of unstable roots in the parame-
ter space (T1, T2) are automatically obtained as shown
in Fig. 3 (a). For example, in the regions labeled 2,
there exist two unstable roots. Obviously, if (T1, T2) are
within the region 0, the fixed point x∗ is stable. Figure
3 (b) is a large area display of Fig. 3 (a). It must be em-

phasized that the single delay feedback control method
(i.e., T1 = T2) can stabilize x∗ only for a small range
(e.g., T1 = T2 . 5.4 in Fig. 3(b)). Controller (2) with
an appropriate combination of T1 and T2, however, can
stabilize it over a wide parameter region (e.g., dotted
line A-B).

4 Controller design

This section provides a simple procedure for designing
controller (2), such that both delay times, T1 and T2,
are as long as possible. From Fig. 3(b), it can be seen
that there are two long stability strips, A-B and C-D1.
On the strip A-B, T1 and T2 can be set to arbitrary long;
however, on the strip C-D, T2 has to be fixed at a finite
time T2 ≈ τ = 5. Thus, the strip C-D is not suitable
for designing the controller. Figure 3(b) suggests that
if T1 and T2 keep the relation with τ ,

T2 = T1 − τ, (T1 > τ), (8)

illustrated by the dotted line A-B, then the fixed point
x∗ remains stable. Now we provide a design procedure
analytically on the assumption that T1 and T2 keep
relationship (8). In order to derive the procedure, the
stability analysis is divided into the following two cases:
(i) T1 = τ and T2 = 0 (i.e., point A in Fig. 3(b)); (ii)
T2 = T1 − τ with T1 ≥ τ (i.e., dotted line A-B in Fig.
3(b)).

For case (i), substitution of T1 = τ and T2 = 0 into
Eq. (4) leads λ + α − k + (k − β)e−λτ = 0. According
to the well-known stability condition of the first-order
delay differential equation [38], we obtain sufficient con-
dition for g(λ) to be stable: |k − β| < α − k. This con-
dition can be rewritten as (C-3) β < α and (C-4) k <

(α + β)/2. Since α > 0 and (C-2) β < −α ↔ α + β < 0
are assumed to be satisfied in the preceding section,
we notice that (C-3) and (C-4) k < (α + β)/2 < 0 al-
ways hold. This fact implies that if the gain is chosen
as (C-4), then g(λ) in case (i) is stable.

For case (ii), T1 and T2 are assumed to keep relation
(8). Substituting this relation and λ = iλI into Eq. (4)
yields

k(1 + cos λIτ) cos λIT1 + k sin λIτ sinλIT1

= 2k − α + β cos λIτ ,

k(1 + cos λIτ) sin λIT1 − k sinλIτ cos λIT1

= λI + β sin λIτ . (9)

1 Although there are several narrow strips in Fig. 3(b), this pa-
per focuses only on the two typical strips A-B and C-D: diagonal

strip and parallel strip to an axis.
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Fig. 4 Sketch of the left and right hand side of Eq. (12) (α = 1.0,
β = −3.0, τ = 5.0, k ≈ −6.4641).

We know that the following two statements are equiv-
alent: the root of g(λ) = 0 with T2 = T1 − τ , T1 ≥ τ
never crosses the imaginary axis; at least one equation
of (9) does not hold. Now, we shall employ the second
statement in order to design the controller. Both sides
of Eqs. (9) are squared and added,

λ2
I +α2 +β2−4αk+2k2 = 2h(k) cos λIτ −2λIβ sinλIτ ,

(10)

where h(k) := k2−2βk+αβ. Here, the feedback gain is
fixed at k = k̄: h(k̄) = 0. As αβ < 0 holds due to (C-2)
β < −α and α > 0, the equation h(k) = 0 has positive
and negative roots. However, k < 0 has to be held due
to the stability condition of case (i), the feedback gain
must be set to the negative root:

k̄ := β −
√

β2 − αβ < 0. (11)

