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In the fabrication of steel structures, welding is widely utilized to join the materials. Due to the welding, distortions are 

inevitably generated, and these distortions may cause problems in accuracy or labor costs. In this research, to establish an 
analysis method which can predict the welding distortions in complex large-scale structures, we proposed a new analysis 
method based on the Idealized Explicit FEM. In the proposed method, an algebraic multigrid method was introduced to the 
Idealized Explicit FEM to achieve an efficient analysis in realistic structures. The proposed method was applied to the 
prediction of the welding distortion in the base structures of the construction machine. The number of welding passes was 
28. The predicted and measured distortions were compared. As a result, it was demonstrated that the proposed method has a 
high analysis accuracy. The analysis finished within the realistic time within 35 hours. The influence of welding sequence 
on the deformation was also investigated by changing welding sequence. The result indicated that the welding sequence may 
have considerable effect on the welding distortion and is necessary to be investigated in advance of the production. 
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1. Introduction 

Welding deformation may become problematic in structural fabrication. In particular in 

the construction of complex structures with multiple members, gaps and linear misalignments 

occur due to deformation associated with welding and this may be the cause of errors and 

decrease in dimensional accuracy in the succeeding assembly process. Due to this, there is an 

increase in human labour cost and operational time to correct welding deformation. Also, 

since the quality and reliability of products are all affected by the occurrence of welding 

deformation, it is desirable that a method of prior investigation of welding deformation using 

numerical simulation should be established. 

 It is possible to analysis welding deformation in structures by carrying out non-linear 

finite element analysis1 based on thermal elastic plastic theory and there are many existing 

examples of prediction of welding and residual stress in welded joints2-5. However, since 

processing time and memory usage increases proportionate to the square - cube of the 

analytical scale when a static implicit method FEM using a direct method including LU 

decomposition is used to solve the global stiffness equations used in commercial finite 

element structural analysis software, as the structure becomes larger so the calculation 



resources used for the analysis increases extremely. In addition, since welding problems 

involve the problem of strong non-linearity due to localized melting in the vicinity of the 

torch caused by the heat input from the welding torch, there is a requirement for a detailed 

analysis and since the calculation scale is greater than for ordinary structural analyses, the 

question of calculation scale is a major difficulty for the performance of welding thermal 

elastic plastic analysis on actual large structures. 

 Thus, since analysis scale is a problem for FEM thermal elastic plastic analysis of 

welding, there have been many studies on increasing efficiency of analytical methods. 

Studies of increasing the speed of FEM thermal elastic plastic analysis include the adaptive 

mesh method of Boitout et al6, which embeds the refined mesh solid element in the entire 

solid model which expresses the welding heat source vicinity, the composite mesh model of 

Goldak et al7 which embeds a mesh of the welding heat source vicinity into a mesh of the 

whole structure, and the dynamic substructuring method of Brown et al8 in which the 

weldment is subdivided from the overall structure and further subdivided as the welding heat 

source is moved. Also, in these methods the total structure and weldment heat source vicinity 

are analysed separately, but Murakawa et al have developed an iterative substructure method 

(ISM)9 which increases analysis speed by defining the total structure as a weakly non-linear 

domain and repeating the analysis of the strongly non-linear domain of the weldment vicinity 

and used this in comparatively large-scale analyses10. However, all of these methods are 

based on static implicit FEM in which the direct method of solving the complete stiffness 

equations is used and since, in the analysis of actual large-scale structures, both the 

computational time and memory usage increase as the analysis scale increases, analysis 

becomes extremely difficult.  

Accordingly, the present study is of enhancement of idealized explicit FEM11 developed 

by the present authors to solve the problems of analysis scale used in FEM thermal elastic 

plastic analysis to predict welding deformations in the analysis of actual large-scale 

structures. Since, in the analysis of actual large-scale structures, it is necessary to make an 

efficient analysis of the complex structural deformations, it is an aim of the present study to 

achieve a significant increase in analysis speed by the introduction of a multigrid method12 

into the idealized explicit FEM. Furthermore, the validity of the analysis results found by the 

proposed method is proved through a comparison of the results of analysis by the proposed 

method and experimental results and its utility in the analysis of actual large-scale structures 

was investigated. In addition, there was also an investigation of the effects of the welding 

sequence on welding deformation during the welding of building structures. 



