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Abstract The present paper provides an experimental verification of amplitude death

induced by a periodic time-varying delay-connection in a pair of double-scroll chaotic

circuits. The connection is experimentally confirmed to enlarge the death region in

a connection-parameter space, as compared with a well-known time-invariant delay-

connection. The region observed in our circuit experiments agrees well with the ana-

lytical results.

Keywords amplitude death · time-varying delay · delayed feedback control · chaotic
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1 Introduction

Amplitude death, an interaction induced stabilization of coupled oscillators, is of con-

siderable concern in the field of nonlinear science [1–3]. This phenomenon can occur

in non-identical oscillators coupled by a diffusive-connection. However, it is analyt-

ically guaranteed that amplitude death never occurs in diffusively coupled identical

oscillators [3–6]. Reddy et al. reported that a transmission delay in connections can

induce amplitude death even in diffusively coupled identical oscillators [7]. This report

has stimulated interest in research on amplitude death. The time-delay-induced am-

plitude death and other connection-induced amplitude death have been investigated

analytically and experimentally for more than ten years [8–18].

If an oscillatory behavior in coupled nonlinear systems is undesirable, amplitude

death is found to be a useful phenomenon for the suppression of oscillatory behavior.

However, it should be noted that amplitude death is not induced by diffusive long-delay

connections, which indicates that amplitude death cannot be used for the situation in

which each nonlinear system is located far from the other systems or the situation

in which nonlinear systems have high-frequency oscillations. In other words, for such

situations, amplitude death cannot be used to suppress undesirable oscillations. It was
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Fig. 1 Block diagram of oscillators (1) coupled by connections (2).

reported that the following two types of connections can solve this problem: distributed

long-delay connections [19] and multiple long-delay connections [20]. Unfortunately,

we found that it would not be easy to realize the distributed delay connections in

engineering situations1 and that the cost of multiple delay connections would be higher.

Recently, our previous report indicated that a periodic time-varying delay-connection

can induce amplitude death even with a long-delay connection [21]. This connection

can be easily realized and its realization would not be costly. As such, this connection

is a strong candidate for death induction. The report analytically investigated the sta-

bility of amplitude death in a pair of two-dimensional prototype limit-cycle oscillators

and provided a systematic procedure to design connection parameters. To the best of

our knowledge, however, there has been no experimental verification of such analytical

results.

The present paper provides an experimental verification of amplitude death in-

duced by the periodic time-varying delay-connection in a pair of well-known double-

scroll chaotic circuits. The chaotic circuits are implemented by popular-priced circuit

devices, and the time-varying delay connections are mainly realized by peripheral in-

terface controllers (PICs). It is experimentally confirmed that the time-varying delay-

connection enlarges the death region in a connection-parameter space, as compared

with the time-invariant delay-connection. Furthermore, we show that the region ob-

served in our circuit experiments agrees well with the analytical results.

2 Oscillators coupled by time-varying connection

Our previous study considered only the two-dimensional prototype limit cycle oscilla-

tors [21]. In contrast, the present paper deals with m-dimensional nonlinear oscillators

(see Fig. 1),

ẋ(1,2) = F
“

x(1,2)
”

+ bu(1,2),

y(1,2) = cx(1,2),
(1)

where x(1,2) ∈ Rm are the state variables and u(1,2) ∈ R are the connection signals.

y(1,2) ∈ R are the output signals. b ∈ Rm and c ∈ R1×m are the input and output

vectors, respectively. There is assumed to exist at least one fixed point, x̄ : F (x̄) = 0, in

each oscillator without coupling (i.e., u(1,2) ≡ 0). The time-varying delay-connections

are described by

u(1,2) = ε
n

y
(2,1)
τ(t)

− y(1,2)
o

. (2)

1 This is because the distributed delay connection requires an integral calculation in real
time.
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Fig. 2 Time-varying delay τ(t): periodic sawtooth type function (4).