The gain k̄ simplifies Eq. (10) to

λ2
I + α2 + β2 − 4αk̄ + 2k̄2 = −2λIβ sinλIτ . (12)

If Eq. (12) does not hold, then at least one equation
of (9) does not hold. Figure 4 sketches the left-hand
and right-hand sides of Eq. (12): the parabolic bold
curve is the left-hand side of the equation; the sine wave
represents the right-hand side; the dotted lines, ±2|β|,
are the upper and lower limits of the sine wave. If the
parabolic curve and the dotted lines do not cross, Eq.
(12) does not hold. Thus, it is easy to derive the suffi-
cient condition under which the curve and the lines do
not cross,

α2 + 2k̄(k̄ − 2α) > 0. (13)

From inequality (11) (i.e., k̄ < 0), condition (13) always
holds. In addition, k̄ denoted by Eq. (11) must satisfy

(C-4):

β−
√

β2 − αβ < (α+β)/2 ⇐⇒ β−α−2
√

β(β − α) < 0.

We notice that the above inequality holds under α > 0
and (C-2).

The above arguments are summarized as follows:
For β < −α < 0, if controller (2) uses k = k̄ := β −√

β2 − αβ and T2 = T1 − τ , then the fixed point x∗ of
oscillator (1) is stabilized for any long T1 ∈ [τ,∞).

The above summary allows us to design controller
(2) by the following steps: (step 1) α, β, and τ are given;
(step 2) if α and β satisfy β < −α < 0, then go to the
next step, otherwise we have to abandon to design it;
(step 3) k is set to k̄ := β −

√
β2 − αβ; (step 4) T1 and

T2 are maintained to satisfy the relation T2 = T1 − τ .
Even for any long T1 ∈ [τ,∞), controller (2) designed by
this procedure stabilizes the fixed point x∗ of oscillator
(1).

It must be emphasized that the previous methods
never stabilize x∗ under condition (C-1) due to their
odd-number property and there is no guarantee that
they reliably stabilize it under condition (C-2) [35][37].
The MDFC method never stabilize it under condition
(C-1); however, it is guaranteed that x∗ is stabilizable
by the designed controller for any oscillator delay τ > 0
under condition (C-2).

The procedure requires the parameter values (i.e.,
α, β, and τ) to design k, T1, and T2; however, in prac-
tical situations, we may obtain the values with uncer-
tainty such as the lower and upper limits of the values.
Ishii et al. provided a procedure to design the single de-
layed feedback controller for one-dimensional discrete-
time chaotic systems [40]. This procedure required only
the lower and upper limits of the parameter values; the
procedure is simple because the controlled systems do
not include time delays and have discrete-time dynam-
ics. On the other hand, it is not easy to provide a simple
procedure for our problem, since the controlled system
includes three time delays (i.e., τ , T1, and T2) and have
continuous-time dynamics. The robust design which re-
quires only the values with uncertainty for our problem
still remains as an attractive future work.

5 Electronic circuit experiments

In this section, the theoretical results derived in previ-
ous sections are confirmed by electronic circuit experi-
ments.
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Fig. 5 Schematic drawing of the time-delay nonlinear oscillator
with MDFC.

5.1 Time-delay electronic oscillators

The circuit diagram of the time-delay nonlinear oscil-
lator with MDFC is illustrated in Fig. 5. Here, x(t)
denotes the voltage of oscillator. The boxes labeled −τ ,
−T1, −T2 and f are the time-delay units and the nonlin-
ear function unit. The time-delay units are almost the
same as previous studies [25,41]. The circuit diagrams
of the delay units and the nonlinear function unit are
described in Appendix A. This oscillator is governed by
the circuit equation,

C
dx(t)

dt
=

1
R

{f (x(t − τ)) − x(t)} + u(t), (14)

where R and C are a resistor and capacitor, respec-
tively. The control signal u(t) is the current from the
MDFC circuit to the oscillator. The MDFC circuit ex-
ports the current u(t),

u(t) = −1
r
{2x(t) − x(t − T1) − x(t − T2)} . (15)

In order to analyze the above circuits, we treat them
as the dimensionless oscillator (1) by the following re-
lations,

t̃ :=
t

RC
, τ̃ :=

τ

RC
, T̃1,2 :=

T1,2

RC
, x := x(t̃),

ẋ :=
dx(t̃)

dt̃
, xτ := x(t̃ − τ̃), xT1,2 := x(t̃ − T̃1,2),

u := u(t̃), k := −R/r.

