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Abstract

Lattice Boltzmann direct numerical simulations of turbulent heat transfer

over and inside anisotropic porous media settled on the bottom of a plane

channel are performed at the bulk Reynolds number of 2900 for the isothermal

and conjugate heat transfer wall conditions. Four different porous walls are

considered. They are walls with only the wall-normal permeability, with the

wall-normal and spanwise permeabilities, with the wall-normal and stream-

wise permeabilities, and with the isotropic wall-normal, spanwise and stream-

wise permeabilities. The porosity of the porous walls ranges from 0.6 to 0.8.

Discussions on the effects of the anisotropic permeability on turbulent ther-

mal fields are carried out by the instantaneous flow visualizations and the

statistical quantities. In particular, temperature fluctuations, turbulent and

dispersion heat fluxes are examined both inside and outside of the porous

walls. Finally, the heat transfer performance is discussed considering the

effects of the anisotropic permeability.
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wall, Lattice Boltzmann method, Direct numerical simulation

List of Symbols

D1 square hole size

D2 pitch of the square hole rows

Gθ2 fluid-phase x− z plane-averaged temperature gradient: ∂
[
θ̄
]f
/∂y

h porous wall thickness: 0.7H

H clear channel height

Hd
j fluid-phase x− z plane-dispersion heat flux:

[
ũj

˜̄θ
]f

Ht
j fluid-phase x− z plane-averaged turbulent heat flux:

[
u′jθ

′
]f

Kij permeability tensor

Nu Nusselt number

p(θ′, ω′
z) joint probability density function of θ′ and ω′

z

Pr Prandtl number

Pθ production of the fluid-phase x−z plane-averaged temperature vari-

ance: −
[
v′θ′
]f ∂
[
θ̄
]f
/∂y

qpw averaged heat flux on the porous interface

Qi quadrant of the turbulent heat flux

Reb bulk Reynolds number: UbH/ν

Rij plane averaged Reynolds stress:
[
u′ju

′
j

]f
ReK permeability Reynolds number

Re∗∗K surrogate permeability Reynolds number
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Repτ friction Reynolds number of the porous interface: upτδ
p/ν

Retτ friction Reynolds number of the top smooth wall: utτδ
t/ν

t time

T12 plane-dispersion stress: [˜̄u˜̄v]
f

ui velocity

upτ friction velocity on the porous interface

utτ friction velocity on the top smooth wall

Ub bulk mean velocity

Wp pumping power coefficient

x, y, z streamwise, vertical and spanwise coordinates

II second invariant of the velocity gradient tensor: −2(∂ui/∂xj)(∂uj/∂xi)

γf fluid thermal diffusivity

γs solid thermal diffusivity

δp boundary layer thickness over porous wall

δt boundary layer thickness over top smooth wall

∆c coarser grid spacing

∆f finer grid spacing

∆Θ temperature difference: Θw −Θ0

θ temperature

θ∗ (θ −Θ0)/∆Θ

Θf fluid-phase x− z plane-averaged mean temperature:
[
θ̄
]f
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θ′frms
fluid-phase x− z plane-averaged root mean square of the tempera-

ture variance:

√[
θ′θ′
]f

Θp mean temperature of the porous interface

Θs solid-phase x− z plane-averaged mean temperature:
[
θ̄
]s

θ′srms
solid-phase x− z plane-averaged root mean square of the tempera-

ture variance:
√[

θ′θ′
]s

Θ0 top wall temperature

Θw porous or bottom wall temperature

θpτ friction temperature on the porous interface

θtτ friction temperature on the top smooth wall

ν kinematic viscosity

ρ fluid density

φ porosity

ϕ variable

ϕ Reynolds averaged value of ϕ

ϕ′ fluctuation of ϕ: ϕ− ϕ

[ϕ]f fluid phase plane-averaged value of ϕ

[ϕ]s solid phase plane-averaged value of ϕ

ϕ̃ dispersion of ϕ: ϕ− [ϕ]f

ψ plane porosity

ωz spanwise vorticity
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(·)p+ normalized value by the friction velocity or the friction temperature

on the porous interface

(·)∗ normalized value by the bulk mean velocity or the temperature

difference

1. Introduction

Porous media consisting of many interconnected voids have large specific

surface areas, and this characteristic can be utilized in many engineering de-

vices. Correspondingly, it is widely understood that turbulent heat and fluid

flow phenomena in interface regions of porous media (over and underneath of

the interfaces between porous and clear channel flow regions) play key roles

in designing and optimizing those devices.

For turbulent flows over porous interfaces, experimental studies (e.g.

Lovera and Kennedy, 1969; Ruff and Gelhar, 1972; Ho and Gelhar, 1973; Za-

gni and Smith, 1976; Zippe and Graf, 1983; Kong and Schetz, 1982; Shimizu

et al., 1990; Pokrajac and Manes, 2009; Manes et al., 2009; Detert et al.,

2010; Suga et al., 2010, 2011, 2013; Manes et al., 2011) revealed the fact

that the wall permeability affects the near-wall turbulent flow structure and

enhances momentum exchange across the porous surfaces. This results from

mainly that turbulence is not significantly damped near the porous wall and

the penetration of eddy vortex motions into the porous wall is allowed by

the permeability. The direct numerical simulation (DNS) studies (Breugem

and Boersma, 2005; Breugem et al., 2006; Kuwata and Suga, 2016b) and

the particle image velocimetry (PIV) experiments (Suga et al., 2010, 2011,

2017b; Suga, 2016) for turbulent channel flows over isotropic porous media
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suggested that there were correlations between the inner turbulence charac-

teristics and the permeability Reynolds number (ReK = upτ
√
K/ν) which is

based on the friction velocity upτ on the porous wall, the wall permeability K

and the fluid kinematic viscosity ν. Those DNS and PIV studies confirmed

that the streaky turbulence structure was destroyed above highly permeable

walls due to the downward motions into the wall by the Kelvin–Helmholtz

(K–H) instability generated at the porous surface.

Through the budget term analysis of the volume-averaged turbulence

equation, Kuwata and Suga (2016c) provided the detailed distribution pro-

files of turbulence and dispersion terms appearing in the double (volume

and Reynolds) averaged Navier-Stokes (DANS) equations. They analysed

the data of Kuwata and Suga (2016b) for turbulent isotropic porous walled

channel flows with the wall porosity of φ = 0.71 at the bulk Reynolds number

of Reb ≃ 3000. They showed that compared with the Reynolds stresses, the

levels of the wall-normal and spanwise components of the dispersion stress

were far smaller though the streamwise component keeps the same level. The

drag force was the main source for the dispersion instead of the mean shear

inside the porous layer and the gained energy was partly transferred to the

turbulent kinetic energy.

In the thermal field, the DNS study by Chandesris et al. (2013) confirmed

that compared to a smooth solid wall case, larger vortical structures created

above the porous layer significantly increased turbulent heat flux. The sim-

ulated thermal fields were at the fluid Prandtl number (Pr) of 0.1 with the

same flow conditions as those of Breugem and Boersma (2005). They were

for isotropic porous walled turbulent channel flows at Reb = 5500 over fully
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resolved levitating cube arrays with φ = 0.875. It was found that deeply in-

side the porous layer until approximately four rows of the cubes, an influence

of such large scale structures was detected even at such a low Prandtl num-

ber. The root mean square (rms) temperature fluctuation profiles showed a

strong peak inside the porous layer. It was then concluded that this peak was

not related to turbulent mixing, but to large scale pressure waves penetrating

deeply inside the porous layer while a similar behavior was not observed for

velocity fluctuations due to the drag effects.

