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Abstract This paper presents a reliability-based topology
optimization method under geometrical uncertainties. First,
we briefly introduce the concept of topology optimization.
Then, we explain how shape uncertainty is modeled in Eule-
rian description, using an advection equation and a Karhunen-
Loève expansion. Based on the shape uncertainty modeling,
we formulate a reliability measure for the shape uncertainty,
briefly introducing the inverse reliability method. Two op-
timization problems, a minimum mean compliance problem
and an optimum design problem for a compliant mechanism,
are then formulated using the proposed shape uncertainty
modeling. The design sensitivity analysis for the reliability
analysis and optimization procedure, performed using the
adjoint variable method, is then explained. A two-level op-
timization algorithm is constructed next, in which the inner
iteration is used for reliability analysis and the outer is used
for updating design variables. Finally, three numerical ex-
amples are provided to demonstrate the validity and the util-
ity of the proposed method.
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1 Introduction

Topology optimization is a kind of structural optimization
that can derive optimal structures based on mathematical
and physical principles. Since the pioneering study by Bendsøe
and Kikuchi (1988), topology optimization has successfully
been applied to various physics problems, including struc-
tural (Ma et al, 1995; Nishiwaki et al, 1998; Bendsøe and
Sigmund, 1999), heat transfer (Iga et al, 2009; Yamada et al,
2011), multiphysics (Matsumori et al, 2013; Alexandersen
et al, 2014; Furuta et al, 2017), and multimaterial (Yin and
Ananthasuresh, 2001; Wang and Wang, 2004; Zuo and Saitou,
2017) problems described in the literature.

The industrial application of topology optimization method-
ologies has attracted much attention for at least a decade.
In a topology optimization, consideration of uncertainties in
attributes such as load magnitudes and directions, material
properties, and shapes, seeks to take into account particular
manufacturing situations or usage environments. Geometri-
cal uncertainties arising from manufacturing errors and op-
erational wear may directly affect the physical performance
of various devices. Geometrical uncertainties can cause par-
ticularly large effects in micro fabrication processes for mi-
cro electro mechanical systems (MEMS), due the small ge-
ometrical scale. However, since the physical performance of
a device depends on the details of its shape in implicit and
highly non-linear ways, design engineers can seldom pre-
dict the effects of geometrical variations and therefore must
modify a design manually to improve it, a time-consuming
process. Thus, there is a great need for structural design
methods that efficiently consider geometrical uncertainties
during the optimization stage.

Optimizations considering uncertainty are mainly clas-
sified into robust optimizations and reliability-based opti-
mizations. In robust approaches, the mean and the variance
of the response of a device or system is usually minimized
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so that the response becomes less sensitive to the particular
uncertainty. Previous research related to robust topology op-
timization has considered uncertainties in load magnitudes
and directions (Kogiso et al, 2008), and the location where
a load is applied (Guest and Igusa, 2008). Chen et al (2010)
proposed a topology optimization method that takes into ac-
count the spatially varying uncertainty in a material prop-
erty in addition to uncertainty in the direction of an applied
load, based on the Karhunen-Loève (K-L) expansion, and
this work was extended to topology optimization under ge-
ometrical uncertainty as mentioned below.

Robust topology optimization methods under geometri-
cal uncertainty have also been proposed. Sigmund (2009)
proposed a robust optimization formulation that considered
two uniform geometrical variations, i.e., eroded and dilated,
using projections with different thresholds. This method was
extended to accommodate non-uniform variations by Schevenels
et al (2011), with spatially varying thresholds used in a Heav-
iside projection and thresholds generated with a Monte Carlo
method. Lazarov et al (2012) also proposed a method con-
sidering non-uniform variations, in which a K-L expansion
was used to represent a random field for a threshold, using
a finite number of random variables so that the perturbation
with respect to these variables yielded additional linear sys-
tems amenable to solution without relying on a Monte Carlo
method. In these methods, geometrical variations are repre-
sented relatively easily as spatially varying thresholds, with
the magnitude of erosion or dilation depending on the length
scale and radius of an applied density filter.

On the other hand, Jansen et al (2013) proposed a geo-
metrical uncertainty modeling by shifting the center of the
density filter kernel using the random perturbation vector,
in which the mean and the standard deviation of the perfor-
mance and their sensitivities were computed by the Monte
Carlo method. This method has an advantage, compared to
the above threshold based schemes, of the ability to model
relatively large uncertain geometrical variations, owing to
the Eulerian description. The research group also proposed a
Lagrangian approach for sufficiently small geometrical vari-
ations by representing them as shifts of the finite element
nodes, incorporating geometric non-linearities in the robust
topology optimization (Jansen et al, 2015). This Lagrangian
approach makes the analytical derivation of the sensitivities
much more complex, so they incorporated a semi-analytical
approach in which the derivatives of the finite element ma-
trices are computed using finite differences. In a level set-
based approach, Guo et al (2013) proposed a level set-based
structural optimization method considering boundary uncer-
tainties by assuming that the boundary perturbations are small
enough to allow approximation of the objective function us-
ing a first-order Taylor expansion. Chen and Chen (2011)
proposed a level set-based robust shape and topology opti-
mization in which geometrical variations were modeled by

advection of the level set function with random normal ve-
locities applied on the boundaries extracted as a zero level
set, and the statistical moments of performance were eval-
uated using a Gauss quadrature formula, with evaluation of
the objective function required at each quadrature point. Zhang
and Kang (2017) proposed a robust shape and topology opti-
mization with stochastic level set perturbation in which ge-
ometrical variations were represented by the finite random
perturbation applied to the level set function. This method
can consider the geometrical variations that create a new
hole. The perturbation approaches in the level set method
were also applied with the extended finite element method
(X-FEM) (Nouy and Clement, 2010; Lang et al, 2015).

Reliability-based design optimization (RBDO) is another
powerful approach for considering uncertainties, and is ap-
plied in a topology optimization (Kharmanda et al, 2004)
in which external loads and geometric dimensions are con-
sidered as random variables. In RBDO, limit state functions
describing safe and failure states are introduced and the fail-
ure probability calculated with these functions is minimized.
There are several methods to evaluate failure probabilities,
including Monte Carlo simulation (MCS) (Rashki et al, 2014;
Alban et al, 2017), surrogate models (Bichon et al, 2011;
Xiao et al, 2018), the first-order reliability method (FORM)
(Rackwitz and Flessler, 1978), and the second-order relia-
bility method (SORM) (Kiureghian and Stefano, 1991). A
MCS is relatively accurate but computationally expensive;
the FORM is the most popular method for estimating failure
probability, due to its simplicity and efficiency.

Based on such reliability analyses, RBDO problems are
usually formulated as two-level nested optimization prob-
lems. The FORM uses the reliability index approach (RIA),
in which probabilistic constraints are evaluated at the most
probable failure point (MPFP), searched for in the inner loop
of the optimization procedure. On the other hand, the per-
formance measure approach (PMA) (Tu et al, 1999) is more
stable and efficient than the RIA for evaluating probabilis-
tic constraints (Lee et al, 2002; Youn and Choi, 2004). In
the PMA, probabilistic constraints are evaluated at the min-
imum performance target point (MPTP), searched for in the
inner loop of the optimization procedure.

