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Abstract 6

A novel implementation route of the wall-function method to the lattice

Boltzmann method (LBM) is proposed to extend the applicability of the

LBM for high Reynolds number turbulent heat transfer in complex geome-

tries. The proposed immersed virtual wall method assumes the virtual wall

layer beneath the wall which satisfies the slip wall conditions allowing the

subsurface heat and fluid flows within the solid wall. For the validation tests,

the D3Q27 multiple-relaxation-time LBM and D3Q19 regularized LBM are

used to simulate flow and scaler fields, respectively, and the standard log-law

based wall-function method is used. Validation tests against turbulent flows

in a two-dimensional channel, circular pipe, channel with two-dimensional

constraints confirms that the developed method can deal with complex curvi-

linear walls and yield grid independent solution with satisfactory accuracy.

In addition, the developed method can be applied from partially to highly un-

derresolved conditions, and has a great potential in predicting high Prandtl

number flows.
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1. Introduction 1

The lattice Boltzmann method (LBM) has been accepted as an extremely 2

suitable tool for eddy resolving simulations of a turbulent flow in complicated 3

geometries. Unlike the conventional computational fluid dynamic (CFD) 4

solver that deals with the discretized Navier-Stokes equations, the LBM 5

solves the time evolution of the particle distribution function based on the 6

discretized gas kinetic equations. The resulting formulation of the LBM offers 7

many advantages over the conventional CFD solver as regards the compu- 8

tational efficiency and accuracy [1, 2, 3, 4, 5]. The most notable feature of 9

the LBM is the considerable simplicity of the algorithm which proceeds by 10

repetition of the collision and streaming steps. In the collision step the parti- 11

cle distribution function is locally relaxed toward the equilibrium state while 12

the post-collision particle distribution function moves to the neighboring lat- 13

tice nodes in the streaming step. This distinct separation of the local and 14

non-local computations enhances the efficiency of parallel computation. In 15

addition, the efficiency of the LBM is further enhanced due to a release from 16

internal iteration for solving the Poisson’s equation. Moreover, another im- 17

portant feature of the LBM is employing a regular grid with equal spacing in 18

which non-body-fitted meshes are used to describe the flow around complex 19

geometries. This feature significantly saves the computational effort related 20

to a mesh generation and reduces numerical errors arising from a coordinate 21

transformation procedure. 22

Despite the above mentioned advantages of the LBM, several deficits 23

of the LBM, namely the truncation errors and numerical stability issues, 24

make it difficult to applies the LBM to turbulent flow simulations. However, 25
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these deficits have been successfully recovered by the use of improved col- 1

lision models (e.g., multiple-relaxation-model [6, 7], central moment model 2

[8, 9], and cumulant model [10]) and an increased discrete velocity compo- 3

nents [11, 12, 13, 14, 15]. A large number of rigorous validation studies of 4

the LBM based direct numerical simulation (DNS) in fundamental turbu- 5

lent flows such as wall-bounded turbulence [11, 7, 16, 17] and homogeneous 6

decaying turbulence [18, 19, 20, 21] was performed, and those studies have 7

established that the LBM is an alternative DNS scheme for simulating flows 8

in complex geometries. Also, the author groups made an effort to improve 9

the LBM [15, 22], and we have performed LBM of turbulence in complex 10

geometries [22, 23, 24, 25, 26, 27] most of which are difficult to dealt with 11

the conventional Navier-Stokes solver. In addition to the applications of 12

the LBM in fundamental research based on the DNS, the LBM is used as 13

the engineering large eddy simulation (LES) tool in which large-scale turbu- 14

lent motions are directly resolved by the grid while the effects of the unre- 15

solved sub-grid-scale (SGS) turbulence are modeled by the SGS turbulence 16

model. The application examples of the LBM-LES are a porous medium flow 17

[28, 29], an urban canopy flow [4, 30], an internal combustion engine flows 18

[16], an indoor airflow [31], and a turbulent jet flow [32, 33]. However, even 19

though the SGS turbulence model is adopted to reduce the computational 20

cost, the grid resolution should be fine enough to resolve the most energetic 21

and dynamic turbulence motions in an inner layer, and the inner-layer of a 22

wall-bounded turbulent flow becomes progressively thinner as the Reynolds 23

number increases. Therefore, the computational resource to correctly resolve 24

turbulence in the inner-layer becomes prohibitive for higher Reynolds number 25
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flows. 1

One solution to overcome this problem is to simply replace the inner- 2

layer region with a turbulence model. In other words, the wall shear stress 3

is directly given by the modeled thin-layer approximate equations without 4

resolving near wall turbulent motions. This strategy is referred to as a 5

wall-function method and originally developed for Reynolds Average Navier- 6

Stokes (RANS) simulations by [34] who assumed the law of the wall to pre- 7

scribe the wall shear stress. As for the conventional Navier-Stokes solvers, the 8

wall-modeled LES based on the wall-function have achieved considerable suc- 9

cesses in predicting higher Reynolds number turbulent flows [35, 36, 37, 38], 10

which is still incapable of the wall-resolved LES even with the modern su- 11

per computer. However, in comparison to the Navier-Stokes solvers, there 12

is much less progress in the development of the wall-modeled LBM-LES. 13

The pioneering work on the wall-modeled LBM-LES was conducted by [39] 14

who reconstructed the particle distribution function at the first grid point off 15

the wall based on the quasi-analytical models that gave the velocity profile 16

inside the boundary layer. The developed model was successfully validated 17

through the turbulent channel flow in severely under-resolved situations. The 18

other implementation approach was proposed by [40]. They imposed an ap- 19

propriate slip velocity at the boundary surface to satisfy the skin friction 20

requirement. The validation test in the turbulent channel flows suggested 21

that the developed method had a potential to predict turbulence in severely 22

under-resolved situations although the agreement of the Reynolds stress and 23

mean velocity with the DNS results was not perfect. 24

The implementation approaches proposed by [39, 40] showed successes in 25
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predicting the turbulent channel flows. However, as far as the authors know, 1

there is no wall-modeled LBM-LES method that is validated against com- 2

plicated geometries including curvilinear walls. The aim of this study is to 3

develop a new implementation approach of the wall-function to the LBM that 4

can predict turbulent heat transfer in complicated geometries with satisfying 5

accuracy. The required abilities of the new method under consideration are 6

less grid dependency on the solution and high applicability for complicated 7

geometries without deteriorating mass and momentum conservation laws. 8

Although there are many wall-function models and LBM models, the goal 9

of this study is to develop an implementation method for the wall-function. 10

Hence, we use the standard wall-function method that relies on the conven- 11

tional law of the wall, and the LBM models of [7, 28] are used for simulating 12

time-dependent turbulent heat transfer, and applications of more elaborate 13

wall-function models or other LBM models will be the focus of our future 14

work. 15

2. Lattice Boltzmann method 16

The lattice Boltzmann method has many advantages such as the sim- 17

plicity of the wall treatment, high spatial locality of the calculations, high 18

accuracy coming from the nature of its low numerical dissipation and dis- 19

persion. These great advantages motivate us to employ the LBM to deal 20

with fundamental turbulent flow problems in a complicated geometry. In the 21

case of the LBM, there are several possible choices for the discrete velocity 22

and collision models for three-dimensional simulations. This study chooses 23

the D3Q27 multiple-relaxation-time lattice Boltzmann method (MRT-LBM), 24
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which was developed by our group and rigorously validated by conducting 1