When the porous structure becomes anisotropic, we should consider the

wall permeability as a second rank tensor quantity. Since the anisotropic per-

meability is expected to be a key factor to control the flows around porous

media, several studies have focused on flows over anisotropic porous me-

dia. The DNS study by Kuwata and Suga (2017) considered structures

designed ideally to have anisotropic components of the permeability ten-

sor. The considered four cases were walls with square pore arrays aligned

with the Cartesian axes, namely walls with only the wall-normal diagonal

component, with the wall-normal and spanwise diagonal components, with

the wall-normal and streamwise diagonal components, and with the isotropic

wall-normal, spanwise and streamwise diagonal components of the permeabil-

ity tensor. The porosities of the considered porous media were φ = 0.6− 0.8

and the bulk flow Reynolds numbers were Reb = 2200 − 5900. They found

that turbulence was not significantly changed by the wall-normal diagonal

component of the permeability tensor (called the wall-normal permeability,

hereafter for simplicity) itself while the streamwise and spanwise components

(streamwise and spanwise permeabilities, hereafter) considerably contributed
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to enhance turbulence over the porous media. The turbulence enhancement

was more obvious by the streamwise permeability. Suga et al. (2018) ex-

perimentally confirmed this trend by measuring turbulence over anisotropic

porous media whose porosities were 0.7 and wall-normal permeability was

designed to be larger than the other components by factors of 1.2, 1.5 and

173 at Reb = 900 − 13600. The DNS by Rosti et al. (2018) also considered

anisotropic permeability effects. In their results, very interestingly, some

anisotropic cases showed even lower drag coefficients than those over solid

smooth walls. Since they imposed a very smaller permeability in the wall-

normal direction than those in the other directions, the K–H instability was

mitigated in their simulations. Due to the combined effect of the slip velocity

and the mitigation of the K–H instability, the drag reduction phenomenon

was predicted. However, when realistic porous structures are considered,

the effect of the surface topology, which relates to the surface roughness,

may not be ignored. Such an effect on flows was not considered in their

momentum transfer condition applied to the porous interface to connect the

volume averaged Navier-Stokes (VANS) equations (Whitaker, 1986, 1996) for

the porous layers. They modified the momentum transfer condition form of

Ochoa-Tapia and Whitaker (1995) neglecting a term representing the drag

by the surface texture.

Although heat transfer at the porous interface is an important issue in

engineering, to the best of the authors’ knowledge, there is no report in the

literature for turbulent heat transfer focusing on anisotropic effects of porous

media. Therefore, this study performs DNSs of turbulent forced convec-

tion in porous-walled channel flows at Reb = 2900 by the lattice Boltzmann
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method (LBM) as a follow-up study of Kuwata and Suga (2017). To under-

stand the effects of anisotropic permeabilities on the turbulent thermal fields

both inside and outside the porous walls, the four distinctive anisotropic

porous media of Kuwata and Suga (2017) are considered. They are namely

walls with only the wall-normal permeability, with the wall-normal and span-

wise permeabilities, with the wall-normal and streamwise permeabilities, and

with the isotropic wall-normal, spanwise and streamwise permeabilities. The

porosities of the considered porous media are thus φ = 0.6 − 0.8. Two

different thermal wall boundary conditions: isothermal and conjugate heat

transfer conditions for the porous layer, are considered to discuss turbulent

heat transfer over and inside the porous walls.

2. Numerical scheme

2.1. Flow fields

In the present study, DNSs are performed by the D3Q27 multiple-relaxation-

time LBM (MRT-LBM) (Suga et al., 2015) for the flow fields. The time

evolution equation of the distribution function f can be written as

|f (x + ξαδt, t+ δt)⟩−|f (x , t)⟩ = −M −1Ŝ(|m(x , t)⟩−|meq(x , t)⟩)−|F (x , t)⟩ ,

(1)

where ξα is the discrete velocity, notations such as |f ⟩ is |f ⟩ = (f0, f1, . . . , f26)
T

and δt is the time step. The parameters of the D3Q27 discrete velocity model

are listed in Table 1 in which the sound speed is cs/c = 1/
√
3 with the particle

velocity c = ∆/δt, the lattice spacing ∆, and the weighting factor wα. The

term F is the external force. The matrix M is a 27 × 27 matrix which lin-

early transforms the distribution functions to the moments as |m⟩ = M |f ⟩.

9



The equilibrium moment |meq⟩ = M |f eq⟩ and the transformation matrix

M are listed in Tables 2 and 3. The local equilibrium distribution function

f eq is obtained as

f eq
α = wα

{
ρ+ ρ0

(
ξα · u
c2s

+
(ξα · u) 2 − c2s |u |2

2c4s

)}
, (2)

where u is the fluid velocity vector and the density ρ is expressed as the

summation of constant and fluctuation parts, ρ = ρ0 + δρ (He and Luo,

1997). The collision matrix Ŝ is diagonal:

Ŝ ≡diag(0, 0, 0, 0, s4, s5, s7, s7, s7, s10, s10, s10,

s13, s13, s13, s16, s17, s18, s18, s20, s20, s20, s23, s23, s23, s26).
(3)

The relaxation parameters presently applied are from Suga et al. (2015):

s4 = 1.54, s7 = s5, s10 = 1.5, s13 = 1.83, s16 = 1.4,

s17 = 1.61, s18 = s20 = 1.98, s23 = s26 = 1.74.
(4)

The relaxation parameter s5 is related to the kinematic viscosity ν,

ν = c2s

(
1

s5
− 1

2

)
δt. (5)

The macroscopic variables such as the density ρ = m0, the momentum

ρ0ui = mi and the pressure p are ρ = Σαfα, ρ0ui = Σαξαifα and p = c2sρ, re-

spectively. The applied numerical scheme was validated by Suga et al. (2015)

through the application of the turbulent channel flow at Reτ = 180. It was

confirmed that the predicted turbulence statistics such as the mean velocity,

Reynolds stresses, budget terms of the turbulent kinetic energy, and energy

spectra agreed almost perfectly with those of the spectral method by Kim

et al. (1987).
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2.2. Thermal fields

For the thermal fields, the D3Q19 regularized single-relaxation-time LBM

(SRT-LBM) for a passive scalar (He et al., 1998) is applied. The time evo-

lution equation of the internal energy density distribution function g can be

written as

|g(x + ξαδt, t+ δt)⟩ − |g(x , t)⟩ = − 1

τg
(|g(x , t)⟩ − |g eq(x , t)⟩) , (6)

where τg is the relaxation time and g eq is the equilibrium part of the distribu-

tion function g . The parameters for the D3Q19 discrete velocity model are

listed in Table 4. Temperature θ and the equilibrium part g eq are respectively

written as

θ =
∑
α

gα, (7)

and

geqα = wαθ

(
1 +

ξα · u
c2s

)
. (8)

To stabilize the calculation at a high Reynolds number, the regularization

process (Latt and Chopard, 2006) is introduced as

|g(x + ξαδt, t+ δt)⟩ = |g eq(x , t)⟩+
(
1− 1

τg

) ∣∣ĝneq(x , t)
⟩
, (9)

where ĝneq is the regularized non-equilibrium part of the distribution function

g . It is written as

ĝneqα =
wα

c2s
ξαi
∑
β

gneqβ ξβi +
wα

2c4s

(
ξαiξαj − c2sδij

)∑
β

gneqβ ξβiξβj. (10)

The thermal diffusivity of the fluid γf is related to the relaxation time τg as

γf = c2s

(
τg −

1

2

)
δt. (11)

See Suga et al. (2017a) for the numerical details of the thermal field model.
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2.3. Boundary conditions

The standard half-way bounce-back scheme is applied to the fluid-solid

interface for the non-slip flow condition. For the isothermal solid phase con-

dition, the scheme by Yoshida and Nagaoka (2010) is applied to the wall

surfaces:

gα(x , t+ δt) = −gβ(x , t) + EΦw, (12)

where Φw is the wall temperature, ξα = −ξβ, and E = 2wα for the D3Q19

model.

To impose the conjugate heat transfer conditions, this study applies the

half lattice division scheme of (Wang et al., 2007) which prescribes the con-

jugate heat transfer condition at the middle between the fluid and solid node

points by the simple streaming process as follows:

gfluid(x + ξαδt, t+ δt) = gsolid(x , t), (13)

gsolid(x + ξαδt, t+ δt) = gfluid(x , t). (14)

3. Flow geometry and computational conditions

Figure 1 illustrates a schematic view of a porous-walled channel flow con-

figuration. As shown in Fig. 1(a), the computational domain in the stream-

wise (x) × wall-normal (y) × spanwise (z) directions is 7.0H×(H+h)×3.5H.