(16)

These relations indicate that circuit equation (14) with
MDFC is identical to oscillator (1) with controller (2)
for α = 1.

(a)

(b)

Fig. 6 Nonlinear function f(x) and chaotic attractor: (a) x vs.

f(x) characteristic (horizontal axis: x(t) (1V/div), vertical axis:
f(x(t)) (1V/div)); (b) chaotic attractor for parameter set (17)
(horizontal axis: x(t − τ) (1V/div), vertical axis: x(t) (1V/div)).

5.2 Experimental results

The input-output characteristic of the nonlinear func-
tion unit, which is similar to that of the well-known
Mackey-Glass system [23,28,35], is shown in Fig. 6(a).
From this figure, the fixed point x∗ and the slope β(x∗)
are estimated as x∗ = 2.7 V and β(2.7) = −3.0, respec-
tively. Throughout this paper, the circuit parameters
for our experiments are as follows:

R = 1.0 kΩ, C = 1.0 µF, τ = 5.0 ms, (17)

where the oscillator exhibits chaotic behavior as shown
in Fig. 6(b). The relations (16) indicate that circuit pa-
rameters (17) are identical to dimensionless parameters
(7). Now let us design the controller according to the
design procedure: (step 1) α, β, and τ are given; (step
2) α = 1 and β = −3 satisfy β < −α < 0, then go to
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Fig. 7 T̃1−T̃2 parameter space for comparison of theoretical and
experimental results: the symbol © (×) denotes the occurrence

(non occurrence) of stabilization experimentally; the gray lines
are the stability curves estimated theoretically.

the next step; (step 3) k is set to k̄ := β −
√

β2 − αβ
≈ −6.4641; (step 4) T1 and T2 are maintained to sat-
isfy the relation T2 = T1 − τ . The designed gain k is
approximately implemented by setting r = 154 Ω. It
is guaranteed that if T1, T2, and τ follow relation (8),
then the controller delays T1 and T2 can be as long as
required.

Figures 3 (a) and 3 (b) correspond to the stability
curves for parameter set (17) and the designed feed-
back resistor r = 154 Ω. The stability regions on the
circuit experiments are shown in Fig. 7, where the sym-
bol © (×) denotes the occurrence (non occurrence) of
stabilization experimentally2. The occurrence or not is
judged by the following steps: (i) oscillator (14) with-
out control runs chaotically; (ii) control current (15)
starts to flow into oscillator (14) at an arbitrary time;
(iii) x(t) converges on x∗ within x∗ ± 0.1 V; (iv) steps
(i)∼(iii) are repeated several times; (v) if we observe
the convergence of x∗ (i.e., step (iii)) each time, then
the symbol © is filled in Fig. 7. Since the system dy-
namics, in principle, is not influenced by interchange of
T1 and T2, we checked experimentally only the upper
region of the diagonal line T2 = T1 in Fig. 7. The lower
region is the copy of the upper one. From a compari-
son with the results, it can be stated that the stability
region estimated by the numerical procedure roughly
agrees with that obtained by our circuit experiments.

The above steps guarantee that the stabilization
occurs for several initial states embedded within the
chaotic attractor. Therefore, we may say that our sta-

2 As the small delay, which is less than 1.0 ms, is difficult to
realize experimentally, the data on T1 = 0.5 ms and T2 = 0.5 ms

cannot be obtained.