The connection signals are proportional to the difference between the current y(1,2)

and past y
(2,1)
τ(t)

:= y(2,1)(t − τ(t)) output signals. The proportional constant ε ≥ 0

denotes the coupling strength. The time delay τ(t) ≥ 0 is varied periodically around a

nominal delay τ0 > 0 with amplitude δ ∈ [0, τ0], as illustrated in Fig. 2,

τ(t) := τ0 + δf(Ωt). (3)

Here, Ω > 0 is the frequency of variation, and f(x) is the periodic sawtooth type

function,

f(x) :=

8

>

>

<

>

>

:

+
2

π

“

x − π

2
− 2nπ

”

if x ∈ [2nπ, (2n + 1)π),

− 2

π

„

x − 3π

2
− 2nπ

«

if x ∈ [(2n + 1)π, 2(n + 1)π),

(4)

for n = 0, 1, . . .. The reasons the present paper employs this function are as follows: it

can be easily implemented in practical situations; the stability analysis is simplified by

using the function.

The homogeneous steady state of oscillators (1) with connections (2) is
h

x(1)T
x(2)T

iT
=

h

x̄T x̄T
iT

. Next, oscillators (1) with connections (2) are linearized around the homo-

geneous state,

∆ẋ(1,2) = A∆x(1,2) + εbc
n

∆x
(2,1)
τ(t)

− ∆x(1,2)
o

, (5)

where ∆x(1,2) := x(1,2)− x̄, ∆x
(2,1)
τ(t)

:= ∆x(2,1)(t−τ(t)), and A := {∂F (x)/∂x}x=x̄.

Time-varying linear systems (5) can be rewritten as

ẋ(t) = Ax(t) + Bx(t − τ(t)), (6)

where

x(t) :=

"

∆x(1)

∆x(2)

#

, A :=

»

A − εbc 0

0 A − εbc

–

, B :=

»

0 εbc

εbc 0

–

.

From [22], it is obvious that if a time-invariant comparison system,

ẋ(t) = Ax(t) +
1

2δ
B

Z t−τ0+δ

t−τ0−δ
x(s)ds, (7)
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Fig. 3 Circuit diagrams of double-scroll chaotic circuits coupled by time-varying connections.

is asymptotically stable, then time-varying linear system (6) with sufficiently large

Ω À 0 is stable. According to [22], the characteristic equation of system (7) is given

by

g(λ) := det
h

λI − A − Be−λτ0H(λδ)
i

= 0, (8)

where

H(x) :=

(

(sinh x)/x if x 6= 0

1 if x = 0
,

is often called the sinc function [23]. Here, it is easy to confirm from Eq. (8) that the

odd number property holds. Namely, time-varying delay-connection (2) never stabilizes

the steady state for any ε ≥ 0 and τ(t) ≥ 0 if A has an odd number of real positive

eigenvalues.

3 Coupled double-scroll chaotic circuits

3.1 Circuit equations

Let us consider two double-scroll chaotic circuits [24] illustrated in Fig. 3,

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

C1
dv

(1,2)
1

dt
=

1

R

“

v
(1,2)
2 − v

(1,2)
1

”

− h
“

v
(1,2)
1

”

C2
dv

(1,2)
2

dt
=

1

R

“

v
(1,2)
1 − v

(1,2)
2

”

+ i
(1,2)
L + i

(1,2)
u

L
di

(1,2)
L

dt
= −v

(1,2)
2

. (9)

Here, v
(1,2)
1 [V], v

(1,2)
2 [V], and i

(1,2)
L [A] are the voltages across C1 [F], C2 [F], and

the current through L [H], respectively. The currents through the nonlinear resistors,

h
“

v
(1,2)
1

”

[A], are given by

h(v) := m0v +
1

2
(m1 − m0) |v + Bp| +

1

2
(m0 − m1) |v − Bp| .
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The currents through the connection resistors r,

i
(1,2)
u =

1

r

“

v
(2,1)
2,τ(t)

− v
(1,2)
2

”

, (10)

flow into C2, where v
(2,1)
2,τ(t)

:= v
(2,1)
2 (t − τ(t)) are the delayed voltages.

Double-scroll circuits (9) can be transformed into dimensionless form (1) with

F (x) :=

2

4

η {x2 − x1 − g(x1)}
x1 − x2 + x3

−γx2

3

5 , b =

2

4

0

1

0

3

5 , c =

2

4

0

1

0

3

5

T

, (11)

where

x1 :=
v1

Bp
, x2 :=

v2

Bp
, x3 :=

iLR

Bp
, η :=

C2

C1
, γ :=

R2C2

L
,

a := m1R, b := m0R,

g(x) := bx +
1

2
(b − a) {|x − 1| − |x + 1|} .