Here, H and h = 0.7H are the clear channel height and porous layer thick-

ness, respectively, and an impermeable smooth wall is considered at y = H.

The origin of the wall-normal coordinate is set to the porous layer interface.

Although the large-scale streamwise perturbation due to the K–H instability

develops over the present porous layer, the streamwise computational domain
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length is confirmed to be sufficiently large to capture the turbulence statis-

tics presently focused on. (See Appendix B for the discussion on the domain

size.) For the porous media, three different anisotropic porous media (case Y,

YZ, and XY) and the isotropic porous medium (case XYZ) are considered as

shown in Fig. 1 (c). Those porous media have square holes, and the hole size

and distance between holes are D1 = 0.12H and D2 = 1.3D1, respectively.

All cases have the vertical square holes. In addition to the vertical holes, the

streamwise and spanwise holes are made in cases XY and YZ, respectively.

For case XYZ, the streamwise, vertical, and spanwise holes are made. The

porous media under consideration are identical to those of Kuwata and Suga

(2017). The parameters of the porous media: porosity φ and diagonal com-

ponents of the permeability tensor Kij are listed in Table 5. Note that those

anisotropic porous media are categorized in the orthotropic porous media

which only have diagonal components of the permeability tensor.

Using the imbalance-correction (IBC) zonal grid refinement method of

Kuwata and Suga (2016a), the computational domain is decomposed into

finer and coarser resolution domains. (Details for the thermal field IBC are

described in Appendix A.) The grid node numbers of the finer mesh for

the porous layer and the coarser mesh for the channel core are 1601(x) ×

217(y) × 801(z) and 801(x) × 88(y) × 401(z), respectively. The normalized

values of D1 and the grid spacings of the coarser and finer grid regions, ∆c

and ∆f , are also listed in Table 5. Note that the superscripts “t+” and

“p+” denote the normalized values by the viscous scales of the top and

porous walls, respectively. The grid resolution of the finer mesh is set to

∆f,p+ < 2.0 which is comparable to those employed in the previous DNS
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studies by the LBM (e.g. Bespalko et al., 2012; Kuwata and Suga, 2017).

The grid independence test of the simulation was confirmed by comparing

the obtained turbulent intensities with those by the 1.5 times finer mesh in

each direction. The difference between the results was less than a few per

cent and confirmed to be negligible.

In all cases, periodic boundary conditions are imposed in the streamwise

and spanwise directions with a constant streamwise pressure difference. The

no-slip boundaries are applied to the fluid-solid interfaces and two thermal

wall boundary conditions are considered in the present study. For the isother-

mal wall boundary condition, as shown in Fig. 1 (a) constant low and high

temperatures, denoted respectively as Θ0 and Θw, are respectively applied

to the top smooth wall and the whole porous layer while for the conjugate

heat transfer, as shown in Fig. 1 (b) a constant high temperature Θw is ap-

plied only to the very bottom surface under the porous layer. The thermal

diffusivity ratio of the solid to the fluid is γs/γf = 4.4. The Prandtl number

of the working fluid is set to be Pr = 0.71. In the following discussions, the

superscript “*” indicates a value normalized by the bulk mean velocity Ub

or the temperature difference ∆Θ = Θw − Θ0. The notations “-I” and “-C”

mean the isothermal and conjugate wall boundary conditions, respectively.

The bulk Reynolds number Reb = UbH/ν, the permeability Reynolds

number ReK = upτ
√
Kkk/3/ν, the friction Reynolds number for the smooth

top wall Retτ = utτδ
t/ν, and for the porous wall Repτ = upτδ

p/ν are listed in Ta-

ble 6. Since the averaged shear stress at the top wall τ tw is calculated directly,

the friction velocity at the top wall, utτ =
√
τ tw/ρ, can straightforwardly be

derived. To characterize inner turbulence over porous media, many studies
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in the literature successfully applied the friction velocity at the porous wall

interface. Following those DNS studies (Breugem et al., 2006; Chandesris

et al., 2013; Rosti et al., 2015; Kuwata and Suga, 2016b,c) and experimen-

tal studies (White and Nepf, 2007; Manes et al., 2009; Pokrajac and Manes,

2009; Manes et al., 2011; Suga et al., 2018), the friction velocity at the porous

wall is given by the momentum balance in the clear flow region, which means

that the pressure drop ∆P is balanced with the wall-shear stress at the top

wall τ tw and total shear stress at the porous wall τpw including the viscous

stress, Reynolds shear stress and plane-dispersion stress as follows:

Lx(τ
t
w + τpw) = H∆P, 0 ≤ y ≤ H. (15)

This yields the friction velocity at the porous interface as follows:

upτ =

√
−(utτ )

2 +
H∆P

Lxρ
. (16)

Following Breugem et al. (2006), the boundary layer thickness for the

smooth top or porous walls, δt or δp, is defined as the distance from the solid

or porous walls to the location where the total shear stress goes to zero. The

total shear stress τa in the clear flow region can be obtained from integral of

the momentum equation as follows:

τa = τpw − y

H
(τpw − τ tw). (17)

Thus, δp/H can be obtained by substituting τa = 0 into the above equation:

δp

H
=

τpw
τ tw + τpw

. (18)

The boundary layer thicknesses for the smooth top can be obtained as follows:

δt

H
= 1− δp

H
=

τ tw
τ tw + τpw

. (19)
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The friction temperature at the top wall θtτ is calculated directly as

θtτ =
qtw

ρcputτ
, (20)

where qtw is the averaged heat flux at the top wall and cp is the specific

heat capacity. The friction temperature at the porous interface θpτ can be

estimated from the energy conservation in the vertical direction of the present

system where the averaged heat fluxes at the top and porous walls, qtw and

qpw, have the same value. Therefore, θpτ can be calculated as

θpτ =
qpw

ρcpu
p
τ
=

qtw
ρcpu

p
τ
. (21)

4. Results and discussions

4.1. Instantaneous flow and thermal fields

To see the influence of the anisotropic permeability on turbulent vor-

tices over the porous layer, Figs. 2 and 3 visualize iso-surfaces of II∗ =

II/(Ub/H)2 = 15 for the cases with the isothermal wall and conjugate heat

transfer conditions, respectively. Here, II is the second invariant of the veloc-

ity gradient tensor. They are colored by the local instantaneous temperatures

of 0 < θ∗ < 1.0. At this threshold value, a very limited number of vortex

tubes are detected in case Y-I (Fig. 2 (a)), although much more vortex tubes

are observed in the other cases. Most vortex tubes are seen in the region over

the porous interfaces than in the vicinity of the top smooth walls as reported

by Kuwata and Suga (2017). In case YZ-I (Fig. 2 (b)), streak-like vortex

structures seem to be developing over the porous interface and in cases XY-I

and XYZ-I (Fig. 2 (c, d)) with the streamwise permeability, larger amount
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of vortex tubes with high temperatures exist over the porous interface, and

they occasionally reach near the top smooth wall. It is then obvious that

the streamwise permeability induces more vortex tubes than the spanwise

permeability. Figure 3, which selects cases Y-C and XYZ-C to show typi-

cal temperature distributions, also shows surface temperatures of the porous

structures with the conjugate heat transfer condition. Obviously, tempera-

ture gradients are seen in the vertical direction of the porous layer. Since

the interfacial temperatures in the conjugate heat transfer condition become

lower than those of the isothermal wall boundary condition, the range of

the vortex temperatures becomes narrower and thus the visualized vortex

temperatures look almost constant although they are not constant.

