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LETTER
Delay-Independent Design for Synchronization in Delayed-Coupled
One-Dimensional Map Networks

Yoshiki SUGITANI†a) and Keiji KONISHI††, Members

SUMMARY The present Letter proposes a design procedure for induc-
ing synchronization in delayed-coupled one-dimensional map networks.
We assume the practical situation where the connection delay, the detailed
information about the network topology, and the number of the maps are un-
known in advance. In such a situation, it is difficult to guarantee the stability
of synchronization, since the local stability of a synchronized manifold is
equivalent to that of a linear time-variant system. A sufficient condition in
robust control theory helps us to derive a simple design procedure. The
validity of our design procedure is numerically confirmed.
key words: synchronization, delayed-coupled maps

1. Introduction

Synchronization in coupled oscillators has been widely ob-
served in the world [1], and has been extensively investigated
[2]. It is well known that the local stability of synchroniza-
tion is equivalent to that of a linear time-variant system [3].
Since it is generally difficult to analyze time-variant systems
theoretically, numerical calculations are required to analyze
the stability of synchronization.

Connection delays between oscillators inevitably exist
due to the finite propagation speed of signals. Thus, delayed-
coupled oscillators have attracted attention in recent years
[4]. Considering connection delays, the local stability of
synchronization is equivalent to that of a linear time-variant
system with a time delay. Such systems are quite difficult to
analyze because of the following two facts: (i) the systems
are infinite dimensional; and (ii) the systems include time-
variant parameters depending on the synchronized state.

Facts (i) and (ii) can be avoided. First, fact (i) can
be avoided by employing maps as oscillators. This is be-
cause delayed-coupledmaps are discrete dynamical systems;
that is, they are finite dimensional. Second, by employing
Bernoulli maps, fact (ii) also can be avoided, since the slope
of the maps is constant with respect to the state of the map.
As a result, the stability of the synchronized manifold for
delayed-coupled Bernoulli maps is equivalent to that of a
linear time-invariant system. Thus, we can easily analyze
the stability of synchronization theoretically [5]–[7].

For engineering applications of dynamical systems, the
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design procedures for inducing desired dynamics are cur-
rently under intense investigation [8], [9]. In a previous
study, we proposed a design procedure for inducing chaotic
synchronization in delayed-coupled Bernoulli maps [10].
Our design procedure can be used in the situation where
the connection delay, the detailed information about the net-
work topology, and the number of the maps are unknown in
advance. Unfortunately, the procedure can be applied only
to Bernoulli maps; applications of this procedure are thus
quite limited.

The present Letter proposes a design procedure for
inducing synchronization in delayed-coupled general one-
dimensional-map networks. For general one-dimensional
maps, stability analysis of the synchronization is difficult
due to fact (ii). However, a sufficient condition in robust
control theory helps us to analyze the stability. In contrast to
that in our previous study [10], the present design procedure
does not designate the dynamics of the synchronized state
(i.e., chaotic, periodic, or stable equilibrium point). The
design procedure is confirmed by numerical simulations.

The following notation is used in this Letter. {A}i j is the
(i, j) element of matrix A. Im is an m×m unitary matrix and
0m is an m × 1 column vector whose all elements are zero.
Moreover, | |A| |∞ := maxi∈{1,...,m}

∑m
j=1 |{A}i j | denotes the

matrix infinity norm of a matrix A ∈ Rm×m.

2. Delay-Coupled Map Network

Let us consider delayed-coupled one-dimensionalmaps [11],

xi (n + 1) = f [xi (n)] + εui (n), (i = 1, . . . , N ), (1)

where xi (n) ∈ [0, 1] and ui (n) ∈ R denote the state variable
and input signal of the i-th map at time n ∈ Z, respectively.
f : [0, 1] → [0, 1] is the nonlinear function of the map.
ε ∈ [0, 1] is the coupling strength. The input signal ui (n) is
given by

ui (n) =
N∑
j=1

ci j
di

f [x j (n − τ)] − f [xi (n)], (2)

where x j (n− τ) is the delayed state variable of the j-th map,
and τ ∈ Z+ is the connection delay. ci j represents the (i, j)
element of the adjacency matrix C: if the i-th and j-th maps
are coupled, then ci j = cji = 1, otherwise ci j = cji = 0.
Here, di :=

∑N
j=1 ci j is the degree of the i-th map.