Note that the dimensionless time t/(RC2) is used in form (1) instead of the real time

t. Each isolated oscillator (i.e., u(1,2) ≡ 0) has three fixed points: x̄± :=
ˆ

±p 0 ∓p
˜T

and x̄0 := 0, where p := (b − a)/(b + 1).

3.2 Stability analysis

In order to simplify the discussion below, the present paper focuses on the stabilization

of x̄+
2. The dynamics of oscillators (1) coupled by connections (2) around x̄+ is

described by Eq. (6), where

A =

2

4

−η(b + 1) η 0

1 −1 1

0 −γ 0

3

5 , ε =
R

r
.

Equation (8) can be described by g(λ) = g1(λ)g2(λ), where the quasi-polynomial func-

tions g1,2(λ) are denoted by

g1 (λ) := (λ + η̄)
n

λ2 + λ + γ + ελ
“

1 + H (λδ) e−λτ0
”o

− λη,

g2 (λ) := (λ + η̄)
n

λ2 + λ + γ + ελ
“

1 − H (λδ) e−λτ0
”o

− λη,
(12)

and η̄ := η(1 + b). The homogeneous steady state
h

x̄T
+ x̄T

+

iT
is stable if and only if

all of the roots λ for both g1(λ) = 0 and g2(λ) = 0 have negative real parts. Next, let

us consider the stability of g1(λ) = 0. The real and imaginary parts of g1(iλI) = 0,

λI ∈ R, are given by

η̄λIΦ(λI)ε sin λIτ0 − λ2
IΦ(λI)ε cos λIτ0 + θR(λI) − λ2

Iε = 0,

λ2
IΦ(λI)ε sin λIτ0 + η̄λIΦ(λI)ε cos λIτ0 + θI(λI) + η̄λIε = 0,

(13)

2 The same results are obtained for x̄−. Since matrix A around x̄0 satisfies the odd number
property, we do not have to consider the stabilization of x̄0.
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where θR(λI) := −λ2
I (η̄ + 1) + η̄γ, θI(λI) := λI

“

γ + ηb − λ2
I

”

, and

Φ(λI) :=

(

(sin λIδ) / (λIδ) if λIδ 6= 0,

1 if λIδ = 0.
(14)

Equation (13) can be transformed into

F (ε, λI) := λ2
I

“

η̄2 + λ2
I

” n

1 − Φ(λI)2
o

ε2

+ 2λI {η̄θI(λI) − λIθR(λI)} ε + θR(λI)2 + θI(λI)2 = 0, (15)

which describes the relation between ε and λI and does not depend on τ0. Using Eq.

(15), the boundary curves of g1(λ) = 0 are obtained by the procedure proposed in our

previous paper [21]. The boundary curves of g2(λ) = 0 are also obtained by the same

procedure.

The parameters of dimensionless form (11) are fixed at

η = 10, γ = 18, a = −1.36, b = −0.74. (16)

The curves and the regions for the time-invariant delay-connection (i.e., δ = 0) are

illustrated in Fig. 4(a). The solutions of g1(iλI) = 0 and g2(iλI) = 0 are described by

the black and red curves, respectively. The thin (bold) curves indicate that a root of

g1,2(iλI) = 0 crosses the imaginary axis from left to right (right to left). There exist

two narrow stability regions (i.e., shaded regions) for 0.3 . τ0 . 1.5. Note that the

long-delay connection (i.e., τ0 & 2) never induces death for any ε. In contrast, for the

time-varying delay-connection with δ = 0.75, as shown in Fig. 4(b), there exists no

curve in the wide range ε > 0.528 on the ε–τ0 plane. This result analytically implies

that there is no upper limit of τ0 in the range. The unstable steady state can be

stabilized by the arbitrarily long nominal delay τ0 when ε is set within the range.

4 Circuit experiments

The two double-scroll chaotic circuits illustrated in Fig. 3 are implemented by popular-

priced circuit devices (see Fig. 5(a)). The nonlinear resistors have the same structure

as in [25]. The inductors are realized by general impedance converters consisting of four

resistors, one capacitor, and two operational amplifiers [26]. The periodic time-varying

delay units (broken-line rectangles in Fig. 3) are implemented by PIC (PIC18F2550)

devices and digital-to-analog converters (DAs). The voltages v
(1,2)
2 are applied to the

PIC devices via the voltage buffers and are imported through their built-in analog-

digital converters. The imported data are processed by the software program such

that the digitalized signals corresponding to the delayed voltages are exported. The

digitalized signals are transformed into the delayed analog voltages v
(1,2)
2,τ(t)

:= v
(1,2)
2 (t−

τ(t)) by the DAs using the R/2R resistor network. The detailed circuit structure and

its operation are explained in Appendix A.