DNSs of a turbulent channel flow, pipe flow, duct flow, and porous medium 2

flows [7]. 3

The time evolution of the particle distribution function fα of the MRT- 4

LBM can be written as 5

| f(x+ eαδt, t+ δt)⟩− | f(x, t)⟩ = −M−1Ŝ [| m(x, t)⟩− | meq(x, t)⟩]

+M−1
(
I − Ŝ

2

)
M | F (x, t)⟩δt, (1)

where |f⟩ is |f⟩ = (f0, f1, · · · , f26)T , δt is the time step. The discrete velocity 6

vector components are 7

[e0 e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15 e16 e17 e18 e19 e20 e21 e22 e23 e24 e25 e26]/c

8

=

 0 1 0 −1 0 0 0 1 −1 −1 1 1 0 −1 0 1 0 −1 0 1 −1 −1 1 1 −1 −1 1

0 0 1 0 −1 0 0 1 1 −1 −1 0 1 0 −1 0 1 0 −1 1 1 −1 −1 1 1 −1 −1

0 0 0 0 0 1 −1 0 0 0 0 1 1 1 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1

 ,

where c = ∆/δt with ∆ is the lattice spacing. The identity matrix I and 9

transforming matrix M are a 27 × 27 matrix. The transforming matrix 10

M linearly transforms the distribution functions to the moments as |m⟩ = 11

M |f⟩. The equilibrium moment meq is obtained as |meq⟩ = M |f eq⟩ with 12

f eq
α = wα

(
ρ+ ρ0

[
eα · u
c2s

+
(eα · u)2 − c2s|u|2

2c4s

])
, (2)

where u is the fluid velocity, and ρ is expressed as the sum of the constant 13

and fluctuation values: ρ = ρ0 + δρ [41]. The non-dimensional sound speed 14

is cs/c = 1/
√
3, and wα is the weighted coefficient. The collision matrix Ŝ is 15

diagonal: 16

Ŝ ≡ diag(0, 0, 0, 0, s4, s5, s5, s7, s7, s7, s10, s10, s10, s13,

s13, s13, s16, s17, s18, s18, s20, s20, s20, s23, s23, s23, s26). (3)
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The set of relaxation parameters originally proposed by [7] is as follows: 1

s4 = 1.54, s5 = s7, s10 = 1.96, s13 = 1.83, s16 = 1.4,

s17 = 1.61, s18 = s20 = 1.98, s23 = s26 = 1.74. (4)

In this study, we have revised the s10 value from the original value (s10 = 2

1.5) in order to improve the numerical stability for higher Reynolds number 3

turbulent flows. It is noted that this modification is based on truncation 4

error analysis of the lattice Boltzmann equation, and we have confirmed that 5

this modification hardly affects the predictive results for moderate Reynolds 6

number flows but can remove unphysical numerical oscillations emerging in 7

the high Reynolds number flows. 8

To introduce the SGS eddy viscosity, the relaxation parameter compo- 9

nents s5 and s7 are related to the effective viscosity: 10

ν + νsgs = c2s

(
1

s5
− 1

2

)
δt = c2s

(
1

s7
− 1

2

)
δt, (5)

where ν and νsgs are the kinematic viscosity and SGS eddy viscosity. In this 11

study, the SGS eddy viscosity is given by the shear-improved variant of the 12

Smagorinsky model (SISM) [42]: 13

νsgs = (Cs∆)2
(
SijSij − SijSij

)
, (6)

where Cs is the Smagorinsky constant, Sij is the strain tensor, and Sij is 14

averaged strain tensor. This model does not include any adjustable constant 15

besides the standard Smagorinsky constant Cs = 0.16, and the wall-limiting 16

behavior of the SGS eddy viscosity in the vicinity of the wall is satisfied 17

without any empirical damping function. The strain tensor Sij is computed 18
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from the non-equilibrium distribution function as in [18], and the average in 1

time for the averaged strain tensor Sij is taken during run. 2

The term Fα is the external force term [43]: 3

Fα = wαρ0

{
eα · a
c2s

(
1 +

eα · u
c2s

)
− a · u

c2s

}
, (7)

where a is an acceleration rate. In the framework of the LBM, the turbu- 4

lence pressure cannot be taken into account. Thus, the influence of the SGS 5

turbulence energy, ksgs, is explicitly introduced in the external force term as 6

in [7]: 7

a =
∂

∂xj

(
−2

3
ksgsδij

)
, (8)

where ksgs is given by the double-filtered velocity with a filter length of 2∆ 8

as in [44], and δij is the Kronecker delta. [7] may be referred to for the equi- 9

librium moments meq, transformation matrix M , and weighted coefficients 10

wα. 11

For the scaler fields, there are also several discrete velocity models and 12

collision models as with the flow field models. In this study, we choose the 13

D3Q19 discrete velocity model with the regularized non-equilibrium distri- 14

bution function. The regularization procedure projects the non-equilibrium 15

distribution function onto the Hermite polynomial, which greatly improves 16

the accuracy and numerical stability [45, 28]. To further improve the nu- 17

merical stability in higher Reynolds number turbulent flow, we introduce the 18

other relaxation time for the higher order term. The time evolution of the 19

internal energy distribution function is expressed as follows: 20

|g (x+ eαδt, t+ δt)⟩ = |geq (x, t)⟩ +

(
1− 1

τg1

)
|g′

1 (x, t)⟩
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+

(
1− 1

τg2

)
|g′

2 (x, t)⟩+ |So (x, t)⟩,

(9)

where the notation |g⟩ = (g0, g1, · · · , g18)T , and eα represents the discrete 1

velocity vectors. The terms geqα is the equilibrium distribution function as 2

follows: 3

geqα = wαT

(
1 +

u · eα
c2s

)
, (10)

where temperature is T = Σαgα, and wα is the weighting constant [28]. Here, 4

the discrete velocity components are 5

[e0 e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15 e16 e17 e18]/c

6

=

 0 1 0 0 −1 0 0 1 −1 −1 1 1 0 −1 0 1 0 −1 0

0 0 1 0 0 −1 0 1 1 −1 −1 0 1 0 −1 0 1 0 −1

0 0 0 1 0 0 −1 0 0 0 0 1 1 1 1 −1 −1 −1 −1

 ,

The terms g
′
1,α and g

′
2,α are the first-and second-order terms of the regu- 7

larized non-equilibrium distribution function, respectively. Note that the 8

zeroth-order terms of the regularized non-equilibrium distribution function 9

g
′
0,α is zero and not shown here. The regularized non-equilibrium part of the 10

distribution function is expressed as follows: 11

g′1,α = wα

[
1

1!
C

(1)
i H

(1)
i,α

]
, g′2,α = wα

[
1

2!
C

(2)
ij H

(2)
ij,α

]
. (11)