(a)

(b)

Fig. 8 Time series data of the circuit voltage x(t) [V] just before
and just after the control: (a) parameter set (A) (T1 = 5.0 ms and
T2 = 0.0 ms); (b) parameter set (B) (T1 = 20.0 ms and T2 = 15.0

ms). Horizontal axis: t (20 ms/div); vertical axis: x (1 V/div).

bility analysis for the vicinity of x∗ is valid for most
initial states on the chaotic attractor.

The time series data of the electronic oscillator con-
trolled by MDFC is shown in Fig. 8(a). The control
signal corresponding to point A in Fig. 3 (b) (T1 = 5.0
ms and T2 = 0.0 ms) is applied to the oscillator. The
oscillator without control behave chaotically and then
x(t) converges on x∗. Figure 8(b) shows the time se-
ries data at point B in Fig. 3 (b) (T1 = 20.0 ms and
T2 = 15.0 ms). This figure shows that stabilization oc-
curs even with long delay times.

These experiments employ popular-priced circuit de-
vices, which have an error of several percent. Thus,
the designed controller inevitably has much more er-
rors. However, as shown in Fig. 7, the controller works
well on the circuit experiments. This fact experimen-
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tally verifies that the stabilization is robust to external
noise and parameter uncertainty.

6 Discussion

6.1 Competition with other methods

Let us investigate the control performance of the MDFC
method for stabilizing UFPs in time-delay oscillators.
It is well known that a tracking filter and the original
DFC [35] are the typical control methods for stabiliz-
ing time-delay oscillators. This subsection compares the
MDFC method with these typical methods. The filter
is described by

u = k(x − v),
dv

dt
= ωc(x − v),

where v is the additional variable, k is the feedback
gain, and ωc is the parameter. The original DFC is
given by Eq. (2) with T1 = T2. Figure 9 (a) shows
the largest real part of the roots Re[λmax] of the char-
acteristic equation for the fixed point x∗ controlled by
the tracking filter. The parameter ωc corresponds to the
cutoff frequency. In order to stabilize x∗, the parameter
should be within an interval ωc ∈ (0, 1.235). The largest
real part for the original DFC with T1 = T2 is shown
in Fig. 9 (b). The controller delay time T1 = T2 should
be chosen from several narrow intervals for the stabi-
lization. Figure 9 (c) illustrates the largest real part for
the MDFC on the dotted line A-B in Fig. 3(b). It can
be seen that the largest real part never exceeds zero for
any T2 > 0. Thus, if the two controller delays retain the
proportional relation, T2 = T1 − τ , then the controller
delays can be arbitrarily chosen.

The convergence speed of the controlled orbit in the
vicinity of x∗ depends on Re[λmax]. From a practical
point of view, it is desirable to reduce Re[λmax] to im-
prove the convergent performance. It is useful to design
the optimal control parameters which get the best con-
vergent performance; this optimal control problem is
considered as an important future work.

6.2 Previous studies related to our results

Although, to the authors’ knowledge, there have been
few efforts to investigate the stabilization of UFPs in
time-delay nonlinear oscillators using the MDFC method,
some previous methods for time-delay oscillators are re-
lated to our results. These related studies with the ex-
ception of the studies [35–37] mentioned in Section 1
are reviewed below.
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BA

Fig. 9 Largest real part of the roots Re[λmax] of the characteris-
tic equation for the fixed point x∗: (a) the tracking filter; (b) the

original DFC with T1 = T2; and (c) the MDFC with T2 = T1−τ .
The parameters are the same as the numerical and experimen-
tal results in previous sections (α = 1.0, β = −3.0, τ = 5.0,
k ≈ −6.4641).