One difficulty with the RBDO approach stems from its
inherent double-loop structure that incurs high computational
cost. Single-loop approaches offer alternatives, such as the
single-loop single-vector (SLSV) method (Chen et al, 1997;
Kogiso et al, 2012) in which the probabilistic constraint is
replaced by an equivalent deterministic constraint. These meth-
ods are very efficient for solving RBDO problems that have
linear or moderately non-linear limit state functions. On the
other hand, in PMAs, several methods have been proposed
to improve the robustness and efficiency of MPTP searches,
even for problems that have non-linear performance func-
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tions (Meng et al, 2015; Ezzati et al, 2015; Keshtegar and
Lee, 2016).

Recently, a reliability-based topology optimization method
under geometrical uncertainty has also been proposed (Kang
and Liu, 2018). This method was based on the PMA, incor-
porating the random threshold projection and the polyno-
mial chaos expansion to represent the geometrical variations
and then to evaluate the stochastic structural response, and
successfully obtained the optimized solutions according to
the target reliability settings. However, only relatively small
geometrical variations were allowed in this method due to
the use of the random threshold projection, as pointed out in
(Jansen et al, 2013).

In the present study, we propose a method for reliability-
based topology optimization under geometrical uncertain-
ties that employs an inverse reliability method based on a
PMA and a two-level nested algorithm in the optimization
procedure. The proposed method uses an Eulerian descrip-
tion for geometrical variations that does not require the as-
sumption that shape variations are sufficiently small. Conse-
quently, we model geometrical variations with an advection
equation in which the advection velocity is given as a ran-
dom field and represents the magnitude and direction of the
variations. Therefore, the advection equation used in the op-
timization problems here is applied to geometrical variations
in addition to physical equilibrium equations, which now
depend on the advection equation because physical equilib-
rium states for perturbed shapes are the focus. Although this
yields a complicated dependency of the objective function
on design variables, sensitivities for both MPTP searches
and the topology optimization can be derived systematically
using the adjoint variable method, owing to the implicit de-
scription of the geometrical variations in the advection equa-
tion.

The remainder of this paper is organized as follows. First,
topology optimization is briefly discussed in Section 2. Next,
reliability for shape uncertainty is formulated in Section 3,
where the shape uncertainty modeling is also proposed, based
on an Eulerian description and K-L expansion, and the in-
verse reliability method is then discussed. In Section 4, two
optimization problems are formulated, a minimum mean com-
pliance problem and an optimum design problem for a com-
pliant mechanism. The numerical implementation is discussed
in Section 5 and the proposed method is applied to three
numerical examples in Section 6. Finally, in Section 7, we
conclude this study.

2 Topology optimization

2.1 Material interpolation for topology optimization

The basic idea of topology optimization is the replacement
of a structural optimization problem with a material dis-

tribution problem by introducing a characteristic function,
χΩ ∈ L∞(D;{0,1}), where L∞ represents a Lebesgue space
defined in a fixed design domain D as

χΩ (xxx) =

{
1 for xxx ∈Ω

0 for xxx ∈ D\Ω ,
(1)

where Ω represents the material domain, the complemen-
tary D \Ω represents the void domain, and xxx represents a
coordinate vector. Arbitrary shapes and topologies can be
expressed as a material distribution in the fixed design do-
main using the characteristic function, but since it can be
discontinuous at every point, a relaxation or regularization
technique is usually required, to deal with the ill-posedness
of topology optimization problems. The most popular tech-
nique is a so-called density method, based on a convexifica-
tion method (Section 5.2.5 of (Allaire, 2002)), in which the
space L∞(D;{0,1}) is replaced by its convex hull L∞(D; [0,1]).
The Solid Isotropic Material with Penalization (SIMP) scheme
(Bendsøe and Sigmund, 1999) is an often-used material in-
terpolation scheme in which a material property such as Young’s
modulus, E, between material and void domains is interpo-
lated as

E(γ) = E0γ
p, (2)

where E0 is the Young’s modulus of the material, γ is a nor-
malized density that interpolates intermediate material prop-
erties, and p is a penalty parameter, usually set to 3.

2.2 Heaviside projection method using a PDE-based filter

In topology optimization, a filtering scheme is often used to
prevent overly complex sub-structures from appearing and
numerical instabilities from occurring (Sigmund and Peters-
son, 1998; Bourdin, 2001; Guest et al, 2004). In the present
study, we use a Heaviside projection method incorporating
a Helmholtz-type of partial differential equation (PDE) fil-
ter (Lazarov and Sigmund, 2009; Kawamoto et al, 2011), in
which an auxiliary design variable field, φ ∈ L∞(D; [−1,1]),
is introduced and a PDE filter is then applied to field φ as
follows:

−R2
∇

2
ϕ +ϕ = φ . (3)

where ϕ is the filtered variable. Note that in Heaviside pro-
jection methods, the design variables are conventionally bounded
in [0, 1]. But, the raw design variables have no physical
meaning and are only used as intermediate mathematical
variables (Sigmund, 2007). In the present study, we set the
bound to [-1, 1]. The filtered variable is projected to 0/1 by
the zero threshold, using a smoothed Heaviside function as
follows:

γ = Hα(ϕ) =
1

1+ exp(−αϕ)
, (4)
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Fig. 1 Schematic of unperturbed and perturbed shapes.

where α is a parameter that controls the curvature of the
smoothed Heaviside function. γ is then used as the normal-
ized density. When α → ∞, the above smoothed Heaviside
function corresponds to the Heaviside function.

3 Formulation of reliability for shape uncertainty

3.1 Shape uncertainty modeled in an Eulerian description

To formulate a reliability topology optimization problem con-
sidering geometrical uncertainties, they must first be mod-
eled mathematically. Figure 1 is a schematic representation
of geometrical variation. Lagrangian and Eulerian descrip-
tions are two possible candidates for modeling such varia-
tion. In a Lagrangian description, variations are represented
as trajectories of points, such as the nodes of a finite el-
ement mesh, and an assumption that variations are suffi-
ciently small is usually required to avoid mesh distortions.
On the other hand, in an Eulerian description, the varia-
tions are represented by a variation field observed at spa-
tially fixed points. Since a structural configuration is implic-
itly represented by the characteristic function in a topology
optimization, the Eulerian description is especially suitable
for modeling geometrical variations, so we use it here. We
considered the material derivative of the normalized density
in Eulerian description. Shape variations are then formulated
with a fictitious advection equation for a normalized density
γ with a random velocity VVV (xxx) as follows:

Dγ

Dt
=

∂γ(xxx, t)
∂ t

+VVV (xxx) ·∇γ(xxx, t) = 0, (5)

where Dγ/Dt represents the material derivative and VVV (xxx)
corresponds to the motion of the material coordinates, ∂xxx/∂ t.
The magnitude of the variations in shape can therefore be
evaluated according to the magnitude of VVV (xxx) velocity. Con-
sidering the initial and boundary conditions for this fictitious
advection equation, the uncertain shape variations are mod-
eled as

∂γ(xxx, t)
∂ t

+VVV (xxx) ·∇γ(xxx, t) = 0 for (xxx, t) ∈ D× [0,T ]

nnn(xxx) ·∇γ(xxx, t) = 0 for (xxx, t) ∈ Γ−× [0,T ]
γ(xxx,0) = γ(xxx) for xxx ∈ D,

(6)

where T is a final time, nnn is a normal vector pointing outward
and Γ− = ∂D|VVV ·nnn<0. In the present study, we assume that
the components of random velocity field VVV (xxx) are indepen-
dent of each other and are Gaussian with a zero average. The
Gaussian function is usually used to model a random error
and has been applied to shape uncertainty modeling in the
previous research (Jansen et al, 2013, 2015; Chen and Chen,
2011). Even though the Gaussian function is unbounded, it
can also be used to model truncated normal distributions
which are bounded, when the truncation occurs at the tail re-
gion (Ito et al, 2018). On the other hand, another assumption
can be found in literature (Schevenels et al, 2011; Lazarov
et al, 2012; Kang and Liu, 2018) in which the geometrical
variations are represented by the random threshold projec-
tion and the probability density is assumed to be uniformly
distributed in an interval.

3.2 Karhunen-Loève expansion

To express the random velocity field using uncorrelated ran-
dom variables, we apply the Karhunen-Loève (K-L) expan-
sion (Betz et al, 2014), a series expansion method that rep-
resents a continuous random field, H(xxx,θ), as follows:

H(xxx,θ) = µ(xxx)+
∞

∑
i=1

√
λiψi(xxx)ξi(θ), (7)

where xxx ∈ D is a spatial coordinate, θ ∈Θ is a coordinate
in the sample space Θ , µ(xxx) is the mean function of the ran-
dom field, and ξi are standard normal mutually uncorrelated
random variables. λi and ψi are the eigenvalue and eigen-
functions of the autocovariance function of the random field,
obtained by solving the following homogeneous Fredholm
integral equation of the second kind:∫

D
Cov(xxx,xxx′)ψi(xxx′)dxxx′′′ = λiψi(xxx), (8)

where Cov(xxx,xxx′) is an autocovariance function, modeled in
this study using a Gaussian function as follows:

Cov(xxx,xxx′) = σ(xxx)σ(xxx′)exp
(
‖xxx− xxx′‖2

l2
C

)
, (9)

where lC is the correlation length and σ(xxx) is the standard
deviation at coordinate xxx. Numerical methods for discretiza-
tion of the continuous form of the eigenvalue problem in
Eq. (8) were discussed in detail by Betz et al (2014). We use
the finite element method to solve the problem, projecting
the autocovariance function onto the space spanned by the
shape function NNN as

Cov(xxx,xxx′)≈ NNN(xxx)TKKKNNN(xxx′), (10)

where KKK is the matrix whose components ki j = Cov(xxxi,xxx j)
with xxxi and xxx j denoting the coordinates of the finite element
nodes.
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Unperturbed shape

Perturbed shape

Velocity

Fig. 2 A schematic of a perturbed shape by advection.

The above K-L expansion can then be approximated us-
ing a finite number of terms by sorting the eigenvalues λi
and their corresponding eigenfunctions ψi in a descending
order and truncating the series as follows:

H(xxx,θ) = µ(xxx)+
M

∑
i=1

√
λiψi(xxx)ξi(θ), (11)

where M is the number of terms of the truncated K-L ex-
pansion. The error due to the truncation can be evaluated as

εKL = 1− 1∫
D σ(xxx)2dΩ

M

∑
i=1

λi, (12)

and set εKL is set as 0.1 in this study. Using the K-L expan-
sion, the random velocity field can be approximated as

VVV (xxx,θ) =
N

∑
j=1

Vj(xxx,θ)eee j =
N

∑
j=1

M

∑
i=1

√
λiψi(xxx)ξ

j
i (θ)eee j, (13)

where eee j represents the basis vectors of the canonical coor-
dinate and N is the number of spatial dimensions. Figure 2
illustrates a perturbed shape by the proposed geometrical
uncertainty modeling using Eulerian description where the
circular shape is perturbed by advection whose velocity is
given by Eq. (13).

3.3 Inverse reliability method

Reliability can be theoretically defined as the probability
of a desired state continuing in time, i.e., the probability
of non-failure. The limit state of failure is represented as a
function, g, called the limit state function, of stochastic vari-
ables zzz in which the safe state is represented as g(zzz)> 0 and
the failure state is g(zzz) < 0. The isosurface of g(zzz) = 0 is
called the limit state surface. The probability of failure, Pf ,

Safe region
Failure region

(a)

Linearized limit state surface

(b)

Fig. 3 Standard Gaussian probability density function: (a) limit state
function; (b) linearized limit state function.

can be evaluated using the joint probability density function
f (zzz) and the limit state function g(zzz) as follows:

Pf = P(g(zzz)< 0) =
∫

g(zzz)<0
f (zzz)dzzz. (14)

Reliability Pr is evaluated as Pr = 1−Pf . However, the com-
plexity of f (zzz) and g(zzz) makes it computationally expen-
sive to evaluate Eq. (14), so the first order reliability method
(FORM) is often used, in which the limit state function is
linearly approximated.

3.3.1 Reliability index approach

The FORM is usually used in a RIA. In a FORM, stochastic
variables zzz are converted into independent standard Gaus-
sian stochastic variables ξξξ , and the limit state function in
ξξξ -space is then linearized at the design point, also called
the most probable failure point (MPFP) ξξξ

∗, which is the
nearest point on the limit state surface from the origin of
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ξξξ -space. Figure 3 illustrates an example of a linearized limit
state function in 2-D ξξξ -space where h(ξξξ ) is the limit state
function in ξξξ -space. The probability of failure is then ap-
proximated using the standard Gaussian function, namely,

Pf = Φ(−β ) =
∫ −β

−∞

1√
2π

exp
(
−1

2
ξ

2
)

dξ , (15)

where β , called a reliability index, is the distance from the
origin to the design point, obtained by solving the following
problem:

β = min
ξξξ

‖ξξξ‖ subject to h(ξξξ ) = 0. (16)

The reliability constraint can then be imposed via β as

β ≥Φ
−1(Pr), (17)

where Pr is the lower limit of reliability.

3.3.2 Performance measure approach

In contrast to a RIA, a performance measure approach (PMA)
replaces a probabilistic constraint with a constraint with re-
spect to the minimum performance on the hypersphere in
ξξξ -space, which represents the target reliability index. That
is, the point, called the minimum performance target point
(MPTP), on a hypersphere of radius βT where the limit state
function is minimized, is searched using

hmin = min
ξξξ

h(ξξξ ) subject to ‖ξξξ‖= βT = Φ
−1(Pr), (18)

with the reliability constraint imposed as

hmin ≥ 0. (19)

If reliability index β corresponds to target reliability index
βT, the most probable failure point (MPFP) corresponds to
the MPTP.