The Hermite expansion coefficients C
(1)
i , C

(2)
ij and the Hermite polynomial 12

H
(1)
i,α , H

(2)
ij,α are 13

C
(1)
i =

∑
α

(gα − geqα )H
(1)
i,α , C

(2)
ij =

∑
α

(gα − geqα )H
(2)
ij,α, (12)

14

H
(1)
i,α =

1

cs
ξαi, H

(2)
ij,α =

ξαiξαj
c2s

− δij. (13)
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To recover the filtered energy equation, the relaxation time τg1 for g
′
1,α should 1

be related to the effective thermal diffusivity as follows: 2

Γ + Γsgs = c2s

(
τg −

1

2

)
δt. (14)

where Γsgs = νsgs/Prt with Prt being the turbulent Prandtle number given as 3

Prt = 0.9. The first order term g
′
1,α is essential to recover the energy equation 4

while the presence of the second-order term g
′
2,α is unaffected by the resulting 5

energy equation. This means that τg1 should be τg, but the relaxation time τg2 6

for g
′
2,α is a tunable parameter. While [28] prescribe τg2 = τg1, we empirically 7

optimize this value as τg2 = max(0.51, τg1) to ensure numerical stability in 8

this study. 9

The heat source term Soα can be expressed as 10

Soα = wα
Q

ρ0cp
δt, (15)

where Q is the heat source per volume, and cp is the specific heat. See [28] 11

for the detail of the D3Q19 regularized LBM and application examples for 12

the turbulent heat transfer simulations. 13

3. Near-wall modeling 14

The wall-function approaches prescribe the wall shear stress at wall neigh- 15

boring nodes instead of imposing the no-slip conditions to the wall where 16

strong mean velocity gradient is present. Although there are many possible 17

routes for modeling near-wall turbulence, this study chooses the most basic 18

method, which simply relies on a quasi-analytical model. Although there 19

exist many models that describe the inner-scaled tangential mean velocity 20
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profile over a smooth wall, this study employs the one proposed by [46]: 1

uT

uτ

= fu(y
+) = 5.424tan−1

(
0.1198y+ − 0.4880

)
+0.434log

(
(y+ + 10.6)9.6

(y+2 − 8.15y+ + 86)
2 − 3.507

)
(16)

where uT is the tangential velocity, uτ is the friction velocity, and y+ = uτy/ν 2

is the inner-scaled distance from a wall with y being the distance from the 3

wall. Provided that uT , y and ν are given, the friction velocity can be 4

obtained by solving the equation: 5

uT

uτ

− fu

(uτy

ν

)
= 0. (17)

This equation can be numerical solved by Newton-Raphson method, and the 6

wall shear stress τw is thus given as follows: 7

τw = ρu2
τ . (18)

As for the heat transfer, the wall heat flux should be determined based on 8

near-wall modeling and is can be obtained in a similar fashion. The inner- 9

scaled mean temperature over a smooth wall can be given by [47]: 10

|θ − θw|
tτ

= fθ(y
+, P r) = Pry+exp(−γ) +[

2.12log
(
1 + y+

)
+
(
3.85Pr1/3 − 1.3

)2
+ 2.12log(Pr)

]
exp(−1/γ),

(19)

where Pr is the Prandtle number, θ is the temperature, θw is the wall tem- 11

perature, and tτ is the friction temperature defined as qw/(ρcpuτ ) with qw 12

being the wall heat flux. The function γ is given as 13

γ =
0.01 (Pry+)

4

1 + 5Pr3y+
. (20)
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Since tτ does not appear on the right-hand side of Eq.(19), the wall heat flux 1

can be computed without iterative calculation as follows: 2

qw = −ρcpuτ (θ − θw)

fθ(y+, P r)
(21)

For the wall-modeled large-eddy simulation by the Navier-Stokes solver, 3

one of the most important problem to be addressed is so called “log-layer 4

mismatch” in which the predicted mean velocity profile deviates from the log- 5

law profile. [38] give a comprehensive review of this problem, and concluded 6

that the LES was necessarily inaccurate in the first grid point from a wall 7

resulting in an inaccurate input to the wall-function method, which was 8

plausible explanation for the “log-layer mismatch”. One solution to overcome 9

the“log-layer mismatch” suggested by [38, 36] was to simply avoid using the 10

information of the first grid point from a wall to evaluate the wall shear 11

stress. Thus, we set the reference point for the input of the wall-function 12

such that the numerical errors contained within the first grid point does not 13

spoil the estimated wall shear stress. 14

Figure 1 illustrate the position of the reference point in this study. We de- 15

fine the outward pointing wall-normal vector toward the fluid phase n⃗ where 16

the origin is located at the wall-neighboring point PN as shown in the fig- 17

ure. The first crossing point between n⃗ and the grid face is defined as the 18

reference point PR. The advantage of this definition is to avoid using the 19

information of the wall-neighboring point, and no extrapolation is required 20

to complement the physical quantity at the reference point. Moreover, the 21

interpolation of the physical quantity at the reference point does not aggra- 22

vate the high parallel computing performance stemming from the nature of 23

the LBM because the interpolation process only requires the information of 24
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the neighboring nodes of PN . Then, the wall shear stress and wall heat flux 1

are given by Eqs.(17) and (21), respectively, with the tangential velocity uT
p 2

and temperature θp at the reference point, and the normal distance from the 3

wall yp as shown in the Figure. 4

4. Near-wall treatment for the lattice Boltzmann 5

The wall-modeled simulation can be straightforwardly implemented for 6

the conventional Navier-Stokes solvers including the finite volume method 7

or finite difference method by simply replacing the wall shear stress by the 8

differential approximation method for that by the wall-function method. In 9

contrast, many difficulties however arise when it comes to the implementation 10

on the LBM. What we have to do is not only introducing the wall shear 11

stress given by the wall-function but also prescribing all unknown particle 12

distribution function components propagating from the wall. In the previous 13

studies, [39] constructed the unknown particle distribution function based 14

on the prescribed velocity and pressure while [40] employed the bounce-back 15

method with the wall slip velocity evaluated by the wall-function. In this 16

study, we first propose the specular reflection bounce-back method. The 17

specular reflection imposes the zero wall shear stress condition with the mass 18

and momentum conservation laws satisfied. Hence, it is possible to accurately 19

introduce the modeled wall shear stress by applying the specular reflection for 20