It is known that the eigenvalues ρq (q = 1, . . . , N ) of
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Table 1 Comparison of the previous study [10] with the present letter.

Controlled
object Assumption Goal

Previous
study [10]

Delayed coupled
Bernoulli maps

Given:
ρmin andρmax.

Unknown:
C , N and τ

Chaotic
synchronization

Present
Letter

Delayed coupled
one-dimensional
maps

Synchronization

the normalized Laplacian matrix M := IN − D−1C with
D := diag{d1, d2, . . . , dN } satisfy

0 = ρ1 ≤ ρ2 ≤ · · · ≤ ρN ≤ 2, (3)

for any network topologies [12]. The synchronization man-
ifold is given by

s(n) := x1(n) = x2(n) = · · · = xN (n). (4)

Substituting Eq. (4) into Eqs. (1) and (2) yields the dynamics
of the synchronization manifold,

s(n + 1) = (1 − ε) f [s(n)] + ε f [s(n − τ)]. (5)

The present Letter tackles the following problem:

Problem statement

Controlled object: Delayed-coupled maps (1), (2)
Assumption I: The number of maps N and the network

topology ci j are unknown. The lower and upper
eigenvalues of the normalized Laplacian matrix M
(i.e., ρmin ≤ ρ2 and ρmax ≥ ρN ) are given.

Assumption II: The connection delay τ is unknown.
Design specification: Synchronized manifold (4) is sta-

ble for any number of maps, any connection delay,
and any network topologies satisfying ρmin ≤ ρ2 and
ρmax ≥ ρN .

Design parameters: The coupling strength ε and the
map parameter.

Note that our previous study [10] considers a problem
similar to the one described above. The differences between
the previous study and the present one are summarized in
Table 1: the previous study deals only with the Bernoulli
map and aims to achieve chaotic synchronization; the present
Letter deals with general one-dimensional maps and aims to
achieve synchronization.

3. Stability Analysis

We focus on the local stability of the synchronized mani-
fold (5). Substituting the perturbation δxi (n) := xi (n)−s(n)
into Eqs. (1) and (2), we obtain the local dynamics around
manifold (4):

δx(n + 1) = (1 − ε)DF (n)δx(n)+

εDFτ (n)D−1Cδx(n − τ),
(6)

where

δx(n) :=
[
δx1(n) δx2(n) · · · δxN (n)

]T
,

DF (n) :=
d f (x)

dx

�����x=s(n)
, DFτ (n) :=

d f (x)
dx

�����x=s(n−τ)
.

Note that the local dynamics (6) is a time-variant system
with DF (n) and DFτ (n) depending on the synchronized
state s(n). On the other hand, the local dynamics (6) of the
previous study [10] is a time-invariant system, since DF (n)
and DFτ (n) for the Bernoulli map are constant. Thus, we
cannot apply the analytical approach of the previous study
to our problem.

The Laplacian matrix M can be diagonalized as
T−1MT = diag(ρ1, . . . , ρN ) by a transformation matrix T
[12]. By introducing the change of variable δx(n) = T z(n),
the stability of linear system (6) can be separated into N
modes, where mode q (q = 1, . . . , N ) is given by

zq (n + 1) = (1 − ε)DF (n)zq (n)+

ε(1 − ρq)DFτ (n)zq (n − τ), (7)

and mode q = 1 represents the time development of the
synchronized manifold (4). Therefore, the synchronized
manifold (4) is locally stable if and only if Eq. (7) with
mode q is stable for any mode q ∈ {2, . . . , N } (i.e., ex-
cluding mode q = 1). Equation (7) can be rewritten
in matrix form for a (τ + 1)-dimensional system with
xq (n) := [zq (n) zq (n − 1) · · · zq (n − τ)]T ,

xq (n + 1) = A∗
{
DF (n),DFτ (n), ρq

}
xq (n), (8)

A∗ {α, β, γ} :=


(1 − ε)α 0Tτ−1 ε(1 − γ) β

Iτ 0τ


.