In this study, shape uncertainty is represented using in-
dependent Gaussian random variables via an advection equa-
tion and K-L expansion, as mentioned previously in sec-
tions 3.1 and 3.2. Therefore, ξξξ -space is formed by setting

ξξξ =
[
ξ

1
1 ,ξ

1
2 , . . . ,ξ

1
M,ξ 2

1 , . . . ,ξ
N
M
]
. (20)

4 Formulation of optimization problems

4.1 Minimum mean compliance problem

Consider that a traction ttt is applied to boundary Γt of a fixed
design domain and displacement uuu is fixed at boundary Γu.
We first consider a reliability-based topology optimization

for a mean compliance problem. That is, based on the mean
compliance, the limit state function must be defined as

h(ξξξ ) = c−
∫

Γt
ttt ·uuudΓ , (21)

where c is the threshold distinguishing a safe state from fail-
ure and the second term is the mean compliance which rep-
resents the elastic compliance of the structure against the ap-
plied force. However, the lack of local information such as
stress makes it difficult to determine this threshold accord-
ing to the mean compliance. In the previous study (Kang
and Liu, 2018), this threshold was empirically determined.
In the present study, on the other hand, we set the threshold
as the objective function, instead of setting it in advance.
The smaller the threshold value c is, the more the state is
likely to become failure. Consequently, minimizing c under
the reliability constraint yields the solution with maximum
performance ensuring the target reliability index. Therefore,
the optimization problem under a volume constraint can be
formulated, as follows:

inf
φ∈L∞(D;[−1,1])

J = c (22)

subject to:

min
ξξξ∈S

h(ξξξ ,uuu,φ)≥ 0, (23)∫
D

γ(xxx,T )dΩ −Vmax ≤ 0, (24)

with

h(ξξξ ,uuu,φ) = c−
∫

Γt
ttt ·uuudΓ , (25)

where S represents a hypersphere of radius βT and Vmax is
the upper limit of the allowable volume. Assuming a lin-
ear elasticity for elastic tensor CCC and small strain tensor
εεε(uuu) = (∇uuu+∇uuuT)/2, the displacement uuu ∈U satisfies the
following variational formulation:∫

Γt
ttt · ũuudΓ −

∫
D

ε(ũuu) : CCCγ(xxx,T )p : ε(uuu)dΩ = 0 (26)

for all variables ũuu ∈U , with space U defined as

U = {ũuu ∈ H1(D) | ũuu = 0 on Γu}, (27)

where H1 is a Sobolev space.

4.2 Optimum design problem for a compliant mechanism

Consider again that a traction ttt is applied to boundary Γt
of the fixed design domain and displacement uuu is fixed at
boundary Γu. We now formulate a reliability-based topology
optimization problem for the optimum design of a compliant
mechanism. As was the case for the minimum mean com-
pliance problem, the optimization problem is formulated by
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setting the threshold of the limit state function as the objec-
tive function, as follows:

inf
φ∈L∞(D;[−1,1])

J =−c (28)

subject to:

min
ξξξ∈S

h(ξξξ ,uuu,φ)≥ 0, (29)∫
D

γ(xxx,T )dΩ −Vmax ≤ 0, (30)

with

h(ξξξ ,uuu,φ) =
∫

Γout
eee ·uuudΓ − c, (31)

where Γout denotes the location where the displacement is to
be maximized and eee the direction in which the displacement
is to be maximized. The first term in Eq. (31) is a mutual
mean compliance which represents the elastic compliance
of the structure for the desired direction eee and is maximized
in usual deterministic optimization. The larger the thresh-
old value c in Eq. (31) is, the more the state is likely to
become failure. Consequently, maximizing c under the re-
liability constraint yields the solution with maximum per-
formance ensuring the target reliability index. Therefore, the
optimization problem is formulated as a maximization prob-
lem by adding the minus sign to the objective function. As-
suming a linear elasticity, displacement uuu ∈ U satisfies the
following variational formulation,∫

Γt
ttt · ũuudΓ −

∫
Γt

kinuuu · ũuudΓ −
∫

Γout
koutuuu · ũuudΓ

−
∫

D
ε(ũuu) : CCCγ(xxx,T )p : ε(uuu)dΩ = 0 (32)

for all variables ũuu∈U , where kin and kout are parameters for
Robin boundary conditions imposed to ensure the stiffness
of the obtained configurations.

4.3 Sensitivity analysis

Here, sensitivities for the MPTP search and updating of the
design variables are derived based on the adjoint variable
method for the following problem:

inf
φ∈L∞(D;[−1,1])

J = c (33)

with a reliability constraint

min
ξξξ∈S

h(ξξξ ,uuu,φ)≥ 0, (34)

where

h(ξξξ ,uuu,φ) = c−
(∫

D
fd(uuu,η(xxx,T ))dΩ +

∫
∂D

fb(uuu)dΓ

)
.

(35)

This problem is equivalent to the following min-max prob-
lem:

inf
φ∈L∞(D;[−1,1])

J =max
ξξξ∈S

∫
D

fd(uuu,η(xxx,T ))dΩ +
∫

∂D
fb(uuu)dΓ ,

(36)

so the sensitivity analysis is performed to the above formu-
lation. With the equality constraints comprised of the gov-
erning equation for linear elasticity, the fictitious advection
equation, and the PDE-filter, the Lagrangian is defined as

L
(

φ ,ξ j
i ,ζ ,η ,η ,vvv, ζ̃ , η̃H, η̃0η̃ , ṽvv

)
=
∫

D
fd(vvv,η(xxx,T ))dΩ +

∫
∂D

fb(vvv)dΓ

+
∫

Γt
ttt · ṽvvdΓ −

∫
D

εεε(ṽvv) : CCCη(xxx,T )p : εεε(vvv)dΩ

−A
[∫

Γt
kinṽvv · vvvdΓ +

∫
Γout

koutṽvv · vvvdΓ

]
+
∫ T

0

∫
D

η̃

(
∂η

∂ t
+VVV ·∇η

)
dΩdt

+
∫

D
η̃0 (η(xxx,0)−η)dΩ

+
∫

D
η̃H(η−Hα(ζ ))dΩ

+
∫

D

(
ζ̃ φ −R2

∇ζ̃ ·∇ζ − ζ̃ ζ

)
dΩ , (37)

where ζ , η , η , vvv, ζ̃ , η̃H, η̃0, η̃ and ṽvv are variables that are
independent of φ and ξ

j
i . A= 0 for the minimum mean com-

pliance problem, and A= 1 for the optimum design problem
for a compliant mechanism. The design sensitivity can be
derived by taking the necessary conditions for optimality of
the Lagrangian with respect to these variables. First, setting
the Gâteaux derivative of the Lagrangian equal to zero with
respect to variables ζ̃ , η̃H, η̃0, η̃ and ṽvv yields the stationary
conditions for ζ = ϕ , η = γ , η = γ and vvv = uuu, respectively.
Next, setting the Gâteaux derivative of the Lagrangian equal
to zero with respect to variables ζ , η , η and vvv at the optimal
point for ζ̃ , η̃H, η̃0, η̃ and ṽvv yields the stationary condi-
tions for ζ̃ = ϕA, η̃ = γA, η̃H = η̃0 = γA(xxx,0) and ṽvv = uuuA,
where uuuA, γA and ϕA are the solutions of the following ad-
joint equations.