The contours of instantaneous fluctuations of the vertical velocity and

temperature across the x–y planes, which are located at the centers of the

square holes as illustrated in Fig. 4, are shown in Figs. 5 and 6. Note that

each thermal field visualization is made at the same instant as that for the

flow field. The sampled instant is chosen randomly after the flow is fully de-

veloped. Velocity penetrations are clearly seen in the porous layers in cases

XY and XYZ (Fig. 5 (c, d)). They are induced by the Kelvin–Helmholtz

instability originating from the inflection point of the mean streamwise ve-

locity (Raupach et al., 1991; Finnigan, 2000). Although the vertical velocity

fluctuations over the porous wall penetrate deeply inside the porous layer and

reach near the bottom of the porous layer in cases XY and XYZ, the temper-

ature fluctuations with the isothermal wall boundary condition are limited

to the region up to y ≃ −D2. In contrast to the temperature fluctuations

for the isothermal cases, Fig. 6 shows deeper penetrations for the conjugate

17



heat transfer cases even in case YZ-C (Fig. 6 (b)) in which the velocity fluc-

tuations do not penetrate deeply compared with those in cases XY-C and

XYZ-C (Fig. 6 (c, d)). However, clear difference in the penetrations of the

temperature fluctuations between the isothermal (Fig. 5 (a)) and conjugate

heat transfer (Fig. 6 (a)) cases cannot be observed.

4.2. Turbulence statistics

To examine the contribution of the thermal boundary conditions to heat

transfer around the porous walls, the double (Reynolds and the x–z plane)

averaging is applied to the energy equation. The fluid-phase plane averaging

of a variable ϕ(x, y, z) is defined as

[ϕ(y)]f =
1

∆Sf

∫
∆Sf

ϕ(x, y, z)ds, (22)

where ∆Sf is the fluid area contained within the averaging area ∆S of the

x–z plane. Following Whitaker (1996), the double-averaged energy equation

for the fluid phase can be written as

∂
[
θ̄
]f

∂t
+ [uj]

f ∂
[
θ̄
]f

∂xj
=

1

ψ

∂
∂xj

(
γf

∂ψ
[
θ̄
]f

∂xj

)
︸ ︷︷ ︸

viscous diffusion

− 1

ψ

∂
∂xj

ψ [u′jθ′]f︸ ︷︷ ︸
Ht

j

+ψ
[
ũj

˜̄θ
]f

︸ ︷︷ ︸
Hd

j


+

1

ψ

∂
∂xj

(
1

∆S

∮
∆Sf

njγf θ̄dℓ

)
︸ ︷︷ ︸

tortuosity

+
1

∆Sf

∮
∆Sf

njγf
∂θ̄
∂xj

dℓ︸ ︷︷ ︸
wall heat transfer

, (23)
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where ℓ represents the circumference length of the solid obstacle within an

averaging surface and nj is its unit normal vector pointing outward from the

fluid to solid phases. The plane porosity is defined as ψ = ∆Sf/∆S. For

the Reynolds averaging, simulations are carried out over 30 turn over times

after the flows reach fully developed state. This time duration is confirmed

to be long enough by comparing the results with those by 45 turn over times.

Note that since this study considers passive scaler transport, turbulent flow

field statistics are not influenced by the difference of the thermal boundary

conditions.

4.2.1. Flow field statistics

Although detailed discussions on the flow field for the same porous media

were carried out by Kuwata and Suga (2017), we briefly review the flow field

statistics for the sake of completeness of the following discussions.

Figure 7 presents profiles of the fluid-phase x–z plane-averaged stream-

wise mean velocity Up+ = [ū]f /upτ . In Fig. 7 (a), the profiles in cases YZ, XY,

and XYZ are significantly skewed due to the increased turbulent friction at

the porous wall (Breugem et al., 2006; Suga et al., 2010), while that in case Y

is almost symmetry, suggesting that the effects of the porous wall in case Y

are marginal. As a decrease in the inner-scaled mean velocity represents an

increase in the turbulent friction, the turbulent drag is the maximum in case

XYZ, followed by cases XY and YZ. This can be confirmed in the friction

Reynolds numbers in Table 6 because the bulk mean Reynolds number is

almost the same in all the cases. Figure 7(b) shows positive slip velocities

at the porous wall interfaces in all the cases, and the inflection points of the

profiles beneath the porous interfaces. Such an inflection point is the neces-
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sary condition for the inviscid instability: the K–H instability (Drazin and

Howard, 1966). However, the mean velocity profiles beneath the porous in-

terface are very different; the streamwise mean flow is confined to the region

of −1 < y/D2 < 0 in cases Y and YZ while the porous wall in cases XY and

XYZ allows the streamwise mean flow because of their non-zero streamwise

permeability as shown in Table 5. The negative velocities in cases Y and YZ

indicate the presence of stable recirculation vortices that do not significantly

affect outer layer flows. This is considered to be similar to the sheltering

effect observed in the flows over the d -type roughness (Jiménez, 2004).

The effects of the porous wall on the Reynolds normal stresses are shown

in Fig. 8, which indicates profiles of the fluid-phase x–z plane-averaged

Reynolds normal stresses Rp+
ij =

[
u′iu

′
j

]f
/(upτ )

2. In cases YZ, XY, and XYZ,

the maximum peak values of Rp+
11 over the porous layer are smaller than

that of case Y whereas Rp+
22 near the porous interface is substantially en-

hanced compared with that of case Y. The enhanced wall-normal velocity

fluctuations penetrate the porous layer mainly due to the role of the pres-

sure diffusion (Kuwata and Suga, 2016c). This trend is particularly notable

in cases XY and XYZ, supporting the observation in the visualizations of

Figs. 5 and 6. In contrast, the Reynolds normal stresses in case Y seems

to be hardly affected by the porous surface, and the turbulence penetration

into the porous layer is much smaller than that in the other cases. This is

because the recirculating flows inside the pores block the intrusion of the

vortex motions coming from the outer layer. Hence, it can be said that the

flow characteristics over case Y are similar to those over the d -type rough

wall. Note that the normalized hole size in case Y is Dp+
1 ≃ 17. Since the
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flow penetration is limited in the region of −1 < y/D2 (where D2 = 1.3D1)

for case Y as seen in Fig. 7(b), the scale of the “effective” surface roughness

is considered to be around 22 wall units. The surface roughness effect in case

Y is thus limited to the earlier stage of the transitional roughness regime. It

is summarized that the porous wall with the streamwise permeability (cases

XY and XYZ) gives a significant increase in the turbulent frictional drag

while the wall-normal permeability itself has minor effects. Although this re-

mark is in accordance with the results of Kuwata and Suga (2017); Suga et al.

(2018), its validity may be limited to porous media with Kxx/Kyy < 1 since

Rosti et al. (2018); Gómez-de Segura and Garćıa-Mayoral (2019) reported

that the turbulence frictional drag tended to reduce when Kxx/Kyy ≫ 1.

4.2.2. Thermal field statistics

Figures 9 and 10 show profiles of the fluid-phase x–z plane-averaged mean

temperature Θp+
f =

[
θ̄
]f
/θpτ and the root mean square of the temperature

variance θ′p+frms
=

√[
θ′θ′
]f
/θpτ for the isothermal and conjugate heat transfer

cases, respectively. For the conjugate heat transfer, those of the solid phase:

Θp+
s and θ′p+srms

, are also plotted in Fig. 10. In the clear flow region: 0 < y/H <

1 in Figs. 9 and 10, it is seen that the difference of the thermal boundary

conditions hardly affects the profiles of Θp+
f and θ′p+frms

. However, the profiles

in the porous layer differ by the thermal boundary condition. As shown in

Fig. 9 (a), the fluid temperature for the isothermal cases becomes almost

constant at Θf = Θw inside the porous layer of y/H < −0.2, while Θp+
f with

the conjugate heat transfer shows almost linear profile deep inside the porous

layer as seen in Fig. 10 (a). It is considered that these mean temperature

profiles depend on the porosity. Indeed, the profile in case XY-C (φ = 0.7) is
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close to that in case YZ-C (φ = 0.7). The possible explanation for this trend

is that the profile deep inside the porous layer almost reaches the equilibrium

state and is similar to the laminar solution (linear profile). Accordingly, the

effective thermal diffusivity (1−φ)γs +φγf , which is expressed as a function

of φ, is the factor to determine the profiles.