2. Increasing the efficiency of idealized explicit FEM in the analysis of real large-scale 

structures 

2.1 Summary of idealized explicit FEM 

Idealized explicit FEM is an analytical method which makes it possible to increase the 

speed and reduce the memory usage of structural analysis based on dynamic explicit FEM. A 

summary of the analytical theory is described below. 

 In idealized explicit FEM, analysis proceeds in the sequence ,  and  shown below. 

 The load increment, that is, the temperature increment in the welding transient state is 

loaded and this state is maintained 

 Displacement is calculated until it reaches a static equilibrium state by using Basic 

Equation (1) of dynamic explicit FEM 

 When a static equilibrium state is achieved, the sequence returns to Step  in order to 

move on to the calculation of the next load step. 
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Here, [M], [C], [B] and {σ}are, respectively, mass matrix, damping matrix, displacement-

strain relationship matrix and stress vector and {U}t+Δt, {U}t, {U}t-Δt and {F}t are, 

respectively, the displacement vectors at time t+Δt, t and t-Δt and the load vector at time t. 

Also, Ne is the number of elements in the analysis model and Ve is the volume of the 

elements. 

 Here, by using the mass matrix [M] and damping matrix [C] for a node concentrated-type 

diagonal matrix, the matrix operation shown in Equation (1) is no longer a simultaneous 

equation and less memory may be used for performance of the analysis. Also, the number of 

time steps required to obtain static equilibrium above is reduced by using the mass matrix 

[M], shown below, in the process  and  above. 

  (2) 

 [Me] = ∫ {𝜌𝑖
 

𝑉𝑒
}[N]T[N]dV (3) 



Here, E is Young’s modulus, Δli is the element length of each of the directions and Δtcr is the 

critical time increment per 1 step. The mass matrix [Me] per element unit is determined by the 

Equation (3) integral. [N] is the shape function of the elements. Since, by using the mass 

matrix thus derived, the critical value for the time increments can be uniform, whatever the 

element size or material constant, it is possible to reduce the number of the time steps 

required to converge on static equilibrium. In order that the analysis should progress stable, 

Δt in Equation (1), which finds the displacement in the time step, must be set to be smaller 

than the critical time increment Δtcr. In the present study, Δt and Δtcr are, respectively, 0.7 and 

1.0. 

The damping matrix [C] is defined using Equations (4) and (5), based on critical damping 

in a one-dimensional vibration problem and using the diagonal component kii in the stiffness 

matrix [K] and the diagonal component mii in the mass matrix [M]. 

cii = 2√𝑚𝑖𝑖𝑘𝑖𝑖       (4) 
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As described above, since, in the present method when solving the non-linear global 

stiffness equation formulated based on static implicit FEM, static equilibrium is found by a 

pseudo-dynamic solution, it may be described as being similar to a dynamic relaxation 

method13. Also in the present method, pseudo-dynamic analysis is performed to obtain a 

convergence solution until the dynamic terms no longer have any effect and, since inertia 

terms and damping terms have no effect when the convergence solution is obtained,  it is 

possible to use a mass matrix and damping matrix to reduce the number of steps required to 

reach convergence. In the present method, as described above, adjustment of time increments 

equivalent to the mass scaling14 performed in dynamic explicit FEM is carried out by virtual 

scaling of the density of the elements based on the Courant condition in each element. Due to 

this, there is a reduction in the differences in the critical time increments for each of the 

elements due to the extreme differences between the Young’s modulus in the high-

temperature region near the torch and in other regions, which are particularly problematic in  

analysis of welding. By using this method, idealized explicit FEM can achieve a large 

reduction in the calculation time of welding mechanical analysis compared to static implicit 



FEM11,23.  Also, as when CG or other iterative method is used, it is possible to carry out an 

analysis with a memory consumption that is proportional to the number of elements. 