It is difficult to guarantee the stability of linear system (8),
since system (8) includes time-variant terms DF (n) and
DFτ (n) depending on the synchronized state s(n). Here,
we assume that the lower and upper limits of DF (n) and
DFτ (n) satisfy

DF (n), DFτ (n) ∈
[
λ, λ

]
. (9)

Then, it is obvious that matrix A∗
{
DF (n),DFτ (n), ρq

}
in

Eq. (8) belongs to the set of matrices AI (q) for each time
step, where AI (q) :=

{ ∑4
i=1 ηiAi (q) | ηi ≥ 0,

∑4
i=1 ηi = 1

}
,

A1(q) := A∗
{
λ, λ, ρq

}
, A2(q) := A∗

{
λ, λ, ρq

}
, A3(q) :=

A∗
{
λ, λ, ρq

}
, and A4(q) := A∗

{
λ, λ, ρq

}
. The sufficient

condition for system (8) to be stable is given by the following
corollary.
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Corollary 1: The time-variant system (8) is stable if the
(τ + 1)-dimensional system

xq (n + 1) = A
′

q (n)xq (n), (10)

is stable for any A
′

q (n) ∈ AI (q).

We now consider the stability of Eq. (10) instead of that
of system (8). Equation (10) is a time-variant system with
parameter uncertainty. For such system, a sufficient condi-
tion proposed by Bauer helps us to guarantee the stability
[13].

Lemma 1 ([13]): The time-variant system (10) is stable
for any A

′

q (n) ∈ AI (q) if and only if there exists a positive
integer k ∈ Z+ such that

| |At1 (q)At2 (q) · · · Atk (q) | |∞ < 1, (11)
∀Atj (q) ∈ {A1(q), A2(q), A3(q), A4(q)},

for j = 1, . . . , k.

The sufficient condition for existence of the positive integer
k in Eq. (11) is derived below.

Lemma 2: There exists a positive integer k = τ + 1 sat-
isfying inequality (11) if the following inequality holds:

(1 − ε)λmax + ε |1 − ρq |λmax < 1, (12)

λmax := max
{
|λ |, |λ |

}
.

Proof: The proof is divided into propositions (a) and (b).

(a) For any positive integer l ∈ Z+, the following inequality
always holds:

| |At1 (q)At2 (q) · · · Atl (q) | |∞ ≤
���
���Â

l
(q)���

���∞, (13)

∀Atj (q) ∈ {A1(q), A2(q), A3(q), A4(q)},

where Â(q) ∈ R(τ+1)×(τ+1) is given by

Â(q) :=


(1 − ε)λmax 0Tτ−1 ε |1 − ρq |λmax

Iτ 0τ


.

(b) For l = τ + 1, the right-hand side of Eq. (13) satisfies

���
���Â
τ+1

(q)���
���∞ < 1. (14)

From Eqs. (13) and (14), propositions (a) and (b) imply that
there exists an integer τ + 1 satisfying the inequality

| |At1 (q)At2 (q) · · · Atτ+1 (q) | |∞ ≤
���
���Â
τ+1

(q)���
���∞ < 1;

that is, Eq. (11) is satisfied. Propositions (a) and (b) will be
proved below.

(a) All the elements of Â(q) and A1,2,3,4(q) are the
same except for the (1, 1) and (1, τ+1) elements. Moreover,

the (1, 1) and (1, τ + 1) elements in Â(q) are greater than or
equal to those in A1,2,3,4(q). Thus, the following relation is
derived:

{Atj (q)}m,n ≤
{
Â(q)

}
m,n
, ∀m, n ∈ {1, . . . , τ + 1}.

Furthermore, all the elements of Â(q) being non-negative,
for a positive integer l and any m, n, we get

���{At1 (q)At2 (q) · · · Atl (q)}m,n
��� ≤

����
{
Â
l
(q)

}
m,n

���� . (15)

Summing both sides of Eq. (15) within each row (i.e., sum-
ming up every element in the same row), we can obtain
Eq. (13).

(b) The (τ + 1)-th power of Â(q) is given by

Â
τ+1

(q) :=



W + Vτ+1 VW V 2W · · · Vτ−1W VτW
Vτ W VW · · · Vτ−2W Vτ−1W

Vτ−1 0 W
. . .

...
...

...
. . .

. . .
. . .

...

V 2 ...
. . .