A comparison of the fluid- and solid-phase mean temperatures: Θp+
f and

Θp+
s , for the conjugate heat transfer cases shown in Fig. 10 indicates that

Θp+
f and Θp+

s almost reach the equilibrium state in the porous layer while the

temperature variance of the fluid phase significantly deviates from that of the

solid phase except for case Y-C. The larger temperature variance of the fluid

phase is due to the penetrated turbulent flow convection into the porous layer.

Another important phenomenon shown in Fig. 10 (b) is that θ′p+frms
in the

porous layer is obviously larger in case XY-C than that in case YZ-C despite

that their mean temperature profiles are nearly the same. This confirms

that the streamwise permeability is more influential in increasing θ′p+frms
than

the spanwise permeability, which can also be confirmed in the isothermal

condition although the values are significantly small in Fig. 9 (b). With the

isothermal condition, the profiles of Θp+
f become flat at y/D2 < −2 as seen

in Fig. 9 (a). Since the mean temperature gradient produces temperature

fluctuations, θ′p+frms
vanishes at y/D2 < −2 as seen in Fig. 9 (b).

Figure 10 (b) also confirms that the profiles of θ′p+frms
for the conjugate

heat transfer exhibit obvious peaks inside the porous layer at −0.3 < y/H <

−0.1 for cases YZ-C, XY-C, and XYZ-C. The magnitude of the temperature

variance inside the porous layer seems considerably sensitive to the porous

medium geometry. Indeed, there are considerable differences in the peak
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values of θ′p+frms
between cases XY-C and XYZ-C despite the fact that the

profiles in the clear flow region are close to each other. Moreover, it is

surprising that the peak value of case XYZ-C in the porous layer is larger than

that in the clear flow region. Note that the significant rise in the temperature

variance inside the porous layer was also observed by the DNS of turbulent

heat transfer in the adiabatic/heated cube arrays by Chandesris et al. (2013)

while the Prandtl number, thermal boundary conditions, and geometry of the

porous medium were different from those in the present study. Chandesris

et al. (2013) also reported that the large-scale temperature fluctuations in

the porous medium region were caused by the combined effects of large-scale

velocity fluctuations by the K–H instability and a large temperature gradient.

Although the discussion on the K–H instability of the present cases is carried

out in section 4.4, the visualization of Fig. 6 (b-d) indicates high- and low-

temperature regions, which look much larger than the hole size which is a

typical length-scale of the porous structure, and implies the existence of the

K–H rollers, . Hence, it is suggested that the observed trend in Figs.10(b) is

general when a large temperature gradient exists inside a porous layer.

To understand the turbulent thermal field in more detail, the x–z plane-

averaged vertical turbulent heat flux Ht p+
2 =

[
v′θ′
]f
/ (upτθ

p
τ ), vertical tem-

perature gradient Gp+
θ2 = (∂

[
θ̄
]f
/∂y)/(upτθpτ /ν), and the production of the

temperature variance P p+
θ = −Gp+

θ2 H
t p+
2 are plotted in Figs. 11 and 12. As

with the temperature variance in Figs. 9 and 10, any clear difference can-

not be seen in the clear channel region while difference is obvious inside the

porous layer. As shown in Figs. 11 (a) and 12 (a), Ht p+
2 over the porous

layer in cases Y-I and Y-C does not increase while, in the other cases, the
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enhancement of Ht p+
2 over the porous layer is distinctive. In particular, over

the porous media with the streamwise permeability, Ht p+
2 is substantially

enhanced corresponding to the enhancement of Rp+
22 seen in Fig. 8. When at-

tention is given to the porous layer region, it is found from Figs. 11 (a) and 12

(a) that Ht p+
2 with the conjugate heat transfer condition is in a consider-

ably higher level than that with the isothermal condition, which is similar

to the trend of the temperature variance. This difference is principally due

to the difference in −Gp+
θ2 inside the porous layer where −Gp+

θ2 with the con-

jugate heat transfer condition is much larger than that with the isothermal

condition, resulting in the larger production P p+
θ . With the conjugate heat

transfer condition, the temperature gradient −Gp+
θ2 in case Y-C reaches a

plateau inside the porous layer of y/H < −0.2 while −Gp+
θ2 in cases YZ-C,

XY-C, and XYZ-C generally increases as it approaches the bottom wall at

y = −h. The magnitude of the temperature gradient −Gp+
θ2 in case XYZ-C

is the largest, followed by that in cases XY-C and YZ-C. In cases YZ-C,

XY-C, and XYZ-C, the temperature gradient −Gp+
θ2 generally increases to-

ward the bottom wall while the vertical turbulent heat flux Ht p+
2 decreases

inside the porous layer. Consequently, since P p+
θ = −Gp+

θ2 H
t p+
2 , the profile

of the production term has the local maximum point inside the porous layer

around y/H ≃ −0.2, resulting in the rms profile of Fig. 10 (b). It should

be noted that although the profile of −Gp+
θ2 has kinks corresponding to the

porous geometry, the local maximum point discussed above results from the

general trends of −Gp+
θ2 and Ht p+

2 . This suggests that the significant increase

in the temperature variance inside the porous media can be a general trend

that does not depend on the specific porous geometry. Indeed, the significant
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rise in the temperature variance inside the porous wall was observed in the

DNS (Chandesris et al., 2013) in which the geometry of the porous media

was totally different from those employed in the present study.

To discuss the dispersion quantities, Fig. 13 shows profiles of the x–z

plane-dispersion stress T p+
12 = [˜̄u˜̄v]

f
/(upτ )

2 and vertical dispersion heat flux

Hd p+
2 =

[
˜̄v ˜̄θ
]f
/ (upτθ

p
τ ). All profiles maintain certain levels of magnitude in

−1.0 < y/D2 < 0.0 which corresponds to the unit cell of the porous structure.

In the region of y/D2 < −2.0 with the isothermal condition, Hd p+
2 vanishes

in all cases (Fig. 13(b)) while with the conjugate heat transfer condition,

those in cases XY-C and XYZ-C still have non-negligible values (Fig. 13(c)).

It is seen that the dispersion heat flux with the conjugate heat transfer is

approximately three times larger than that of the isothermal condition, and

its level of magnitude is quite comparable to that of the turbulent heat flux

shown in Fig. 12(a) though the contribution of Hd p+
2 is confined just beneath

the porous interface. For the contribution to the heat transfer, what can be

seen in Fig. 13 is that although the dispersion stress T12 of case YZ is much

smaller in magnitude than those of cases XY and XYZ in −1.0 < y/D2, the

dispersion heat fluxes Hd p+
2 of those cases have similar magnitudes for each

thermal condition. This means that in cases YZ-I and YZ-C the dispersion

affects heat transfer more significantly than momentum transfer.

As for the relation with the flow field, although the signs of Hd p+
2 are

positive in y/D2 < 0.0 for all cases, signs of T d p+
12 in cases Y and YZ are

negative in −1.0 < y/D2 < 0.0. This results from the mean reverse flows

which were seen only in cases Y and YZ just below the porous interface as

shown in Fig. 7(b). Overall, a general correlation between the dispersion
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stress and the dispersion heat transfer cannot be seen both in quantitative

and qualitative points of view.

4.3. Quadrant analysis

In order to see the conditional events of turbulent heat transfer, as shown

in Fig. 14 (a), following Katul et al. (1997) the wall-normal turbulent heat

flux is decomposed into the first quadrant (Q1): thermal ejection (hot out-

ward flux), the second quadrant (Q2): outward interaction, the third quad-

rant (Q3): thermal sweep (cold inward flux) and the fourth quadrant (Q4):

inward interaction. Notice that the events in quadrants 1 and 3 define ther-

mal ejections and sweeps for heat fluxes while events in quadrants 2 and 4

define ejections and sweeps for momentum fluxes as shown in Fig. 14 (b).