the unknown distribution components and adding the effect of the modeled 21

wall shear stress on the external body force. This approach works quite well 22

as demonstrated in §5; however, there is significant difficulties in applying this 23

method to a curvilinear wall. To overcome this difficulties and increase an 24
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applicability, the alternative approach which assumes the immersed virtual 1

wall is proposed. The following subsections describe the details of the two 2

approaches. 3

4.1. Wall-function with specular reflection conditions 4

In this subsection, we describe the implementation method based on the 5

specular reflection. This approach prescribe the unknown distribution func- 6

tion by assuming the fully slip wall conditions. In other words, the zero-wall 7

shear stress is assumed for computing the unknown distribution function. 8

When the slip wall is located at the midpoint between the fluid and solid 9

nodes as shown in Fig.2, the unknown components fα are given as follows: 10

fα(x+ eγδt, t+ δt) = f̃β(x, t), (22)

where f̃ is the post collision distribution function, α and β satisfy the follow- 11

ing relation: eβ = eα−2(eα ·n)n, and eγ = (eα+eβ)/2. The wall shear stress 12

estimated by the wall-function method is introduced in the lattice Boltzmann 13

equation (1) as the external body force. The acceleration rate a in Eq. (7) 14

can be written as: 15

a = − A

ρ0V
τw (23)

where τw is the wall shear stress obtained by Eq.(17), A is the wall-facing 16

area, and V = ∆3 is the volume of the cell. Since this approach imposes 17

the fully-slip boundary conditions but adding the effects of the wall shear 18

stress as the external force, the force offered by the wall is only the wall 19

shear stress estimated by the wall-function. However, as the discrete veloc- 20

ity vector components are limited to the diagonal or aligned to the Cartesian 21

grid, the specular reflection can be expressed only for the case where a wall is 22

14



aligned to the Cartesian grid. Moreover, when we consider a wall with any in- 1

clination angle, the specularly reflected distribution function does not always 2

stream to the neighboring node points. Hence, the formulation described in 3

Eq. (22) is valid only for the case where the wall boundary is aligned with 4

the Cartesian coordinate. Thus, the application of the present approach is 5

limited to flow in considerably simple geometries. Considering an extension 6

of this approach for curved boundaries or planar walls with any inclination 7

angle is not straightforward, we do not go into the extension of this approach 8

but concentrate on the development of the alternative approach as described 9

in the following subsection. 10

4.2. Wall-function with immersed virtual wall method 11

The concept of the immersed virtual wall method is similar to the spec- 12

ular reflection condition: this method does not impose the no-slip boundary 13

conditions at the wall but assumes a few virtual fluid nodes inside the wall. 14

The lattice Boltzmann equation (Eq.1 ) is seamlessly solved in the virtual 15

fluid nodes as in the other fluid node. Hence, this method allows the tangen- 16

tial slip velocity and local transpiration through the wall resulting a non-zero 17

Reynolds stress at the wall. Although the present method is novel in terms of 18

assuming virtual fluid nodes in the wall, the introduction of the slip velocity 19

is a common idea for the implementation of the wall-function [48, 37, 49, 40]. 20

In particular, it is interesting to note that the dynamic slip boundary con- 21

ditions, which allows tangential and wall-normal velocity at the wall as in 22

the present method, could be theoretically derived from the filtered Navier- 23

Stokes equation. In what follows, the details of the present implementation 24

method is descried. 25
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Figure 3 illustrates the conceptual idea of the immersed virtual wall 1

(IVW) method. As shown in the figure, the virtual wall is immersed in 2

the wall. The virtual nodes, PV , located between the wall and virtual wall 3

are treated as in the other fluid nodes, and no bounce-back rule is applied to 4

the nodes neighboring to the wall PN in the figure. On the other hand, for 5

the nodes neighboring to the virtual wall P ′
V , the bounce-back rule is applied 6

to impose the no-slip boundary conditions at the virtual wall. Note that the 7

figure illustrates the situation of the virtual wall layer thickness hv = 2∆; 8

however, the virtual wall layer thickness can be arbitrarily determined (the 9

effect of hv will be discussed in §5.4). To correctly introduce the wall shear 10

stress evaluated by the wall-function, the additional body force is exerted 11

to the nodes neighboring to the wall PN . First the hydrodynamic force per 12

volume offered by the wall can be calculated as the momentum equation 13

method at point PN : 14

FM.E = − 1

δt

∑
β

[
eβfβ(x, t)− eαf̃α(x, t)

]
, (24)

where eβ denotes the direction coming into the fluid node from the wall 15

nodes, and eα = −eβ. Since the hydrodynamic force evaluated in Eq.(24) 16

includes the pressure drag and viscous force, the viscous force FM.E
v can be 17

computed by eliminating the pressure drag effect from FM.E: 18

FM.E
v = − 1

δt

∑
β

[
eβ

(
fβ −

p

c2s

)
− eα

(
f̃α − p

c2s

)]
= FM.E +

1

δt

∑
α

p

c2s
ωα (eβ − eα) , (25)

where p = ρc2s is the pressure. The additional acceleration rate is introduced 19

to correct the viscous force offered by the wall by replacing the viscous force 20
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FM.E
v with the modeled wall shear force evaluated by the wall-function: 1

a = −FM.E
v

ρ0
− A

ρV
τw (26)

It is noted that the viscous force, FM.E
v , sometimes shows unphysical os- 2

cillation in space and time when evaluated in complex curved boundary as 3

reported by [50]. Since this oscillation makes computation unstable and 4

sometimes spoils the results, this study employs the filtered value in time 5

and space to reduce the oscillation where, in practice, FM.E
v is averaged over 6

neighboring nodes and time during the run. Although it is rather ad hoc, it 7

is also effective to set the threshold values for FM.E
v to stabilize the compu- 8

tation. 9

For the thermal fields, the adiabatic boundary conditions [51] are applied 10

to the nodes neighboring the virtual wall, P ′
V , and the wall heat flux evaluated 11

by the wall-function method in Eq.(21) is introduced to PN , as the heat source 12

per volume Q: 13

Q = qw
A

V
. (27)