Adjoint equation for linear elasticity:∫
D

∂ fd(uuu,γ)
∂uuu

· ũuuAdΩ +
∫

∂D

∂ fb(uuu)
∂uuu

· ũuuAdΓ

−A
[∫

Γt
kinũuuA ·uuuAdΓ +

∫
Γout

koutũuuA ·uuuAdΓ

]
−
∫

D
εεε(ũuuA) : CCCγ(xxx,T )p : εεε(uuuA)dΩ = 0 (38)

for all variables ũuuA ∈ U . This adjoint equation is conven-
tional except that the advected normalized density γ(xxx,T ) is
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used.

Adjoint equation for fictitious advection equation:

−∂γA

∂ t
−∇ · (VVV γA) = 0 for (xxx, t) ∈ D× [0,T ]

γA(xxx, t) = 0 for (xxx, t) ∈ Γ+× [0,T ]

γA(xxx,T ) = pεεε(uuuA) : CCCγ(p−1) : εεε(uuu)− ∂ fd(uuu,γ)
∂γ

for xxx ∈ D,

(39)

where Γ+ = ∂D|VVV ·nnn>0. This is a retrograde advection equa-
tion with respect to time and velocity, starting from final
time T , and the initial condition given at time T is a con-
ventional sensitivity for density approaches in topology op-
timization. Therefore, this adjoint equation represents the
sensitivity mapping from a perturbed (advected) shape to an
unperturbed shape.

Adjoint equation for Helmholtz-type of PDE filter:

−R2
∇

2
ϕA +ϕA =−γA(xxx,0)

dHα

dϕ
. (40)

This adjoint equation implies that the PDE filter will also
be applied to sensitivities γA(xxx,0)dHα/dϕ . The gradient of
performance function h then corresponds to the gradient of
the Lagrangian with respect to ξ

j
i at the optimal point for ζ ,

η , η , vvv, ζ̃ , η̃H, η̃0, η̃ and ṽvv, calculated as

∂h

∂ξ
j

i

=
∂L

∂ξ
j

i

=
∫ T

0

∫
D

γAλiψieee j ·∇γ dΩdt. (41)

This gradient is used to obtain the MPTP. Finally, the de-
sign sensitivity, i.e., the gradient of the objective functional
with respect to φ , is equal to the Gâteaux derivative of the
Lagrangian with respect to φ at the optimal point for ζ , η ,
η , vvv, ζ̃ , η̃H, η̃0, η̃ , ṽvv and ξξξ , preceded by a minus sign, as
follows:〈
J′,δφ

〉
=−dL(φ ;δφ) =−

∫
D

ϕAδφdΩ , (42)

where dL(φ ;δφ) represents the Gâteaux derivative of the
Lagrangian with respect to φ in the δφ direction.

4.4 Filtering of the standard deviation function

The proposed method expresses shape variations using an
advection scheme. If locations where loads are applied are
allowed to be perturbed, the influence of shape variations on
the loading conditions must be considered. For simplicity in
the present study, we assume that variations in the bound-
aries where the loads are applied are very small, i.e., the

standard deviation σ(xxx) is sufficiently small at these bound-
aries. For numerical stability, the standard deviation σ(xxx)
for the entire domain is calculated using the Helmholtz-type
of PDE filter, as follows:∫

D

(
σ̃σ0− l2

σ ∇σ̃ ·∇σ − σ̃σ
)

dΩ = 0 (43)

for σ ∈S and all variables σ̃ ∈ S̃, with

S = {σ ∈ H1(D) | σ̃ = σ0ε on Γσ} (44)

S̃ = {σ̃ ∈ H1(D) | σ̃ = 0 on Γσ}, (45)

where lσ is a parameter determining the degree of smooth-
ing, σ0 is the characteristic standard deviation, and ε is a
sufficiently small positive number, set as 10−4 in this study.
Since the magnitude of σ(xxx) is determined by that of σ0,
the parameter σ0 determines the degrees of the standard de-
viation for the shape uncertainty. Consequently, this value
should be adjusted to represent the standard deviation in the
certain manufacturing process or usage environment which
is focused on. However, this paper focuses on the construc-
tion of a reliability-based topology optimization under shape
uncertainty and does not focus on the particular manufactur-
ing process or usage environment. Therefore, this parameter
is empirically determined to σ0 = 2 in the present study. The
parameter lσ is also empirically set to 0.1L where L is the
characteristic length of the design domain. Γσ = Γt for the
minimum mean compliance problem, and Γσ = Γt∪Γout for
the compliant mechanism optimum design problem.

5 Numerical implementation

5.1 MPTP search algorithm

Several methods have been proposed to search for the MPTP
during the inner loop of the optimization procedure, such as
the advanced mean value, conjugate mean value, and hy-
brid mean value methods (Youn et al, 2003), the conjugate
gradient method (Ezzati et al, 2015), and hybrid chaos con-
trol method (Meng et al, 2015). In the present study, to sta-
bly handle geometrical uncertainties that yield highly non-
linear limit state functions, we introduce a step size, s, into
the advanced mean value method, in a manner similar to the
scheme adopted in previous research (Keshtegar and Lee,
2016), and use the following update formula:

ξξξ
n
= βT

ξ̃ξξ
n

‖ξ̃ξξ
n
‖L2

(46)

with

ξ̃ξξ
n
= (1− s)ξξξ n−1− sβT

∇ξξξ h(ξξξ n−1
,uuu,φ)

‖∇ξξξ h(ξξξ n−1
,uuu,φ)‖L2

, (47)



Reliability-based topology optimization under shape uncertainty modeled in Eulerian description 9

where ξξξ
n represents ξξξ at the nth inner iteration. When s= 1,

the above update formula corresponds to that used in the
advanced mean value method. The following is the MPTP
search algorithm we employ:

Step 1 Set the initial value of ξξξ as ξξξ
0
= 000 and the iteration

counter with n = 1.
Step 2 Set the step size as s = 1.
Step 3 Solve the advection equation in Eq. (6) with the fi-

nite difference method.
Step 4 Solve the governing equation with the finite element

method.
Step 5 Compute a new value for performance function hn+1.
Step 6 If hn+1 > hn, then set s← 0.5s and proceed to Step 8.

Otherwise set s = 1, n← n+1 and proceed to Step 7.
Step 7 Compute the sensitivities of the performance func-

tion based on the adjoint variable method, as explained
below.