2.2 The multigrid method 

In numerical simulation, it is very often necessary to solve large-scale simultaneous 

equations. In the multigrid method, one method of efficiently solving large-scale 

simultaneous equations, long-wavelength errors in iterative solutions are converged by a 

coarse grid and short-wavelength errors are converged by a fine grid. Since by adopting this 

kind of method, long-wavelength errors, which slowly converge in conventional iterative 

methods, can converged more quickly, it is expected to be a method of solving simultaneous 

equations at high speed in large-scale problems. It has also been demonstrated that the 

computation required to obtain solutions with constant accuracy is proportional to the degree 

of freedom and it is known to be a high-speed iterative solution15,16. Thus the multigrid 

method has attracted attention as a useful solution method and is currently a method which 

is being widely developed. 

However, in multigrid method calculations, it is necessary to prepare a coarse grid to 

converge errors related to the long-wavelength components and multigrid method is often 

used in finite differences method since it is easy to prepare coarse grids. Since, in 

unstructured grids with a complex structure such as FEM, the cost of mesh preparation is 

large and preparation of coarse grids is difficult, it is difficult to use the multigrid method 

for FEM.  

The algebraic multigrid (AMG) has been proposed as a method to solve this problem17-

19. With the AMG, a coarse grid is prepared solely from the algebraic properties of the 

coefficient matrix of simultaneous equations, and the multigrid approach is used for the 

grid. Since, when this method is used, coarse grids are prepared automatically by AMG 

and there is no necessity for a coarse grid to be prepared by the user, it has attracted 

attention as a rapid and universal solution method and a range of methods have been 

developed. The main solution methods that use AMG include the method of Stüben20, the 

method of Brandt et al21and methods using smoothed aggregation22. In these methods, 

when interpolation is performed from higher levels to lower levels, only the sequence of 

matrix creation is different so that when an interpolation matrix is created, the 

interpolation [Pi] is found such that the vector {e}, which satisfies the following equation, 

closely approximates on the different levels. 

[Ki] {e} ≈ 0       (6) 

In Equation (6), [Ki] is the coefficient matrix on the ith level and {e} ≠ 0. Since {e} 



satisfying Equation (6) corresponds to a long-wavelength error and is a component which 

is difficult to converge with a fine grid using the iterative method, the solution is found 

efficiently by correcting such components with a lower level grid. 

   The lower level stiffness matrix, i.e. coefficient matrix [Ki+1], is calculated by the 

following equation based on the interpolation matrix [Pi+1] and upper-level coefficient 

matrix [Ki]. 

[Ki+1] = [Pi+1]T [Ki] [Pi+1]      (7) 

Of the three representative AMG methods noted above, in the method of Stüben and the 

method of Brandt et al it is necessary to choose the degree of freedom from the upper level 

grids to retain in the lower level. In addition, in order to prepare a lower level coefficient 

matrix in these methods, it is necessary to adjust multiple parameters. With the smoothed 

aggregation, on the other hand, as shown in Fig. 1, the lower level degree of freedom is 

expressed as an aggregate of the upper level degrees of freedom (DOFs). When this is done, a 

judgement is made that, based on the relative strength of the relationship between the DOFs 

described by the coefficient matrix, the upper level DOFs are always to be in one of the lower 

level aggregates. 

It is thus possible to introduce the multigrid method into the FEM by using an AMG 

method and since one such method, the smoothed aggregation method involves few tuning 

parameters and is considered easy to use, the solutions proposed henceforward in this study 

for the welding deformation analysis of large-scale complex structures will be based on this 

method. 

2.3 Idealized explicit FEM incorporating the multigrid method 

In FEM welding thermal elastic plastic analysis, in order to perform consecutive analysis 

of welding phenomena, a welding mechanical phenomenon is split into load steps from the 

start of heating to complete cooling and elastic plastic non-linear analysis is carried out in 

each of the load steps. The number of load steps in the entire analysis extends from several 

thousands to several tens of thousands and since processing of the multigrid method 

described in the previous section includes complicated computational procedures, it is 

extremely inefficient to carry out these processes in all of the load steps. Accordingly, in the 

present study, with the method shown as the flow in Fig. 2, the multigrid method was 

introduced into idealized explicit FEM. First aggregates are prepared as analysis pre-

processes20, LU decomposition performed and stored in the lowest level grid. Next, the 

temperature field is renewed and a global stiffness matrix is prepared in the renewed 

temperature field. Here, a stiffness matrix is prepared only on the highest level. This is 



because, since non-linear deformation due to temperature changes accompanying welding 

progress is localized deformation, occurring in a narrow region in the vicinity of the torch, 

tracking of non-linear deformation is enhanced by renewal of the stiffness matrix on the 

highest, that is, input mesh. Also, memory usage is reduced in proportion to the analysis 

degree of freedom, by the stiffness matrix of each of the levels being stored in a sparse matrix 

format. 