This term is introduced to the lattice Boltzmann equation via the heat source 14

term Soα in Eq.(15). This process accurately gives the wall heat flux eval- 15

uated by the wall-function without applying any bounce-back rules to the 16

point PN nor constructing the distribution function of PN . 17

5. Turbulent channel flow simulation 18

This section provides validation of the above described approaches in the 19

turbulent channel flow: one is the wall-function with the specular reflection 20

conditions (case SR), and the other is that with the immersed virtual wall 21
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conditions (case IVW). Fig.4 shows the geometry of the turbulent channel 1

flow. The computational domain was 6δ(x) × 2δ(y) × 3δ in the streamwise, 2

wall-normal, and spanwise direction, respectively, where δ is the half chan- 3

nel height. The flow was driven by a streamwise pressure difference, and 4

the periodic boundary conditions were applied to the streamwise and span- 5

wise directions. The friction Reynolds number Reτ = uτδ/ν was varied to 6

Reτ = 500, 5200, 10000. To evaluate the grid dependency, the grid points 7

across the half-channel height were changed from NY = 20 to NY = 40 8

points. In addition, to evaluate the effects of the thickness of the immersed 9

virtual wall layer below the wall, the dependence of the IVW thickness hv 10

was evaluated by varying hv from hv = ∆ to hv = 3∆. For the turbulent 11

heat transfer, the walls were heated by a uniform heat flux, and the Prandtl 12

number was varied from 0.1 to 1000 in order to evaluate the applicability of 13

the developed method for several Prandtl number flows. It should be noted 14

that all the simulations except for the grid dependency test and the IVW 15

thickness dependency test, the simulations were performed under the condi- 16

tion of NY = 30 and hv = 1.5∆. Although we can choose arbitrary values 17

of the kinematic viscosity and thermal diffusivity in the virtual node, the 18

kinematic viscosity and thermal diffusivity in this study were assumed to be 19

the same as those of the fluid phase. 20

5.1. Comparison of between the SR and IVW methods 21

Figure 5 shows a comparison of the inner-scaled mean velocity, U+ = 22

u/uτ , predicted by SR and IVW, together with the DNS data from [52] at 23

Reτ = 5200. Here, overbar denotes the time average, and the friction velocity 24

uτ for normalization is computed from the streamwise pressure gradient. 25
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Although the IVW method slightly underpredicts the mean velocity, the 1

streamwise mean velocity profiles predicted by the SR and IVW show good 2

agreement with the DNS data. This indicates that both the SR and IVW 3

methods accurately introduce the wall shear stress by the wall-function to 4

LBM. 5

Comparisons of the Reynolds shear stress, −R12, is presented in Fig.6 6

where the SGS component, 2νSGSS12, and the sum of the grid-scale (GS) 7

and SGS components, −u′v′ + 2νSGSS12, are presented. Here, ϕ′ denotes 8

the fluctuation from the mean value ϕ. Figure 6 confirms that the SGS 9

component considerably contributes at the few grid points off the wall for 10

both cases, suggesting that turbulence near the wall is highly under-resolved. 11

Away from the wall 0.2 < y/δ < 1.0, the predicted results for both cases are 12

close to each other, and the sum of the GS and SGS components agrees well 13

with the DNS data. However, when we focus on the profiles near wall region 14

of 0 < y/δ < 0.2, a clear difference between the cases SR and IVW can be 15

observed. The profile of the SGS component for case IVW is smooth and 16

larger whereas that for case SR exhibits oscillation in the region. In addition, 17

the sum of the GS and SGS components for case SR is significantly decayed 18

at the first grid point off the wall. The reduction in the Reynolds shear stress 19

at the first grid can be attributed to the reduction in the velocity fluctuations 20

as shown in Fig.7. Figure 7 confirms that the Reynolds stress components 21

of R11 and R22 away from the wall 0.2 < y/δ for both cases are close and 22

agree well with the DNS data. In contrast, when the attention is focused 23

on the profiles near the wall, the profiles of R22 and R11 for both cases are 24

significantly smaller than the DNS results. 25
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The above discussions suggest that the SR provides a reasonably good 1

performance for predicting turbulent flows over the wall. However, as men- 2

tioned earlier, the application of the SR method is limited to the case where 3

the wall boundary is aligned with the Cartesian coordinate. Hence, in what 4

follows, we concentrate on the evaluation of the performance of the IVW 5

method. 6

5.2. Grid dependency 7

This subsection provides the discussion of the grid dependence of the 8

IVW method on the solutions. Figure 8 shows profiles of the predicted mean 9

velocity and Reynolds shear stress for different grid cases (NY = 20, 30 and 10

40 ) at Reτ = 5200. Despite the considerable difference in the distance from 11

the wall to the first grid point (y+p1 = 260(NY = 20), y+p1 = 180(NY = 12

30), y+p1 = 130(NY = 40)), Fig.8(a) shows that the developed method yields 13

grid independent solutions for the mean velocity profiles. The sum of the 14

GS and SGS Reynolds shear stress profiles in Fig.8(b) are also grid indepen- 15

dent except the first grid point off the wall, and the predicted results are in 16

excellent agreement with the DNS data from [52]. 17

5.3. Reynolds number dependency 18

To evaluate the ability of the IVW method to correctly reproduce the 19

Reynolds number dependency, profiles of the mean velocity and Reynolds 20

shear stress at different friction Reynolds numbers of Reτ = 500 and 10, 000 21

are presented in Fig.9. For comparison, also shown for the Musker law in Eq. 22

(16) in Fig.9(a,b) and analytical solution for the total shear stress profile in 23

Fig.9(c.d). Since the number of grid points across the half-channel height is 24

20



fixed to NY = 30, the grid resolutions in wall units at Reτ = 500 and 10, 000 1

are ∆+ = 17 and ∆+ = 340, respectively. 2

Figure 9 (a,b) demonstrates that the developed IVW method generally 3

predicts the mean velocity at lower Reτ case, whereas a slight log-layer mis- 4

match can be found for the case with Reτ = 10, 000. One possible reason for 5

the log-layer mismatch is the presence of the truncation error terms in the lat- 6

tice Boltzmann equation (LBE). Unlike the Navier–Stokes solvers, the LBM 7

does not directly solve the conservation laws of mass and momentum, but it 8

solves the LBE in which the truncation error terms that violate the conser- 9

vation laws are included. Therefore, changing the reference point, which is 10

usually employed for the Navier–Stokes solver, does not completely resolve 11

this problem. Alternatively, changing the collision operator may be a promis- 12

ing solution to resolve the log-layer mismatch [40], because the behavior of 13

the truncation error terms depends strongly on the choice of the collision 14

operator. 15

The Reynolds number dependence on the SGS and GS Reynolds shear 16

stresses can be found in Fig.9(c,d). The SGS Reynolds shear stress at Reτ = 17

500 in Fig.9(c) is much smaller than that at Reτ = 10, 000 in Fig.9(d), and 18

the sum of the GS and SGS components at Reτ = 500 in Fig.9(c) largely 19

deviates from the total shear near the wall due to the role of the viscous shear 20

stress. In contrast, when the Reynolds number is increased to Reτ = 10, 000, 21

the SGS Reynolds shear stress as shown in Fig.9(d) accounts for half of the 22

Reynolds shear stress, meaning that turbulence near the wall is substantially 23

under-resolved at Reτ = 10, 000. Also, since the viscous effect is confined 24

in the immediate vicinity of the wall, the sum of the GS and SGS Reynolds 25
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shear stress almost follows the total shear stress profile as shown in Fig.9(d). 1