The parameters of dimensionless form (11), i.e., Eq. (16), are equivalent to the

circuit parameters,

C1 = 0.1 × 10−6 F, C2 = 1.0 × 10−6 F, L = 180 × 10−3 H, R = 1, 800 Ω,

Bp = 1.0 V, m0 = −0.4 × 10−3, m1 = −0.8 × 10−3,
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Fig. 4 Stability regions in the ε–τ0 plane: (a) time-invariant delay-connection (δ = 0), (b)
time-varying delay-connection (δ = 0.75, Ω = 19). The curves and shaded areas are the stability
boundaries and the stability regions, which are analytically estimated by Eq. (15). The black
and red curves are the solutions of g1(iλI) = 0 and g2(iλI) = 0, respectively. The symbols ©
(×) denote the occurrence (non-occurrence) of stabilization experimentally.

Oscillator 1 Oscillator 2

Delay unit 1 Delay unit 2

(a)

x x x

x-

x0

x+

(b)

Fig. 5 Photograph of the actual circuits and double-scroll chaotic attractor: (a) photograph
of the actual circuits illustrated in Fig. 3, (b) double-scroll chaotic attractor in each circuit
(Horizontal axis: v1 (2 V/div); vertical axis: v2 (500 mV/div)).

where a double-scroll chaotic attractor exists in each isolated oscillator, as shown in

Fig. 5(b). Three unstable fixed points, x̄± and x̄0, coexist with the attractor. We

have experimentally checked whether amplitude death occurs for various connection

parameters. The frequency of periodic time delay τ(t) denoted by Eq. (3) is fixed at

a large value Ω = 19. The symbols © (×) in Fig. 4 denote the parameter set (ε, τ0)

where the stabilization (non-stabilization) is experimentally observed. The stability

region on the analytical estimation (i.e., shaded regions) roughly agrees with the cir-

cuit experiments (i.e., set of ©). Let us, as an example, focus on the parameter set

(ε = 6, τ0 = 7) illustrated by points A and B in Fig. 4. The time series data of the
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Couplingv1
(1)

v2,τ(t)-v2
(2) (1)

0

0

(a)

Couplingv1
(1)

v2,τ(t)-v2
(2) (1)

0

0

(b)

Fig. 6 Time series data of v
(1)
1 and v

(2)
2,τ(t)

− v
(1)
2 for parameter set (ε = 6, τ0 = 7): (a) point

A (δ = 0) and (b) point B (δ = 0.75 and Ω = 19) in Fig. 4. Horizontal axis: 50 ms/div; vertical
axis: 2 V/div.

voltage v
(1)
1 and the potential difference v

(2)
2,τ(t)

−v
(1)
2 , which is proportional to the con-

nection current (10), with the time-invariant connection (δ = 0) and the time-varying

connection (δ = 0.75) are illustrated in Figs. 6(a) and 6(b), respectively. The two cir-

cuits are connected at time t = 125 ms. For the time-invariant connection, v
(1)
1 and

v
(2)
2,τ(t)

− v
(1)
2 do not converge on the steady state and the zero, respectively, due to

long-delay connections. For the time-varying connection, they converge on the steady

state and the zero, respectively, even with long-delay connections. Our experimental

results suggest that the analytical results reported in our previous study [21] are valid

for real systems. Therefore, we conclude that the time-varying delay-connection is a

useful and practical scheme for death induction.

5 Discussion

The preceding section demonstrated that the analytical results agree with the experi-

mental results under which the frequency of variations, Ω, is sufficiently large. However,

it is obvious that the sufficiently large Ω is not easy to implement in real systems. From

a practical point of view, it is desirable to know its lower limit frequency Ω, with which

the analytical results agree with the experimental results. Since it is difficult to derive

such Ω analytically, this section experimentally examines the dependence on Ω.