Step 8 Update ξξξ using the update formula in Eq. (46).
Step 9 If the change in ξξξ is sufficiently small and satisfies

‖ξξξ n−ξξξ
n−1‖L2

βT
≤ εinner, (48)

the MPTP search halts, otherwise return to Step 3.

Due to the local search strategy, this algorithm can obtain
only one solution even if there are several MPTP points.
However, the local search-based reliability analysis is still
a powerful approach to obtain a candidate of the MPTP effi-
ciently and has widely been used in previous research (Keshte-
gar and Lee, 2016; Kang and Liu, 2018). We hope to address
the issue in our future research.

5.2 Optimization algorithm

The optimization algorithm is now described:

Step 1 Perform the K-L expansion with the finite element
method to obtain ψi and λi for i = 1,2, . . . ,M, where M
is determined as the minimum value satisfying εKL ≤
εKL. εKL is the allowable error of the truncated K-L ex-
pansion.

Step 2 Set initial values for φ .
Step 3 Apply the PDE filter to φ with the finite element

method.
Step 4 Perform the MPTP search in the inner loop as de-

scribed above.
Step 5 Compute the design sensitivity based on the adjoint

variable method as described in the next section.
Step 6 Update the design variables φ using the method of

moving asymptotes (MMA) (Svanberg, 1987).
Step 7 If the change in the design variables is sufficiently

small and satisfies

‖φ n−φ n−1‖L2(D)

‖φ n‖L2(D)

≤ εopt, (49)

where φ n represents φ at the nth outer iteration, the op-
timization procedure halts, otherwise return to Step 3.

In the present study, to achieve an almost 0–1 density in
the optimized solutions, the continuation scheme is applied.
In the continuation scheme, parameter α for the Heaviside
projection was initially set to 10. Once the optimization pro-
cedure converged, the parameter was increased by 5 and the
optimization procedure restarted. This continuation scheme
was applied until the parameter α reached 25. The conver-
gence criteria for the inner and outer loops were set with
εinner = 1×10−4 and εopt = 1×10−3, respectively.

6 Numerical examples

6.1 Verification by Monte Carlo Simulation

Fixed design domain D

L

tΓ

Symmetric boundary
uΓuΓ

L

L

Fig. 4 Fixed design domain and boundary conditions for bridge design
problem.

First, the accuracy of the PMA is examined by compar-
ing the failure probability estimated by the proposed method
and the Monte Carlo Simulation (MCS), via the mimimum
mean compliance problem formulated in Section 4.1. To make
the failure probability estimated by the MCS be sufficiently
close to the true value, more random samples are required
as the true failure probability gets smaller. That is, the larger
the target reliability index is in the PMA, the more iterations
in the MCS would be required to verify the accuracy of the
PMA by the MCS. In terms of the computational cost of the
MCS, we set βT up to 3 for comparison, and 105 samples
were used for each MCS.

Figure 4 shows the fixed design domain and boundary
conditions. Since the design model is symmetrical, only the
right half was considered as the design domain. For appli-
cation of the finite element method, the design domain was
discretized into 200×100 first-order quadrilateral elements.
When applying the finite difference method, the Lax-Wendroff
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lC = L lC = 0.5L lC = 0.1L

β = 1

β = 3

Fig. 5 Obtained optimized configurations.

Table 1 Comparison between PMA and MCS.

βT values Case 1 where lC = L Case 2 where lC = 0.5L Case 3 where lC = 0.1L
for optimization βMCS Ĉov βMCS Ĉov βMCS Ĉov

1.0 0.50 4.8×10−3 0.29 4.0×10−3 −0.60 1.9×10−3

1.5 1.08 7.9×10−3 0.88 6.6×10−3 −0.10 2.9×10−3

2.0 1.61 1.3×10−2 1.38 1.0×10−2 0.36 4.2×10−3

2.5 2.00 2.1×10−2 1.79 1.6×10−2 0.82 6.2×10−3

3.0 2.32 3.1×10−2 2.11 2.4×10−2 1.30 9.7×10−3

method was used, which is an explicit scheme and is suitable
for straightforward parallel computation. For application of
the Lax-Wendroff scheme, the fixed design domain was dis-
cretized into a 201×101 grid, with spatial steps in both di-
rections of ∆x= 1.0 and time steps of ∆ t =min (0.2,0.5∆ tCFL),
where ∆ tCFL is the maximum time step satisfying the CFL
condition. The minmod function was adopted as the flux
limiter. The upper limit of the allowable volume was set to
40% of the volume of the fixed design domain. The PDE
filter parameter was set to R = 1.5. The final time for the ad-
vection was set to T = 1, which implies that the magnitude
of velocity VVV (xxx) represents the magnitude of the shape vari-
ations. In other words, the standard deviation of the shape
variation at each point is approximately σ(xxx).

Figure 5 illustrates some of the optimized configurations
obtained for various values of βT and lC. All configurations
have the same topology, but the size of the interior voids
is different depending on the parameter settings. Table 1
lists the reliability index βMCS calculated by the MCS per-
formed to the optimized configurations obtained by the pro-
posed method, and the coefficient of variation on the esti-
mated failure probability, Ĉov. Since the coefficient of vari-
ation on the estimated failure probability, Ĉov, is sufficiently
small, it is confirmed that the failure probability calculated
by the MCS is close to the true value. This table implies
that the PMA overestimates the reliability. This would be
resulted from high nonlinearity of the limit state function on
the geometrical variations. However, the relative relation of
the reliability index between the PMA and the MCS agrees

with each other. Therefore, the proposed method using the
the PMA can efficiently and qualitatively consider the relia-
bility. More accurate reliability would be obtained by using
a higher order analysis such as the second-order reliability
method (SORM).

The computational time in the reliability analysis is in-
vestigated in this example. The finite element analysis to
compute the limit state value was dominant in the reliability
analysis. On the other hand, that of the advection equation
was only up to 11%.

6.2 Cantilever design problem

Fixed design domain D

4L

L

u

t

Fig. 6 Fixed design domain and boundary conditions for cantilever
design problem.

Now, the proposed method is applied to the cantilever
design problem based on the formulation in Section 4.1.
Figure 6 shows the fixed design domain and boundary con-
ditions. For application of the finite element method, the
fixed design domain was discretized into 320×80 first-order
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quadrilateral elements. For application of the Lax-Wendroff
scheme, the fixed design domain was discretized into a 321×
81 grid, with spatial steps in both directions of ∆x = 1.0 and
time steps of ∆ t = min (0.2,0.5∆ tCFL), where ∆ tCFL is the
maximum time step satisfying the CFL condition. The upper
limit of the allowable volume was set to 50% of the volume
of the fixed design domain. The PDE filter parameter was
set to R = 2.5. The final time for the advection was set to
T = 1.

6.2.1 Dependency of optimal configuration on parameter
βT

(a)

(b)

(c)

(d)

Fig. 7 Obtained optimized configurations for (a) βT = 0 (deterministic
solution); (b) βT = 1; (c) βT = 3; and (c) βT = 5.