. . . VW
V 0 · · · · · · 0 W



,

whereV := (1−ε)λmax andW := ε |1−ρq |λmax. Comparing
the sum of elements of row m ∈ {1, . . . , τ} in Â

τ+1
(q) with

that of row m + 1, we get

τ+1∑
n=1

{
Â
τ+1

(q)
}
m,n
−

τ+1∑
n=1

{
Â
τ+1

(q)
}
m+1,n

= Vτ−m−1(V +W − 1). (16)

If inequality (12) is satisfied, then the right-hand side of
Eq. (16) is negative; that is, the sum of elements of row m is
less than that of row m + 1. Therefore, the infinity norm of
Â
τ+1

(q) is given by

���
���Â
τ+1

(q)���
���∞ =

τ+1∑
n=1

{
Â
τ+1

(q)
}
τ+1,n

= V +W < 1.

From propositions (a) and (b), the proof is complete.
�

Based on the above results, the following theorem is
derived.

Theorem 1: Consider the delayed-coupled maps (1) with
(2). The synchronized manifold (4) is stable for any con-
nection delay τ if the following inequalities are satisfied:

−
1 − λmax
ελmax

< ρmin, ρmax <
1 − λmax
ελmax

+ 2. (17)

Proof: From Corollary 1 and Lemmas 1 and 2, time-variant
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system (8) is stable if inequality (12) is satisfied. Thus, syn-
chronized manifold (4) is stable if inequality (12) is satisfied
for all q = 2, . . . , N . Here, inequality (12) can be rewritten
as

−
1 − λmax
ελmax

< ρq <
1 − λmax
ελmax

+ 2. (18)

Inequality (18) is satisfied for all q = 2, . . . , N if the lower
and upper limits of the eigenvalues satisfy the inequalities in
Eq. (17). �

Based on Eq. (17) in Theorem 1, the systematic design
procedure is straightforwardly derived.

Corollary 2 (Design procedure): The synchronized man-
ifold (4) is stable for any connection delay τ if the map
parameter satisfies

λmax < min
{

1
|1 − ρmin |

,
1

ρmax − 1

}
, (19)

and the coupling strength ε satisfies

ε ∈
(
ε, 1

]
, ε := max

{
−

1 − λmax
λmaxρmin

,
1 − λmax

λmax(ρmax − 2)

}
.

(20)

The design procedure in Corollary 2 is similar to that of the
previous study (see Corollary 2 in [10]).

4. Numerical Examples

This section numerically confirms the validity of our design
procedure (i.e., Corollary 2). From Assumption I, we con-
sider the situation where ρmin = 0.28 and ρmax = 1.78
are given in advance. According to Eqs. (19) and (20),
the map parameter and the coupling strength are set to
λmax = 1.2 < 1.2821 and ε = 0.8 ∈ (0.7576, 1], respec-
tively.

Let us employ the tent map,

f (x) =
a(1 − |1 − 2x |)

2
, (0 ≤ a ≤ 2). (21)

The map parameter λmax is given by λmax = a; that is, we set
a = 1.2. For this parameter, the tent map oscillates chaoti-
cally with a positive Lyapunov exponent (i.e., ln(1.2) > 0).
We confirm the behavior of the coupled maps in a scale-
free network with N = 30 with lower and upper limits of
the eigenvalues satisfying ρ2 = 0.2963 ≥ ρmin = 0.28 and
ρ30 = 1.7712 ≤ ρmax = 1.78.

Figure 1 shows the time-series data of xi (n) for the
connection delays τ = 1 and 8. The initial conditions of
the all the maps are uniformly randomly chosen in [0, 1] and
all the maps oscillate independently until n = 30. After
coupling at n = 30, synchronization occurs for both of the
connection delays τ = 1 and 8; that is, our procedure can
induce synchronization independently of the connection de-
lay. However, the dynamics of a synchronized manifold in

Fig. 1 Time series data of delayed-coupled tent maps in the scale-free
network (N = 30). The eigenvalues of the scale-free network are ρ2 =
0.2963 and ρ30 = 1.7712. Pixel color indicates the value of the state
variable of the map.

Eq. (5) is totally different: in Fig. 1(a), all the maps stop
oscillating (i.e., amplitude death [14]); in Fig. 1(b), all the
maps continue to oscillate. This is because the designed
procedure in Corollary 2 does not specify the dynamics of
the synchronized manifold.

5. Conclusion

The present Letter extended the previous study [10] to
delayed-coupled general one-dimensional map networks,
and proposed a simple design procedure for inducing syn-
chronization. Future work will include confirming our de-
sign procedure in a circuit experiment [15] and extending
the procedure to delayed-coupled high-dimensional map net-
works.
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