Blyuss et al. analyzed the stability of UFPs in time-
delayed pendulum-mass-spring-damper systems controlled
by the DFC method [42]. Xu et al. provided a delay-
dependent condition, which is described by a linear ma-
trix inequality, for the stabilization of UFPs in time-
delay nonlinear oscillators controlled by the DFC method
[43]. Rezaie et al. applied a dynamic DFC method to the
problem of Hopf bifurcation control for time-delay non-
linear oscillators [44]. Vasegh and Sedigh analyzed the
stability of UPOs in time-delay oscillators controlled by
the DFC method [45,46]. Our previous study showed
that UFPs in simple two-dimensional oscillators with-
out time delay can be stabilized using diffusive connec-
tions with two long time delays [47]. If the two delay
times retain a proportional relation with a certain bias,
the stabilization occurs independent of the delay times
and the network topology. Our present study considers
the specific case of a single oscillator; however, a time-
delay oscillator is used instead of a two-dimensional one.
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6.3 Odd number property

It was well known that the DFC method had a cru-
cial disadvantage that it never stabilizes UPOs and
UFPs, which have the odd number property [48–50].
This property for UPOs has been refuted recently [51–
53]; whereas, that for UFPs is valid [12,13]. To over-
come this property for UFPs, an observer-based con-
troller [54] and a dynamic controller [55], both of which
can be designed by a systematic procedure, have been
proposed. Furthermore, an adaptive controller based on
a conventional low-pass filter, which is the same as the
tracking filter, also has the odd number property; how-
ever, an unstable filter was proposed to overcome this
property [56,57]. The multiple DFC method [5,21] and
the time-varying-delay method [58] also have this prop-
erty [5,21]. As in Sec. 3, the MDFC for time-delay os-
cillators also has this property. Although this disadvan-
tage could be overcome using the above techniques, we
do not discuss it in detail because it will lead to digres-
sion from our main topic.

7 Conclusion

This paper demonstrated that the MDFC method can
stabilize UFPs in time-delay nonlinear oscillators. The
simple procedure for designing the feedback gain and
the controller delays was provided. The main advan-
tage of this procedure is that if T1, T2, and τ maintain
the relation, the fixed point can be stabilized by long
controller delays T1 and T2. The stability analysis and
the design procedure were experimentally verified by
electronic circuits.
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A Electronic circuits

The delay unit circuit shown in Fig. 10 imports the voltage x(t)
and exports the delayed voltage x(t − τ). This circuit consists of
the four parts: delay part, input part, output part, and low-pass
filter. The delay part employs the main device MN3011 (Pana-

sonic) as a bucket brigade delay-line device. This device exports
the delayed voltage. The delay time (1.0−20.0 ms) depends on the
function generator frequency (10 − 240kHz). It should be noted
that this device can delay the voltage only in a range 3.5− 6.0V.

However, the voltage of oscillator (14) is not within this range. To
solve this problem, the input and output parts are added to the
delay unit. The input part transforms the voltage x(t) into the
range. Since the output part has the opposing function, the out-

put part exports the delayed voltage within the original range. As

Fig. 10 Delay unit circuit.

Fig. 11 Nonlinear function circuit.

the delay device has a high frequency switch operation, its output
includes the high-frequency noise. The low-pass filter removes the
noise from the delayed voltage.

The nonlinear unit circuit is shown in Fig. 11. This circuit

consists of the inverting amplifier, the half-wave rectifier, and the
summing amplifier. The inverting amplifier inverts and ampli-
fies the input voltage x(t). The half-wave rectifier works as the
piecewise linear function which has a break point. The summing

amplifier adds up the output voltages of the inverting amplifier
and the half-wave rectifier. As a result, the relation between the
input x(t) and the output f(x(t)) is obtained as shown in Fig.
6(a). The break point at the peak can be adjusted by R1 and R2.