Figure 15 shows snapshots of the instantaneous quadrant events over

the porous interfaces with the conjugate heat transfer at yp+ = 13. Note

that since the heat transfer characteristics over the isothermal porous layer

are similar to those of the conjugate heat transfer, we focus on the latter

condition. In case Y-C (Fig. 15 (a)), it is observed that all events take place

along elongated streaky structures while those structures tend to be twisted

and become shorter in case YZ-C (Fig. 15 (b)). The events of Q1 thermal

ejections and Q3 thermal sweeps become dominant in this case. When the

streamwise permeability exists, in case XY-C (Fig. 15 (c)), thermal ejections

and sweeps form clusters aligning in the spanwise direction and those clusters

become more obvious in case XYZ-C (Fig. 15 (d)) indicating the existence

of transverse wavy structures. Due to the nature of the passive scalar, those

trends closely relate to the trends of the structural change of the turbulent

stress field observed by the previous study (Kuwata and Suga, 2017).
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For the quadrant events inside the porous layers, Fig. 16 shows snapshots

of the instantaneous quadrant events with the conjugate heat transfer at

yp+ = −14. These snapshots are taken at the same instants as those of the

snapshots shown in Fig. 15. When these maps are compared with those of

Fig. 15, it is obvious that generally the areas of the thermal ejections shrink

and particularly in cases XY-C and XYZ-C (Fig. 16 (c, d)), the regions of

the Q1 events are partly replaced by those of Q2. This indicates that the

certain parts of the cold outward motions (Q2) inside the porous layer receive

thermal energy in the interface region and become the hot ejections (Q1) over

the porous layer. The opposite phenomenon: the certain parts of cold sweeps

(Q3) from the channel core receive thermal energy in the interface region and

become the hot inward motions (Q4) under the interface, is also recognized.

However, it is seen that the shrinking areas of the thermal sweeps under the

interface are not so large as those of the thermal ejections.

To discuss the statistical quadrant events, the x–z plane-averaged events

of the vertical turbulent heat flux are presented in Figs. 17 and 18. The

plane-averaged quadrants are defined as

Qi
p+

=
1

upτθ
p
τΣNi

∑
[v′θ′]

f
i, (24)

where subscript i (=1–4) corresponds to the quadrant event. In cases Y-I

(Fig. 17 (a)) and Y-C (Fig. 18 (a)), all quadrants events almost vanish inside

the porous layer, while the overall profiles look nearly symmetric in the clear

channel region regardless of the thermal boundary condition. This is because

the penetration into the porous layer is significantly shorter than that of the

other cases as suggested by the distributions of Ht p+
2 (Figs. 11 (a) and 12

(a)) resulting in similar distribution profiles to those of impermeable channel
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flows. For all cases it is clear that intensive events across the channel areQ1
p+

and Q3
p+
. Over the porous interface, Q1

p+
becomes larger in the order of

cases Y, YZ, and XY≃XYZ while the profile of Q3
p+

does not significantly

change in cases YZ, XY, and XYZ irrespective of the thermal boundary

condition. Those profiles do not show considerable difference near the top

smooth wall. Inside the porous layer, the magnitude of Q3
p+

becomes larger

than that of Q1
p+

while both Q1
p+

and Q3
p+

are still dominant. This trend

corresponds to the event maps shown in Fig. 16 which shows larger areas

of Q3 than those of Q1. This is because cold inward fluids receive thermal

energy through the porous layer and fully heated fluids are eventually ejected

to the clear channel region. In the conjugate heat transfer cases, obviously

the penetration effect for case XY (Fig. 18 (c)) is more significant than that

for case YZ (Fig. 18 (b)). This confirms that the streamwise permeability

enhances more the penetration than the spanwise permeability. In case XYZ

(Fig. 18 (d)) with both the permeabilities, the penetration effect becomes

most significant.

4.4. Two-point spatial correlation

In the previous report by Kuwata and Suga (2017), the detailed discus-

sions on the characteristic length-scale of the K–H roller (for the same porous

layers as those of the present study) were carried out through the two-point

spatial correlation and spectral analyses. Thus, this study focuses on the

influence of the K–H roller on the temperature fluctuations by the two-point

spatial correlation analysis. Figure 19 presents the streamwise spatial corre-

lations of the streamwise velocity and temperature fluctuations at yp+ ≃ 13

for the conjugate heat transfer cases. The definitions of the correlation func-
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tions are

Ruu, x =
u′(x)u′(x+∆x)

u′(x)u′(x)
, Rθθ, x =

θ′(x)θ′(x+∆x)

θ′(x)θ′(x)
. (25)

In this discussion, a twice longer computational box of 14H(x)×(H+h)(y)×

3.5H(z) is applied to cases Y and XY since the box length of 7H is found

not to be long enough for the two-point spatial correlation analysis. Note

that as discussed in Appendix B, the turbulence statistics discussed in this

study are not deteriorated by the computational box length of 7H. In Fig. 19

(a), Ruu, x in cases YZ-C, XY-C, and XYZ-C decays more rapidly than that

in case Y-C. This is considered to be from the reduction of the streamwise

elongated streaks (Kuwata and Suga, 2016b). In addition, the wavy profiles

of Ruu, x in cases XY-C and XYZ-C clearly show local minima at ∆p+
x, min ≃

440 and 470, respectively. They result from the presence of the spanwise K–H

rollers, and the statistical wavelengths of the K–H rollers are estimated to be

λKH/δ
p = 2∆x, min/δ

p =3.7 and 3.5 for cases XY-C and XYZ-C, respectively.

(These values agree with the previous results of Kuwata and Suga (2017).)

Moreover, the values of λKH/δ
p = 3.5 and 3.7 lie within the range of 3.4–5.5

that was derived by Suga et al. (2018) from a large amount of experimental

and DNS data.

Similar trends can be found in the streamwise spatial correlations of the

temperature fluctuations Rθθ, x as shown in Fig. 19 (b). In cases XY-C and

XYZ-C, the profiles of Rθθ, x exhibit local minima at ∆p+
x, min ≃ 400 and 460

in cases XY-C and XYZ-C, respectively. These values agree with those of

Ruu, x within 10% deviations although the magnitudes of the local minima

of Rθθ, x are smaller than those of Ruu, x. This observation suggests that the

coherent large-scale structures in temperature fluctuations over the porous
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wall in cases XY-C and XYZ-C (observed in Figs. 6 and 15) are accompanied

by the large-scale velocity structures induced by the K–H instability.

About the turbulent transport around the porous wall, the budget term

analysis for the turbulent flow over a permeable porous layer by Kuwata

and Suga (2016c) found that the increased turbulence and the greater tur-

bulence penetration toward the porous layer were both due to the increased

re-distribution and pressure diffusion processes intensified significantly by

the K–H instability. It is thus worth noting that the enhanced wall-normal

velocity fluctuations over the porous layer are primarily due to the enhanced

pressure fluctuations induced by the K–H instability. Accordingly, it is con-

sidered that the momentum transfer at the porous interface is increased by

the K–H instability, and this in tern increases heat transfer over the porous

layer.

4.5. Joint probability density functions

To statistically understand the relation between the spanwise vorticity

and temperature fluctuations, this section discusses the joint probability den-

sity function p(θ′, ω′
z) of the temperature fluctuation θ′/θ′rms and the span-

wise vorticity fluctuation ω′
z/ω

′
zrms

at yp+ ≃ 13. In Fig. 20 (a), the region

of p(θ′, ω′
z) > 0.9 (surrounded by a white border line) is located in the

fourth quadrant. This suggests that high temperature fluids of θ′ > 0 in

the porous layer are most frequently ejected by counter-clockwise vortices in

case Y-C. However, in cases YZ-C, XY-C, and XYZ-C, where the effects of

the porous layer on turbulence is more significant, different trends can be ob-

served. Particularly, in cases XY-C and XYZ-C, the regions of p(θ′, ω′
z) > 0.9

are located in the third quadrant indicating that most frequent events are
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counter-clockwise vortices carrying low temperature fluids toward the porous

layer. Since the existence of the K–H instability is evident in cases XY-C

and XYZ-C, those counter-clockwise vortices are considered to be parts of

the K–H roller vortices.