Table 2 Mean compliance values (×104) at MPTP calculated by set-
ting various values of βT for optimized configurations shown in Fig. 7
after optimization.

βT values βT values for optimization
for analysis 0 1 3 5

0 3.50 3.50 3.50 3.52
1 3.68 3.66 3.66 3.67
3 4.04 4.02 3.99 3.99
5 4.58 4.52 4.41 4.34

Here, we examine the dependency of obtained optimized
configurations on parameter βT that represents the target re-
liability index. In these examples, parameter lC in Eq. (9)
that determines the autocorrelation in the K-L expansion

(a)

(b)

(c)

(d)

Fig. 8 Perturbed shapes at MPTP when setting βT = 5 for optimized
configurations obtained with (a) βT = 0; (b) βT = 1; (c) βT = 3; and
(d) βT = 5.

was set to 0.1L, resulting in M = 325. This value is rela-
tively large due to the small correlation length setting.

Figure 7 shows the obtained optimized configurations
for various values of βT. As βT is increased, the obtained
optimized configurations include thicker elements near the
fixed boundary and an increasing number of linear elements,
which implies that considering geometrical variations in topol-
ogy optimization is more important when the target relia-
bility is large. Table 2 lists the mean compliance values at
MPTPs calculated after optimization by setting various val-
ues for βT for each optimized configuration obtained when
βT = 0,1,3, and 5. The data show that when βT ≤ 1 for post-
analysis, the values of the objective function are almost the
same as those for optimized configurations obtained when
βT = 0,1,3, and 5. On the other hand, as βT for post-analysis
is increased, optimized configurations obtained for each βT
are superior to those obtained for other βT values in this opti-
mization. This indicates that the proposed method can effec-
tively obtain local optima that have some degree of reliabil-
ity for geometrical variations, depending on the βT setting.

Figure 8 shows the perturbed shapes at MPTPs calcu-
lated by setting βT = 5 after optimization for each of the op-
timized configurations shown in Fig. 7. The linear elements
near the fixed boundary become very thin when βT ≤ 3,
whereas this thinning was alleviated when βT = 5, which
results in a high stiffness for shape variations (Fig. 8).
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(a)

(b)

Fig. 9 Obtained optimized configurations for (a) lC = 0.5L ; and (b)
lC = L.

Intersection

lC = 0.1L

lC = 0.5L

Fig. 10 Overlay image highlighting differences between optimized
configurations obtained for lC = 0.1L and 0.5L.

Table 3 Mean compliance values (×104) at MPTPs calculated with
lC = 0.1L,0.5L, and L for optimized configurations shown in Fig. 9
after optimization.

lC values lC values for optimization
for analysis 0.1L 0.5L L

0.1L 4.34 4.65 4.84
0.5L 5.03 5.02 5.24

L 4.99 4.99 4.91

(a)

(b)

Fig. 11 Perturbed shapes at MPTPs when setting βT = 5 for optimized
configurations obtained with (a) lC = 0.5L; and (b) lC = L.

6.2.2 Dependency of optimal configuration on parameter lC

Next, we examine the dependency of obtained optimized
configurations on parameter lC in Eq. (9), which determines
the spatial width of the autocorrelation function for geomet-
rical variations. In this example, parameter βT was set to 5
and two cases were examined, with lC = 0.5L resulting in
M = 17, and lC = L resulting in M = 6.

Figure 9 shows the optimized configurations obtained
for lC = 0.5L and L. Although the optimized configurations
for lC = 0.5L (Fig. 9(a)) and lC = 0.1L (Fig. 7(d)) have the
same topology, there are geometrical differences. The op-

timized configuration when lC = 0.1L has thicker elements
near the boundary where the design domain is fixed than
when lC = 0.5L, as shown in Fig. 10. On the other hand,
the optimized configuration with lC = L has fewer linear el-
ements than when lC = 0.1L or 0.5L, and is similar to the de-
terministic solution, which implies that considering geomet-
rical uncertainty in topology optimization is more important
when the correlation length of the variations is small.

Table 3 lists mean compliance values at the MPTPs cal-
culated after optimization, with settings of lC = 0.1L,0.5L,
and L for each optimized configuration obtained when lC =
0.1L,0.5L, and L. Here, the data show that the optimized
configuration obtained for a certain value of lC has the low-
est mean compliance among the optimized configurations
obtained for other values of lC with respect to a given lC set-
ting used for post-analysis. This demonstrates that the pro-
posed method effectively obtains solutions when various lC
settings are applied.

Figure 11 illustrates the perturbed shapes at MPTPs for
optimized configurations obtained when lC = 0.5L and L
(Fig.9). Compared with the perturbed shapes for the opti-
mized configurations when lC = 0.1L, the upper and lower
frames have become uniformly thin, reflecting the larger width
of the autocorrelation function when lC = 0.5L and L. Thus,
parameter lC values have a significant effect on considered
shape variations and resulting optimal configurations, and
therefore should be carefully set to harmonize with a partic-
ular manufacturing situation or usage environment.

6.3 Optimum design problem for a compliant mechanism

Fixed design domain D

2L

L

tΓ

outΓ
Symmetric boundary

uΓ

uΓ

L

Fig. 12 Fixed design domain and boundary conditions for compliant
mechanism optimum design problem.

Last, the proposed method is applied to an optimum de-
sign problem for the compliant mechanism problem formu-
lated in Section 4.2. Figure 12 shows the fixed design do-
main and boundary conditions. Since the design model is
symmetrical, only the upper half was considered as the de-
sign domain. For the finite element method analysis, the
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(a) (b)

(c) (d)

Fig. 13 Obtained optimized configurations for (a) βT = 0 (determinis-
tic solution); (b) βT = 1; (c) βT = 3 and (b) βT = 5.

Table 4 Mutual mean compliance values at MPTPs calculated with
various values of βT for optimized configurations shown in Fig. 13
after optimization.

βT values βT values for optimization
for analysis 0 1 3 5

0 1.22 1.21 1.20 1.20
1 1.14 1.14 1.14 1.13
3 0.84 0.84 0.88 0.87
5 0.35 0.34 0.40 0.53

fixed design domain was discretized into 200× 100 first-
order quadrilateral elements. The Lax-Wendroff scheme was
used for the finite difference method analysis, with the fixed
design domain discretized into a 201×101 grid, with spatial
steps of ∆x = 1.0 in both directions, and a time step of ∆ t =
min (0.2,0.5∆ tCFL). The minmod function was adopted as
the flux limiter. The upper limit of the allowable volume was
set to 30% of the fixed design domain volume. The PDE fil-
ter parameter was set to R = 5.0. The final time for the ad-
vection was set to T = 1, which implies that the magnitude
of velocity VVV (xxx) represents the magnitude of shape varia-
tions. Parameters for the Robin boundary conditions were
set with kin = 1.0 and kout = 0.01.