The nonlinear function can be shifted up and down by changing
R3.
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11. Dahms, T., Hövel, P., Schöll, E.: Control of unstable steady
states by extended time-delayed feedback. Phys. Rev. E 76,
056201 (2007)

12. Kokame, H., Hirata, K., Konishi, K., Mori, T.: State differ-
ence feedback for stabilizing uncertain steady states of non-
linear systems. Int. J. Control 74, 537–546 (2001)

13. Kokame, H., Hirata, K., Konishi, K., Mori, T.: Difference

feedback can stabilize uncertain steady states. IEEE Trans.
on Automatic Control 46, 1908–1913 (2001)

14. Hirata, K., Kokame, H., Konishi, K., Fujita, H.: Observer-

based delayed-feedback control of continuous-time systems.
Proc. of American Control Conference, pp. 25–27 (2001)

15. Tronciu, V.Z., Wünsche, H.-J., Wolfrum, M., Radziunas,

M.: Semiconductor laser under resonant feedback from a
Fabry-Perot resonator: stability of continuous-wave opera-
tion. Phys. Rev. E 73, 046205 (2006)

16. Ahlborn, A., Parlitz, U.: Stabilizing unstable steady states

using multiple delay feedback control. Phys. Rev. Lett. 93,
264101 (2004)

17. Ahlborn, A., Parlitz, U.: Controlling dynamical systems us-

ing multiple delay feedback control. Phys. Rev. E 72, 016206
(2005)

18. Ahlborn, A., Parlitz, U.: Laser stabilization with multiple-
delay feedback control. Opt. Lett. 31, 465–467 (2006)

19. Hikihara, T., Kawagoshi, T.: An experimental study on
stabilization of unstable periodic motion in magneto-elastic
chaos. Phys. Lett. A 211, 29–36 (1996)

20. Kittel, A., Parisi, J., Pyragas, K., Richter, R.: Delayed feed-
back control of chaos in an electronic double-scroll oscillator.
Z. Naturforsch 49a, 843–846 (1994)

21. Konishi, K., Kokame, H.: Odd number property of multi-
ple delayed feedback control. Proc. of the 15th International
IEEE Workshop on Nonlinear Dynamics of Electronic Sys-
tems, pp. 249–252 (2007)

22. Lu, J., Ma, Z., Li, L.: Double delayed feedback control for
the stabilization of unstable steady states in chaotic sys-
tems. Commun. Nonlinear Sci. Numer. Simulat. 14, 3037–

3045 (2009)

23. Farmer, J.D.: Chaotic attractors of an infinite-dimensional
dynamical system. Physica D 4, 366–393 (1982)

24. MacDonald, N.: Biological delay systems: linear stability the-
ory. Cambridge University Press (1989)

25. Voss, H.U.: Anticipating chaotic synchronization. Phys. Rev.
E 61, 5115–5119 (2000)

26. Bunner, M., Just, W.: Synchronization of time-delay sys-
tems. Phys. Rev. E 58, 4072–4075 (1998)

27. Shahverdiev, E.M., Shore, K.A.: Generalized synchronization

in time-delayed systems. Phys. Rev. E 71, 016201 (2005)

28. Sano, S., Uchida, A., Yoshimori, S., Roy, R.: Dual synchro-
nization of chaos in Mackey-Glass electronic circuits with

time-delayed feedback. Phys. Rev. E 75, 016207 (2007)
29. Kye, W.H., Choi, M., Kim, C.M.: Encryption with synchro-

nized time-delayed systems. Phys. Rev. E 71, 045202 (2005)
30. Suzuki, M., Sakamoto, N.: Controlling ideal turbulence in

time-delayed Chua’s circuit: stabilization and synchroniza-
tion. Int. J. Bifurcation and Chaos 20, 1351–1363 (2010)

31. Feng, C.F.: Projective synchronization between two different
time-delayed chaotic systems using active control approach.

Nonlinear Dyn. 62, 453–459 (2010)
32. Moon, F.C.: Dynamics and manufacturing processes. John

Wiley & Son (1998)
33. Radons, G., Neugebauer, R.: Nonlinear dynamics of produc-

tion systems. Wiley, New York (2004)
34. Sowa, N., Kondou, T., Mori, H., Choi, M.S.: Method of pre-

venting unstable vibration caused by time delays in contact
rotating systems: application of new stability analysis. JSME

Int. J., Series C 49, 973–982 (2006)
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