4.6. Heat transfer performance

To discuss the heat transfer performance of the channel, a pumping power

coefficient (normalized pumping power per unit volume) Wp and the Nusselt

number Nu for each case are listed in Table 7 and plotted in Fig. 21. Here,

Wp and Nu are defined as:

Wp =
dP

dx

2

ρU2
b

∫ H

−h

[ū]f

Ub

dy, (26)

Nu =
qpwH

λ(Θp −Θ0)
, (27)

where qpw, λ and Θp are the averaged heat flux on the porous interface, the

thermal conductivity of the fluid and the mean temperature of the porous

interface, respectively. A plane-channel flow at the bulk Reynolds number

of 2900 is also simulated for the comparison. It can be seen that Wp/WpCH

in case Y is about 1.02 while in case YZ, it is about 1.55, where WpCH
is

the pumping power coefficient of the plane channel case. In cases XY and

XYZ, Wp are 2.2 and 2.5 times larger than that of the plane channel WpCH
,

respectively. This trend corresponds to the previously reported results that

the Reynolds shear stresses were more increased over the porous wall with

spanwise and streamwise permeabilities than that near the smooth top wall

and the streamwise permeability enhances more turbulence than the spanwise

permeability (Kuwata and Suga, 2017).
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In Fig. 21 (b), the Nusselt numbers in the isothermal cases are all larger

than that in the smooth wall case. Compared with the plane channel case,

the increase rate of Nu is 36% in case YZ-I while the porous wall with the

streamwise permeability considerably increases Nu by factors of 1.82 (case

XY-I) and 1.97 (case XYZ-I). Because the surface turbulence characteristics

are similar to those of the isothermal cases (as discussed in section 4.2), for

the Nusselt numbers of the conjugate heat transfer with the spanwise per-

meability, the increase rate of Nu to the plane channel case is 38% in case

YZ-C while the porous wall with the streamwise permeability increases Nu

by factors of 1.87 (case XY-C) and 2.01 (case XYZ-C). Supporting this trend,

Fig. 12(a) indicates that the levels of turbulent heat flux inside the porous

layers in cases XY-C and XYZ-C are larger than that in case YZ-C. Conse-

quently, it is confirmed that the contribution of the streamwise permeability

is more efficient than that of the spanwise permeability with respect to the

heat transfer performance of the channel. Note that although the conjugate

heat transfer cases show slightly better heat transfer performance (in cases

YZ, XY and XYZ), it is difficult to compare the performance in the different

boundary conditions since the Nusselt numbers significantly depend on the

definition of the representative temperature difference.

Finally, Fig. 22 (a) shows the dependency of Wp and Nu on the perme-

ability Reynolds number ReK . It is clearly seen that Wp and Nu increase

as ReK increases although the correlations are not linear. However, when

the surrogate permeability Reynolds number, which was introduced by Suga

et al. (2018) as

Re∗∗K = c
upτDpx

ν
, (28)
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with the given coefficient c = 1/3.8, is applied, the distributions become

nearly linear as shown in Fig. 22 (b). Here, the streamwise pore size Dpx

corresponds to D1 in this study. Since D1 is constant, the profiles of Fig. 22

(b) simply show that those parameters simply depend on the friction velocity

irrespective of the case difference. In other words, the characteristic length

scale for the surface turbulence and turbulent heat transfer of the present

porous media does not significantly change although the porous structures

are very different. This suggests an important idea for the discussion on the

characteristic length scale.

5. Concluding remarks

To investigate the effects of the anisotropic wall permeability on turbu-

lent thermal field in forced convection porous-walled channel flows, direct

numerical simulations are performed by the lattice Boltzmann method. The

considered bulk flow Reynolds number is 2900. The surfaces of the fully

resolved porous structures are treated with isothermal and conjugate heat

transfer conditions. The following list summarizes the remarks obtained in

this study.

(1) In the case of Kxx/Kyy < 1, the wall-normal permeability itself has

minor effects on the turbulent thermal field over and inside porous me-

dia. However, the streamwise permeability significantly enhances the

thermal turbulence and its effect is stronger than that of the spanwise

permeability. These trends result from the flow field turbulence.

(2) Although the velocities deeply penetrate into the porous wall in cases

with both wall-normal and streamwise permeabilities by the K–H insta-
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bility, the temperatures do not penetrate so deeply with the isothermal

wall boundary condition. With the conjugate heat transfer the tem-

perature penetration becomes as deep as that of the velocity leading

to a large mean temperature gradient. This is because the changes of

the fluid temperatures immediately affect the porous wall temperatures

by the conjugate heat transfer and thus the significance of temperature

fluctuations tends to be maintained deeply in the porous layer. Accord-

ingly, with the the conjugate heat transfer, temperature fluctuations

inside the porous layers become as large as those outside the porous

layers.

(3) The dispersion heat flux with the conjugate heat transfer is approxi-

mately three times larger than that of the isothermal condition, and

it is comparatively as large as the turbulent heat flux under the inter-

face. The general correlation between the dispersion stress and heat

flux terms cannot be seen.

(4) Just below the interface the thermal sweeps are most dominant while

the thermal ejections overtake them over the porous layer. This is

because cold inward fluids receive thermal energy through the porous

layer and fully heated fluids are eventually ejected to the clear channel

region.

(5) Pumping power and turbulent heat transfer over porous walls signifi-

cantly increases as the permeability Reynolds number increases. It is

then confirmed that the contribution of the streamwise permeability is

more efficient than that of the spanwise permeability with respect to

the heat transfer performance of the channel.
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Appendix A. The imbalance-correction (IBC) zonal grid refinement

method for thermal fields

For simplicity, a two dimensional case is applied to describe the numerical

procedure. For the imbalance-correction zonal grid refinement method, a

face-to-face grid system is considered as illustrated in Fig. 23, which shows

the distribution functions at the coarse and fine grids. They are transferred

to another grid on the boundary line A. Here, the superscripts “c” and “f”

denote values at the coarse and fine grids, respectively. The dashed arrows

mean the distribution functions which are transferred from the coarse to fine

grids and from the fine to coarse grids (indicated by the superscripts “c→f”

and “f→c”, respectively).

In the thermal field, considering the energy conservation at the grid

boundary nodes between the coarse and fine grids, an energy imbalance Eθ
can be evaluated as

Eθ =
∑
βc

gneq, c
βc

+
∑
β̂c

gneq, f→c

β̂c
= n

τ c

τ f

∑
β̂c

gneq, f

β̂c
+
∑
βc

g̃neq, c→f
βc

 , (29)

where the subscripts βc and β̂c indicate known and unknown directions of the

distribution functions at the coarse grid boundary, respectively. The notation
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“∼” means the spatially and temporally interpolated distribution function,

which is required to compensate the differences of the lattice spacing and

the time step between the coarse and fine grids. The relations of the lattice

spacing and the time step between the coarse and fine grids are defined

respectively as: ∆c = n∆f and δtc = nδtf , where n is the grid refinement

ratio. The macroscopic interface variable θ is corrected using the imbalance

Eθ with a weighting factor λθ as

θ̌ = θ + λθEθ. (30)

Following the same procedure for the momentum by Kuwata and Suga (2016a),

the weighting factor can be estimated as

λθ =

{
1− 1

6

(
1− n

τc
τf

)(
1 +

c2

c2s

ux
c

)}−1

, (31)

where c = ∆c/δtc and ux denotes the velocity in the vertical direction to the

grid boundary face.