6.3.1 Dependency of optimal configuration on parameter
βT

(a) (b)

(c) (d)

Fig. 14 Perturbed shapes at MPTPs when setting βT = 5 for optimized
configurations obtained when (a) βT = 0 (deterministic solution); (b)
βT = 1; (c) βT = 3 and (b) βT = 5.

In this subsection, we again examined the dependency
of obtained optimized configurations on parameter βT that
represents the target reliability index. The parameter for the
K-L expansion was set to lC = lσ = 0.1L, which resulted in
M = 162.

Figure 13 shows the obtained optimized configurations
for the various values of βT. These configurations have dif-
ferent topologies, and as the value of βT is increased, the cor-
responding optimized configurations have thicker elements
near the boundaries where the displacement is fixed or the
traction is applied. This behavior is similar to that in the min-
imum mean compiliance problem. Again, we confirmed that
considering geometrical variations in topology optimization
is important when the target reliability is large. Table 4 lists
the mutual mean compliance values at MPTPs calculated af-
ter optimization, having set various values of βT for each
optimized configuration shown in Fig. 13. The data indicate
that the optimized configuration obtained for a certain value
of βT has the highest mutual mean compliance, i.e., a lower
value of the objective function, among the optimized con-
figurations obtained for other values of βT with respect to
a given βT setting for post-analysis. The proposed method
thus can obtain optimal configurations with higher reliabil-
ity for geometrical variations, depending on the βT setting,
although the deterministic value of the mutual mean compli-
ance is degraded.
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Figure 14 shows the perturbed shapes at MPTPs calcu-
lated by setting βT = 5 after optimization for each of the
optimized configurations shown in Fig. 13. The results show
that the elements near the fixed boundary have become much
thinner, for all configurations, and the optimized configu-
ration obtained when βT = 3, and 5 has an additional sup-
porting structure that provides increased reliability for shape
variations. Note that shape variations illustrated in Figs. 14(a)–
(d) mainly occurred at the elements near the fixed boundary,
and these variations did not make any hinges in compliant
mechanism designs. This means that the proposed method
works similarly to the deterministic one for hinges, in this
example. Consequently, the proposed method does not en-
sure the hinge-less designs, and the appropriate settings of
parameters for the Robin boundary conditions, correspond-
ing to the spring stiffness, prevented hinges from appearing
in the optimized solutions.

6.3.2 Dependency of optimal configuration on parameter lC

(a) (b)

Fig. 15 Obtained optimized configurations for (a) lC = 0.5L ; and (b)
lC = L.

Table 5 Mutual mean compliance values at MPTPs calculated with
lC = 0.1L,0.5L, and L for optimized configurations shown in Fig. 15
after optimization.

lC values lC values for optimization
for analysis 0.1L 0.5L L

0.1L 0.88 0.72 0.74
0.5L 0.81 0.90 0.90

L 0.98 0.93 1.04

Here, we examine the dependency of obtained optimized
configurations on parameter lC. In this example, parameter
βT was set to 5 and two cases were examined, with lC = 0.5L
resulting in M = 9, and lC = L resulting in M = 4.

Figure 15 illustrates the optimized configurations ob-
tained for lC = 0.5L and L. The optimized configurations

(a) (b)

Fig. 16 Perturbed shapes at MPTPs when setting βT = 5 for optimized
configurations obtained with (a) lC = 0.5L; and (b) lC = L.

Intersection

Perturbed shape

Unperturbed shape

(a)

Intersection

Perturbed shape

Unperturbed shape

(b)

Fig. 17 Overlay image highlighting differences between unperturbed
and perturbed shapes for optimized configurations obtained by lC =
0.5L and L.

for lC = 0.5L (Fig. 15(a)) and lC = L (Fig. 15(b)) have the
same topology, but it is different from that for lC = 0.1L
(Fig. 13(d)). The optimized configurations when lC = 0.5L,
and L have fewer linear elements than when lC = 0.1L, and
are similar to the deterministic solution, which again implies
that geometrical uncertainty should be considered more when
lC is small.

Table 5 lists mutual mean compliance values calculated
after optimization at the MPTPs of βT = 5, with analysis
settings of lC = 0.1L,0.5L, and L for each optimized config-
uration obtained for optimization settings of lC = 0.1L,0.5L,
and L, respectively. This data indicates that diagonal compo-
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nents are higher than or equal to the other components in the
same row, as is the same in all previous tables. This demon-
strates that the proposed method effectively considers the
effect of lC settings on the solutions.

Figure 16 shows the perturbed shapes at MPTPs for opti-
mized configurations obtained with lC = 0.5L and L (Fig.15).
Figure 17 highlights the differences between unperturbed
(Fig. 15) and perturbed shapes (Fig. 16) for lC = 0.5L and
L. Different from the case when lC = 0.1L, linear elements
change in their position and angle rather than their thickness
when lC = 0.5L and L, which reflects the larger width of
the autocorrelation function. Thus, we confirmed again that
parameter lC values have a significant effect on considered
perturbation and obtained solutions, and therefore should be
carefully set, depending on a particular manufacturing situ-
ation or usage environment.

7 Conclusion

This paper proposed a new reliability-based topology op-
timization method that operates under geometrical uncer-
tainty. We achieved the following:

(1) Geometrical variations were modeled with an advection
equation in which stochastic velocity was expressed us-
ing the K-L expansion. Based on this model, we formu-
lated reliability-based topology optimization problems
with a performance measure approach for inverse relia-
bility.

(2) Based on the optimization formulations, we constructed
an iterative two-level optimization algorithm that uses
an inner iteration to search for MPTPs and an outer iter-
ation that updates the design variables. In both optimiza-
tion levels, sensitivities were systematically derived us-
ing the adjoint variable method.

(3) The proposed method was applied to two numerical ex-
amples to confirm its validity and utility. In the mini-
mum mean compliance problem, we examined the de-
pendencies of the optimal configurations on parameters
βT and lC and confirmed that the proposed method suc-
cessfully obtains optimized configurations reflecting these
parameter settings. With increasing values of βT, addi-
tional linear elements appeared in the optimized config-
urations, alleviating the influence of the shape perturba-
tion on the objective function. On the other hand, with
increasing values of lC, the increasing width of the auto-
correlation function reflected a relatively uniform shape
perturbation, resulting in uniformly thicker structures,
which are similar to the deterministic solution. Conse-
quently, it is important to consider the geometrical un-
certainty in topology optimization particularly when the
magnitude of the variations is large and the correlation
length of the variations is small.

(4) In the mutual mean compliance problem, the proposed
method also effectively obtains optimal configurations,
with geometries that reflect parameter βT settings. With
increasing values of βT, linear structural elements in the
corresponding optimized configurations were thicker near
the boundaries where displacement was fixed or traction
was applied, and supporting elements appeared near the
boundary where the displacement was fixed, providing
improved reliability against shape uncertainties.

The authors hope to conduct future research to reduce
the computational cost of the proposed method, incorporat-
ing a single-loop approach for extending our method to 3-D
design problems and obtaining solutions in practical com-
putational time.
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