5.4. Effects of the virtual wall layer thickness 2

The key point of the IVW method is the presence of a virtual wall layer 3

that allows flow inside the wall and alleviates the prohibitive requirement 4

of the grid resolution in the inner layer. However, it is expected that the 5

thickness of the virtual wall layer affects the predictive accuracy. Hence, this 6

subsection assesses the effect of the thickness of the virtual wall layer on the 7

simulation results. Figure 10 shows the predicted mean velocity profiles and 8

Reynolds shear stress around the wall by varying the thickness of the virtual 9

wall layer to hv = ∆, 2∆ and 3∆. It is noted that the friction Reynolds 10

number is fixed at Reτ = 5200 and the number of grid point across the half 11

boundary layer is NY = 30. 12

Figure 10 (a) confirms that the virtual wall layer thickness hv affects the 13

mean velocity and its gradient at the reference point (i.e., the second grid 14

point off the wall in this case). As hv increases, the mean velocity at the 15

reference point tends to be close to the DNS result, whereas the slope of the 16

mean velocity at this point tends to decrease. Consequently, away from the 17

wall 300 < y+, the profiles of U+ for cases hv = ∆ and hv = 2∆ collapse 18

each other, whereas that for case hv = 3∆ is somewhat lower than those for 19

cases hv = ∆ and hv = 2∆. The decrease in the slope of U+ is associated 20

with the enhanced Reynolds shear stress at the wall due to an increase in the 21

tangential slip velocity and local transpiration through the wall with hv. This 22

can clearly be found in Fig.10 (b) where the sum of the GS and SGS Reynolds 23

shear stress and its SGS component are plotted. The SGS Reynolds shear 24

stress at the wall decreases as hv increases; however, the enhanced tangential 25
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and wall-normal slip velocity increases the GS Reynolds shear stress. As a 1

result, the sum of the GS and SGS components at the first grid point off the 2

wall increases with hv. 3

It should be stressed that although the results are not shown here, the 4

solution does not converge when we further thicken the virtual wall layer 5

thickness. This is because the non-zero Reynolds shear stress at the wall 6

progressively increases with hv, decreasing the slope of U+. This subsection 7

confirms that the appropriate slip velocity that yields reasonable solutions 8

can be achieved when the virtual wall layer thickness is ∆ − 2∆. Although 9

the ideal value for hv may depend on the flow conditions, we use hv = 1.5∆ 10

throughout this work. Exploring the ideal value will be left for future work. 11

5.5. Thermal field predictions 12

The above subsections evaluate the predictive accuracy of the wall-modeled 13

LBM for the flow field while it should be stressed that the wall modeling 14

is particularly important for high Prandtl number flow because the ther- 15

mal boundary layer is progressively thinner as the Prandtl number increases 16

and an enormous number of grid points is required to resolve the thermal 17

boundary layer. This subsection demonstrates the potential of the developed 18

IVW method for various Prandtl number flows. Figure 11 presents profiles 19

of the inner-scaled mean temperature, θ+, for various Prandtl number cases 20

together with the profiles of Kader law in Eq. (19). Here, the friction temper- 21

ature for the normalization is given as tτ = qw/(ρcpuτ ). The figure confirms 22

that the developed method provides a faithful account of the effect of the 23

Prandtl number: the θ+ profile at the low Prandtl number case Pr = 0.1 24

agrees well with the Kader profile as shown in Fig.11(b), and substantially 25
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increased θ+ at the high Prandtl number case Pr = 1000 in Fig.11 is rea- 1

sonably reproduced by the present method as well. The discrepancy with 2

the Kader law is found to be within a few percent even for the highest Pr 3

number case, where the thermal boundary layer is much thinner than the 4

corresponding velocity boundary layer. These results suggest that the wall- 5

function with the developed IVW method is capable of correctly predicting 6

the thermal fields for various Prandtl number flows. 7

6. Circular pipe flow simulation 8

The previous section provides the validation results for the turbulent 9

channel flow where the wall boundary is aligned with the Cartesian coordi- 10

nate. However, flow configuration in the engineering products usually have 11

a complex curved wall, and it is essential for the engineering CFD tool to 12

deal with a curvilinear wall. Thus, this section evaluates the performance of 13

the developed IVW method in a fully-developed turbulent circular pipe flow. 14

The domain length in the streamwise direction was 10D, where D is the pipe 15

diameter. To evaluate the grid dependency, we changed the grid resolution 16

across the pipe diameter as D/∆ = 35.5, 50.5, and 75.5 while the thick- 17

ness of the virtual wall layer was fixed to hv = 1.5∆. The flow was driven 18

by a streamwise pressure difference, and the periodic boundary conditions 19

were imposed in the streamwise directions. The Reynolds number based on 20

the pipe diameter and bulk mean velocity ranged from ReD = 1.0 × 104 to 21

1.0× 106. The Prandtl number 0.71 was used assuming an air flow, and the 22

wall was heated by a uniform heat flux. 23

Figure 12 shows a comparison of the friction factor f and Nusselt num- 24
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ber Nu with the experimental correlations f = 0.3164Re−0.25
D (ReD < 105) 1

by [53], 1/
√
f = 2.0log

(
Red

√
f
)
− 0.8 (105 < ReD) by [54], and Nu = 2

0.023Re0.8Pr0.4 by [55]. First when we take a closer look at Fig.12(a), it is 3

found that the predicted f is somewhat overpredicted particularly for the 4

high Reynolds number flow at 1.0 × 106, e.g., f is 22% overpredicted when 5

ReD = 106 and D/∆ = 50.5. It is also found that the grid convergence 6

of f is worse than that of Nu. However, Fig.12 confirms that f and Nu 7

generally accord with the experimental correlation from Re = 1.0 × 104 to 8

1.0×106, suggesting that the wall-function with the developed IVW method 9

has a potential to deal with the curved boundary with satisfactory accuracy 10

for a wide range of the Reynolds number. 11

7. Channel with streamwise periodic hill 12

Finally, to demonstrate the performance of the developed IVW method 13

for complex flow simulations, this section provides validation in a turbulent 14

channel with streamwise periodic constrictions where the flow is character- 15

ized by separation and reattachment due to a two-dimensional hill. This flow 16

configuration is frequently chosen for the validation test of the wall-modeled 17