Appendix B. Influence of the computational domain size

Figure 24 compares the profiles of Ruu, x by the simulations with two

computational boxes of 7H(x)× (H + h)(y)× 3.5H(z) and 14H(x)× (H +

h)(y)× 3.5H(z). In case XY, the locations and values of the minima are not

significantly different between the two results while the larger box simulation

yields a much faster decay profile. It is also confirmed that Ruu, x in case

Y with the larger box simulation decays to zero at ∆p+
x ≃ 1200. Although

it is not shown here, the trend of Rθθ, x is the same as that of Ruu, x. To

assess the influence of those computational domain sizes on the turbulence
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statistics, Fig. 25 compares the second-order turbulence statistics obtained

with those boxes. It is obvious that there is no perceptible difference in the

streamwise Reynolds stress (Fig. 25 (a)) and temperature variance (Fig. 25

(b)). Correspondingly, it can be said that the computational domain of

7H(x)× (H + h)(y)× 3.5H(z) does not deteriorate the turbulence statistics

discussed in this study.
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Table 1: Parameters of the D3Q27 discrete velocity model.

cs/c ξα/c wα

1/
√
3 (0, 0, 0) 8/27 (α = 0)

(±1, 0, 0), (0,±1, 0), (0, 0,±1) 2/27 (α = 1, . . . , 6)

(±1,±1, 0), (±1, 0,±1), (0,±1,±1) 1/54 (α = 7, . . . , 18)

(±1,±1,±1) 1/216 (α = 19, . . . , 26)
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Table 4: Parameters of the D3Q19 discrete velocity model.

cs/c ξα/c wα

1/
√
3 (0, 0, 0) 1/3(α = 0)

(±1, 0, 0), (0,±1, 0), (0, 0,±1) 1/18(α = 1, . . . , 6)

(±1,±1, 0), (±1, 0,±1), (0,±1,±1) 1/36(α = 7, . . . , 18)

Table 5: Parameters of computational geometry.

Case φ Kxx/H
2 Kyy/H

2 Kzz/H
2 ∆c,t+ ∆f,p+ D1/∆

f

Y 0.56 0 3.48× 10−4 0 1.72 0.89 30

YZ 0.70 0 4.65× 10−4 4.65× 10−4 1.83 1.23 30

XY 0.70 4.65× 10−4 4.65× 10−4 0 1.95 1.50 30

XYZ 0.84 5.71× 10−4 5.71× 10−4 5.71× 10−4 2.01 1.64 30

Table 6: Reynolds numbers of the simulations.

Case Reb Repτ Retτ ReK

Y 2863 105 94.6 2.18

YZ 2921 180 75.0 4.94

XY 2904 240 65.9 6.00

XYZ 2891 270 62.6 8.90
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Table 7: Pumping power coefficient and Nusselt numbers.

Case Wp(×102) Nu (isothermal) Nu (conjugate)

CH 1.86 3.42 —

Y 1.90 3.59 3.53

YZ 2.89 4.66 4.74

XY 4.03 6.25 6.39

XYZ 4.66 6.75 6.91
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Figure 1: Computational domain and geometry of the channel: (a) isothermal and (b)

conjugate wall heat transfer conditions and (c) porous media: cases Y, YZ, XY, and XYZ.
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\ �G��&DVH�;<=�,�D��&DVH�<�,
Figure 2: Snapshot of iso-surfaces of the second invariant of the velocity gradient tensor

II∗ = 15 colored by the local instantaneous temperatures 0 < θ∗ < 1.0: (a) case Y-I, (b)

case YZ-I, (c) case XY-I, and (d) case XYZ-I.
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Figure 3: Snapshot of iso-surfaces of the second invariant of the velocity gradient tensor

II∗ = 15 colored by the local instantaneous temperatures 0 < θ∗ < 1.0: (a) case Y-C and

(b) case XYZ-C.

Figure 4: Location of the visualized x–y planes.
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Figure 5: Snapshot of instantaneous vertical velocity and temperature fluctuations in

isothermal wall boundary condition: (a) case Y-I, (b) case YZ-I, (c) case XY-I, and (d)

case XYZ-I.
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Figure 6: Snapshot of instantaneous vertical velocity and temperature fluctuations in

conjugate wall boundary condition: (a) case Y-C, (b) case YZ-C, (c) case XY-C, and (d)

case XYZ-C.
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Figure 7: Plane-averaged streamwise mean velocity profiles: (a) in the overall region and

(b) near the porous interface. ���� ��� ��� ������� �&DVH�<�&DVH�<=�&DVH�;<�&DVH�;<= ÌÌ
\�+
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Figure 8: Plane-averaged Reynolds normal stresses: (a) streamwise component and (b)

wall-normal component.

55



�E��D� �&DVH�<�,�&DVH�<=�,�&DVH�;<�,�&DVH�;<=�,���� ���\�' � ���� ���\�' ����� ��� ��� �������� �&DVH�<�,�&DVH�<=�,�&DVH�;<�,�&DVH�;<=�, ÌÌ
\�+

7
I�S�
,
IS� ���� ��� ��� ������������ �&DVH�<�,�&DVH�<=�,�&DVH�;<�,�&DVH�;<=�,

7
I�UPV�S� ÌÌ

\�+

�

 I UPV

Figure 9: Plane-averaged mean and root mean square temperature profiles for the isother-

mal case: (a) mean temperature and (b) root mean square temperature.�E��D� ���� ���\�' ����� ���\�' ����� ��� ��� ��������������� [��� ���7I�S������7V�S��� �&DVH�<�&�� �&DVH�<=�&�� �&DVH�;<�&�� �&DVH�;<=�& ÌÌ
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Figure 10: Plane-averaged mean and root mean square temperature profiles for the con-

jugate heat transfer case: (a) mean temperature and (b) root mean square temperature.
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Figure 11: Plane-averaged vertical turbulent heat flux, vertical temperature gradient, and

production of the temperature variance for the isothermal case: (a) vertical turbulent heat

flux, (b) vertical temperature gradient, and (c) production of the temperature variance.
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Figure 12: Plane-averaged vertical turbulent heat flux, vertical temperature gradient, and

production of the temperature variance for the conjugate heat transfer case: (a) vertical

turbulent heat flux, (b) vertical temperature gradient, (c) production of the temperature

variance.
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Figure 13: Plane-dispersion stress and vertical dispersion heat flux profiles: (a) plane-

dispersion stress, (b) vertical dispersion heat flux for the isothermal case, (c) vertical

dispersion heat flux of the conjugate heat transfer case.
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Figure 14: Ejection-sweep definitions for heat and momentum transport: (a) heat trans-

port and (b) momentum transport.
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Figure 15: Snapshots of instantaneous quadrant events at yp+ = 13 in the conjugate heat

transfer condition: (a) case Y-C, (b) case YZ-C, (c) case XY-C, and (d) case XYZ-C.
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Figure 16: Snapshots of instantaneous quadrant events at yp+ = −14 in the conjugate

heat transfer condition: (a) case Y-C, (b) case YZ-C, (c) case XY-C, and (d) case XYZ-C.
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Figure 17: Plane-averaged quadrant contributions in isothermal wall boundary condition:

(a) case Y-I, (b) case YZ-I, (c) case XY-I, and (d) case XYZ-I.
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Figure 18: Plane-averaged quadrant contributions in conjugate heat transfer condition:

(a) case Y-C, (b) case YZ-C, (c) case XY-C, and (d) case XYZ-C.
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Figure 19: Streamwise two-point spatial correlation function for the conjugate heat transfer

case: (a) streamwise velocity fluctuations and (b) temperature fluctuations.
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Figure 20: Joint probability density function p(θ′, ω′

z) of the fluctuating temperature and

spanwise vorticity at yp+ ≃ 13 for the conjugate heat transfer case: (a) case Y-C, (b) case

YZ-C, (c) case XY-C, and (d) case XYZ-C.
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Figure 21: Heat transfer performance: (a) pumping power coefficient, (b) Nusselt number;

WpCH and NuCH are the pumping power coefficient and Nusselt number of the plane

channel at Reb = 2900, respectively.
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Figure 22: Pumping power coefficient and Nusselt number against the permeability

Reynolds numbers: (a) correlation with the permeability Reynolds number ReK and (b)

correlation with the surrogate permeability Reynolds number Re∗∗K .
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Figure 23: Schematic of a face-to-face grid arrangement.
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Figure 24: Streamwise two-point spatial correlation function of the streamwise velocity

fluctuations in cases Y and XY.
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Figure 25: Plane-averaged streamwise Reynolds normal stress and root mean square fluid

temperature in cases Y-C and XY-C: (a) streamwise Reynolds normal stress, (b) root

mean square fluid temperature.
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