Figures 7(a) and 7(b) show the stability regions in the ε–τ0 plane for Ω = 0.21 and

Ω = 0.52, respectively. The other parameters are the same as in Fig. 4(b). Figures 4(b)

and 7 show that the experimental results do not agree with the analytical results for

small Ω. It can be seen that the stability region for small Ω has a similar shape to that

for the time-invariant delay-connection. In order to examine the dependence on Ω, we

define a matching ratio, β := Ne/Na, where Na is the number of stable points within

the analytical stability region on ε ∈ [0, 10] and τ0 ∈ [δ, 10]. The number of points

at which the stabilization occurs in the circuit experiments is denoted by Ne. Here,
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Fig. 7 Stability regions in the ε–τ0 plane for δ = 0.75: curves, shaded area, and symbols ©
(×) are the same as in Fig. 4; (a) Ω = 0.21 (β = 0.08947) and (b) Ω = 0.52 (β = 0.7).

10

0

10

1

0

0.2

0.4

0.6

0.8

1.0

Ω

β

 

 

 δ=0.75
 δ=0.60
 δ=0.55

Fig. 8 Matching ratio β versus frequency Ω for δ = 0.75, 0.60, and 0.55. The parameters are
the same as in Figs. 4(b) and 7.

β ' 1 indicates that the experimental region approximately agrees with the analytical

region, as shown in Fig. 4(b). In contrast, β ' 0 implies that the experimental region

does not agree with the analytical region at all, as shown in Fig. 7(a). The relations

between β and Ω for δ = 0.75, 0.60, and 0.55 are illustrated in Fig. 8. It can be seen

that β increases with Ω, and then reaches β ' 1 at Ω ' 1. This fact does not depend

greatly on δ. Figure 8 suggests that the experimental region approximately agrees with

the analytical region for Ω & 1.

From another practical point of view, we have to consider the existence of mismatch

in frequencies Ω between the two delay units, since it is difficult to realize the identical

units in real systems. Our numerical simulations suggested that a slight mismatch does

not shrink the stability regions; however, the behavior with a significant mismatch has

not been investigated. This would be an important future work.
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Fig. 9 Sketch of the circuit diagram of the periodic time-varying delay unit (R = 1, 000 Ω).

6 Conclusion

Amplitude death induced by a periodic time-varying delay-connection is experimentally

observed in a pair of the double-scroll chaotic circuits. It is experimentally confirmed

that the connection enlarges the death region in the connection-parameter space, as

compared with the time-invariant delay-connection. The region observed in our circuit

experiments agrees well with the analytical results.
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A Implementation of the time-varying delay unit

A circuit diagram of the periodic time-varying delay unit represented by the dotted-line rect-
angle in Fig. 3 is presented in Fig. 9. Since PIC (PIC18F2550) can deal with the input voltages
only within a voltage range (0 − 5 V), v2 is shifted to the range at a stage prior to PIC. The
shifted v2 is applied to an input terminal RA0 and is fed into PIC through its built-in analog-
digital converter. PIC processes the sampled v2 into periodic time-varying delayed v2,τ(t). This
process is explained below. The eight bits v2,τ(t) are exported from output terminals RB0 to
RB7 to the digital-analog (DA) converter using the R/2R resistor network. The output of the
DA converter is shifted back to the original voltage range.

In order to check the input-output relation of this unit, as shown in Fig. 10(a), the sinu-
soidal wave voltage represented by the solid yellow curve is applied to the unit. The output
voltage with δ = 0 (solid red curve) which corresponds to the time-invariant delay-connection
and that with δ = 0.25 and Ω = 13 (solid blue curve) are observed. It can be seen that the
voltage with δ = 0.25 consists of the time-invariant delayed voltage and the high-frequency
oscillation. These results indicate that the periodic time-varying delay unit works properly.
Next, we explain the algorithm that processes the sampled v2 into v2,τ(t). This algorithm is
realized by the first-in, first-out (FIFO) queue (see Fig. 10(b)). The sampled v2 is periodically
stored from the left into the buffers on the FIFO queue. The stored data is sequentially shifted
to the right-hand neighbor buffer in the manner of a bucket brigade. The algorithm selects
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(a) (b)

Fig. 10 Input and output voltages of the periodic time-varying connection unit and sketch
of the FIFO queue in PIC: (a) input and output voltages (Horizontal axis: 2 ms/div; vertical
axis: 500 mV/div) and (b) shifted data on the FIFO queue with 218 buffers.

data from the buffer represented by the bold-line rectangle, and then outputs the data. The
delay time is estimated by the product of the number of buffers between the extreme left buffer
and the output buffer and the shifting period (25 µs). The output buffer is periodically moved
on the FIFO queue, and the delay time of the output data is then periodically varied.
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