LES since this validation test evaluate the ability of the wall-function to 18

correctly predict the wall shear stress in the complex flow geometry. The 19

flow geometry of a periodic hill flow is shown in Fig.13 which is identical to 20

that employed in the wall-resolved LES study of [56]. The size of the com- 21

putational domain was Lx = 9h, Ly = 3.04h, Lz = 4.5h in the streamise, 22

vertical, and spanwise direction, respectively, where h is the height of the con- 23

struction. The periodic boundary conditions were applied to the streamwise 24
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and spanwise directions, the wall-function was used for the walls located at 1

y/h = 3.04H, 0.0 and the surface of the hill. The virtual wall layer thickness 2

was hv = 1.5∆, and the grid points including the virtual wall layer region 3

was 252(x)× 89(y)× 126(z). The Reynolds number based on the bulk mean 4

velocity at the hill crest, Uh, and the hill height was Reh = 10500. The pres- 5

sure difference imposed between the outlet and inlet boundary was adjusted 6

so as to yield the desired flow rate. The predicted results were compared 7

with the resolved LES results in the ERCOFTAC database. In the reference 8

resolved LES, the dynamic Smagorinsky model was used, and wall-function 9

approach was adopted at the upper wall. [56] may be referred to for details 10

of the resolved LES. 11

A contour map of the streamwise mean velocity with the steramlines 12

is presented in Fig.14. It is observed that a flow separation is occurred 13

near the hill crest generating a recirculation flow behind the hill crest. The 14

reattachment point is predicted at x = 4.4h, which is fairly close to the 15

reference data of x = 4.72h despite the fact that the reattachment point is 16

considerably sensitive to the wall-treatment and SGS models. 17

First, to assess the validity of the present wall treatment, Fig.15 shows 18

a comparison of the skin friction coefficient, Cf , at the bottom surface with 19

the LES data from [57]. There is a considerable geometry-induced spatial 20

variation in the Cf value: Cf is negative in the backflow region behind the 21

hill of 1 < x/h < 4.5, whereas it dramatically increases in the region of 22

7 < x/h < 9 owing to the flow contraction by the hill. This trend is rea- 23

sonably captured by the present method, and the predicted Cf is generally 24

close to the reference LES data. However, the negative absolute Cf value 25
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in the backflow region is underpredicted, and the rapid increase in the Cf 1

value toward the hill crest of is not perfectly reproduced. Note that although 2

the simulated Reynolds number is not sufficiently high to evaluate the per- 3

formance of the wall-function, the grid resolution in wall unit based on the 4

friction velocity at the bottom surface is 13 on average with its maximum 5

value of 48, suggesting that the near-wall turbulent flow is underresolved in 6

the present grid resolution. The present grid resolution is coarser than that 7

employed in the study on the wall-modeled LES of the periodic hill flows by 8

[56] where the near-wall modeling plays an important role in predicting the 9

general flow field. 10

The predicted streamwise and vertical mean velocity profiles at differ- 11

ent streamwise locations x/h = 1, 2, 4, 6 and 8 are compared in Fig.16. In 12

Fig.16(a), the general agreement of the streamwise mean velocity with the 13

reference is satisfactory. The reversal mean flow behind the hill crest at 14

x/h = 1 and 2 and the recovery of the reversal flow at x/h = 4 and 6 are 15

reasonably captured by the present method. However, the predicted back 16

flow at x/h = 2 is slightly weak relative to the reference data. The discrep- 17

ancy in the backflow region can also be confirmed in the Cf profile in Fig. 18

15. Near the top wall, the present method produces a small kink profile in 19

the streamwise mean velocity at x/h = 4 and 6, which may stem from the 20

fact that the present wall-function assumes the mean velocity profile in the 21

equilibrium boundary layer. It should be noted that although the results 22

are not shown here, the mean velocity at the reference point near the top 23

wall is confirmed to match the solution of the profile in Eq.(16). As for 24

the vertical mean velocity profile as shown in Fig.16(b), the present method 25

27



reasonably captures the trend of the resolved LES results. The small dis- 1

crepancy observed near the hill at x/h = 1, 2 and 8 may be due to the use 2

of the log-law based wall-function, and can be reduced by introducing more 3

elaborate wall-function models [58, 59, 60] that can deal with flow separation 4

and reattachment. Finally, the predictive results of the streamwise Reynolds 5

stress are compared in Fig.17. Although the present method underepredicts 6

the streamwise Reynolds stress behind the hill at x/h = 2 and 4, the general 7

agreement with the resolved LES data is satisfactory. This demonstrates 8

that the immersed virtual wall method successfully incorporates the LBM 9

with the wall-function, and the wall-modeled LBM with the IVW method 10

can be a promising CFD tool for dealing with high Reynolds number flows 11

in complex geometries. 12

8. Conclusions 13

The implementation issue of the wall-function method to the LBM is 14

discussed to extend the applicability of the LBM for high Reynolds number 15

turbulent heat transfer in complex geometries. We consider two implemen- 16

tation strategies: specular reflection and immersed virtual wall methods. 17

The specular reflection method gives the distribution functions propagating 18

from the solid node based on the specular reflection rule, while the immersed 19

virtual wall method assumes the virtual wall layer beneath the wall which 20

satisfies the slip wall conditions allowing the subsurface heat and fluid to flow 21

within the solid wall. The D3Q27 multiple-relaxation-time LBM and D3Q19 22

regularized LBM are used to simulate flow and scaler fields, respectively, 23

and the standard log-law based wall-function method is used. The valida- 24
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tion test in turbulent channel flows suggests that the developed methods 1

yield a grid-independent solution with satisfactory accuracy. Moreover, the 2

immersed virtual wall method is confirmed to be applied in highly underre- 3

solved conditions and has great potential for predicting high Prandtl number 4

flow. The advantage of the immersed virtual wall method over the specular 5

reflection method is its applicability to a complex curvilinear wall. To assess 6

this advantage, the immersed virtual wall methods were further validated 7

against turbulent flows in a circular pipe and channel with two-dimensional 8

constraints. This confirms that the immersed virtual wall method can suc- 9

cessfully deal with complex curvilinear walls. 10

The accuracy of this method may be further improved by using the other 11

collision models that can reduce the effects of the truncation error terms 12

or optimizing the value for the virtual wall layer thickness. Furthermore, 13

introduction of more elaborate non-equilibrium wall-function methods and 14

further validation studies in other complex geometries make the LBM much 15

better for the engineering computational fluid dynamic tool. 16
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Figure 1: Reference point PR for the wall-function method.
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Figure 2: Specular reflection rule.
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D
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Figure 3: Near wall node points for the immersed virtual wall method: PR is the reference

point for the wall-function, PN is the node neighboring to the wall, PV is the virtual

node, and P ′
V is the nodes neighboring to the virtual wall. The solid and broken lines are

respectively the actual velocity profile and approximated profile by the wall-function.
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Flow

Figure 4: Computational domain of a turbulent channel flow.

DNS (Lee and Moser, 2015)

LBM-WF with SR

LBM-WF with IVW

Figure 5: Comparison of the streamwise mean velocity profile with the DNS data from

[52].
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DNS (Lee and Moser, 2015)

LBM-WF with SR

LBM-WF with IVW

GS + SGS

SGS

Figure 6: Comparison of the Reynolds shear stress profile with the DNS data from [52]:

the SGS (modeled) component, 2νSGSS12, and the sum of the GS (resolved) and SGS

components, −u′v′ + 2νSGSS12, are presented.

DNS (Lee and Moser, 2015)

LBM-WF with SR

LBM-WF with IVW

Figure 7: Comparison of the streamwise and wall-normal Reynolds stresses with the DNS

data from [52].
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DNS (Lee and Moser, 2015)

LBM-WF with IVW (NY=20)

LBM-WF with IVW (NY=30)

LBM-WF with IVW (NY=40)

DNS (Lee and Moser, 2015)

LBM-WF with IVW (NY=20)

LBM-WF with IVW (NY=30)

LBM-WF with IVW (NY=40)

(a)                                                                             (b) 

Figure 8: Grid dependence on the predictive results: (a) streamwise mean velocity and

(b) sum of GS and SGS Reynolds shear stress.
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GS + SGS

SGS

(a)                                                                                    (b) 

Musker law

LBM-WF with IVW

Musker law

LBM-WF with IVW

Total shear stress

LBM-WF with IVW

Total shear stress

LBM-WF with IVW

GS + SGS

SGS

(c)                                                                                    (d) 

Figure 9: Comparison of the predictive results for different Reτ : (a) streamwise mean

velocity at Reτ = 500, (b) streamwise mean velocity at Reτ = 10, 000, (c) Reynolds shear

stress at Reτ = 500, and (d) Reynolds shear stress at Reτ = 10, 000.
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wall
wall DNS (Lee and Moser, 2015)

LBM-WF with IVW (hv=1D)

LBM-WF with IVW (hv=2D)

LBM-WF with IVW (hv=3D)

DNS (Lee and Moser, 2015)

LBM-WF with IVW (hv=D)

LBM-WF with IVW (hv=2D)

LBM-WF with IVW (hv=3D)

SGS

GS+SGS

(a)                                                                                (b) 

Figure 10: Effect of the virtual wall layer thickness on the predictive results: (a) streamwise

mean velocity and (b) Reynolds shear stress profile.

Kader law

LBM-WF with IVW

Kader law

LBM-WF with IVW

Figure 11: Comparison of the mean temperature profiles for different Prandtl number, (a)

for Pr = 1000 and 100, (b) for Pr = 10, 1.0 and 0.1.
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(a)                                                                                (b) 

LBM-WF with IVM (                       )

LBM-WF with IVM (                       )

LBM-WF with IVM (                       )

LBM-WF with IVM (                       )

LBM-WF with IVM (                       )

LBM-WF with IVM (                       )

Figure 12: (a) comparison of the friction factor of the circular pipe with f = 0.3164Re−0.25
D

(ReD < 105) by [53], 1/
√
f = 2.0log

(
ReD

√
f
)
− 0.8 (105 < ReD) by [54], (b) Comparison

of the Nusselt number of the circular pipe with Nu = 0.023Re0.8Pr0.4 by [55].
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2.0

1.0

0.0

Flow

Figure 13: Computational geometry of channel with streamwise periodic hill.

-0.25   0.0   0.2   0.4   0.6   0.8   1.0   1.2

Figure 14: Contour map of the streamwise mean velocity with steramlines.
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LBM-WF with IVW

Resolved-LES

Figure 15: Comparison of the skin friction coefficient with the resolved LES data from

[57].

0.0 1.2 Resolved LES                       LBM-WF with IVW

0.0 0.3 Resolved LES                       LBM-WF with IVW

(a)

(b)

Figure 16: Comparison of the mean velocity profile with the resolved LES data from [56]:

(a) Streamwise mean velocity and (b)vertical mean velocity.
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0.0  0.075
Resolved-LES                       LBM-WF with IVW

Figure 17: Comparison of the streamwise Reynolds stress profile with the resolved LES

data from [56].

39



References 3

[1] C. Aidun, J. Clausen, Lattice-Boltzmann method for complex flows, 4

Annu. Rev. Fluid Mech. 42 (2010) 439–472. 5

[2] X. Wang, T. Aoki, High Performance Computation by Multi-Node GPU 6

Cluster-Tsubame2. 0 on the Air Flow in an Urban City Using Lattice 7

Boltzmann Method, Int. J. Aero. Lightweight Struct. (IJALS) 2 (1). 8

[3] L. Xipeng, Z. Yun, W. Xiaowei, G. Wei, GPU-based numerical simula- 9

tion of multi-phase flow in porous media using multiple-relaxation-time 10

lattice Boltzmann method, Chem. Eng. Sci. 102 (2013) 209 – 219. 11

[4] N. Onodera, T. Aoki, T. Shimokawabe, H. Kobayashi, Large-scale LES 12

wind simulation using lattice Boltzmann method for a 10 km× 10 km 13

area in metropolitan Tokyo, TSUBAME e-Science J. Global Scientific 14

Information and Computing Center 9 (2013) 1–8. 15

[5] C. Huang, B. Shi, N. He, Z. Chai, Implementation of Multi-GPU based 16

lattice Boltzmann method for flow through porous media, Adv. Appl. 17

Math. Mech. (2015) 1–12. 18

[6] D. d’Humieres, Multiple–relaxation–time lattice Boltzmann models in 19

three dimensions, Phil. Trans. R. Soc. A 360 (1792) (2002) 437–451. 20

[7] K. Suga, Y. Kuwata, K. Takashima, R. Chikasue, A D3Q27 Multiple- 21

Relaxation-time lattice Boltzmann method for turbulent flows, Comput. 1

Math. Appl. 69 (2015) 518–529. 2

40



[8] P. Asinari, Generalized local equilibrium in the cascaded lattice Boltz- 3

mann method, Phys. Rev. E 78 (1) (2008) 016701. 4

[9] M. Geier, A. Greiner, J. Korvink, A factorized central moment lattice 5

Boltzmann method, The Europ. Phys. J. Spe. Topics 171 (1) (2009) 6

55–61. 7

[10] M. Geier, M. Schönherr, A. Pasquali, M. Krafczyk, The cumulant lat- 8

tice Boltzmann equation in three dimensions: Theory and validation, 9

Comput. Math. Appl. 70 (4) (2015) 507–547. 10

[11] P. Lammers, K. Beronov, R. Volkert, G. Brenner, F. Durst, Lattice BGK 11

direct numerical simulation of fully developed turbulence in incompress- 12

ible plane channel flow, Comput. fluids 35 (10) (2006) 1137–1153. 13

[12] R. Freitas, A. Henze, M. Meinke, W. Schröder, Analysis of Lattice- 14
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[19] Ö. Ertunç, N. Özyilmaz, H. Lienhart, F. Durst, K. Beronov, Homogene- 12

ity of turbulence generated by static-grid structures, J. Fluid Mech. 654 13

(2010) 473–500. 14

[20] Y. Peng, W. Liao, L.-S. Luo, L.-P. Wang, Comparison of the lattice 15

Boltzmann and pseudo-spectral methods for decaying turbulence: Low- 16

order statistics, Comput. Fluids 39 (4) (2010) 568–591. 17
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