Displacement is calculated on the basis of the idealized explicit FEM approach, using the 

renewed highest-level stiffness matrix and the stiffness matrices on other levels. This is 

carried out following the procedures shown in Fig. 3. First, in the first-level grid, 

displacement is calculated by performing the idealized explicit procedures for several time 

steps for a given residual force vector, the residual force vector in this state being calculated 

by the following equation. 

 {R1} = {F1} – [K1] {U1}    (8) 

The residual force vector {R1} thus calculated is interpolated on the second-level grid using 

the following equation and the load vector {F2} on the second-level grid is calculated. 

 {F2} = [P2]T{R1}     (9) 

Here, [P2] expresses the interpolation function generated when the second-level grid is 

prepared. The method used to prepare the interpolation function is a method in which a 

pseudo-Laplacian is used, described in the literature20 which refers to strongly anisotropic 

problems. Displacement is calculated on the basis of the idealized explicit method as in the 

case of the first level, using the load vector obtained by the interpolation process expressed 

in Equation (9). The above process is performed recursively until the lowest grid is reached 

and the lowest grid displacement is calculated by the direct method using the LU 

decomposition calculated at the time when the grid was prepared. 

After displacement is calculated at the lowest level, the lowest level displacement is 

interpolated onto the third-level grid, the sum of this with the displacement in the third-level 

grid is found and the third-level displacement is thus renewed. 

 {U3}  {U3} + [P4]{U4}     (10) 

Displacement is calculated based on the idealized explicit method using the third-layer 

grid displacement thus calculated and the load vector. After the displacement calculation is 

completed by idealized explicit method, the third-level displacement vector is interpolated 

into the second level and displacement is calculated in the same way as in the third level. 

These processes are performed recursively up to the highest grid and a single iterative 

computation by the multigrid method is finished. For convenience of explanation, four levels 



are described but in actual analyses, coarse grids are created recursively until at least the 

fixed number of analysis DOFs included in a level is reached. 

Furthermore, in conventional multigrid methods, a stationary iteration method such as the 

Jacobi method is frequently used in the calculation part as in Fig. 3 but idealized explicit 

FEM was used in this study. This is because since a stationary iteration method such as the 

Gauss-Seidel method or SOR method involves sequential processing, parallelisation is 

difficult. Parallelisation can be easily applied to the Jacobi method but since a condition 

required for convergence with the Jacobi method is that the coefficient matrix is strict 

diagonal dominant, it is highly possible that convergence cannot be obtained stably and it is 

unused for reasons of stability of analysis. 

The displacement in a single load step is found by repeating the above computational 

procedure until the specified convergence conditions are satisfied. Also, calculation of the 

load steps is repeated, and analysis is progressed, until cooling is completed. Also, the above 

computational procedure is implemented by expanding the idealized explicit FEM23 using 

GPU parallelisation previously developed by the present authors and, since there is LU 

decomposition, for which GPU parallelisation is not appropriate, only in the lowest level 

operations, a conventional CPU was used. 

By using this computational procedure, the proposed method should be able to achieve 

computational accuracy and convergency in the analysis of thin plate structures superior to 

conventional idealized explicit FEM.  

3. Prediction of welding deformation during assembly processes of real large structures 

3.1 Analytical model and analytical conditions 

The analytical method proposed in the previous section was applied to the prediction of 

welding deformation during assembly processes of real large structures and the analytical 

accuracy along with the tendencies of welding deformation in real large structures both 

investigated. 

The analysis object was a structure shown in Fig. 4 modelling the base of a construction 

machine. The overall dimensions were a length of 4m, width of 2m and height of 0.5m. The 

number of elements and number of nodes resulting from the mesh division of the structure 

were, respectively, 502,308 and 608,394. The main frame, tail frame and side frame were 

fabricated separately, the main frame and tail frame were welded first and then the side frame 

was joined. In this analysis, a total of 28 passes of welding were analysed, as shown in Fig. 5. 

The welding conditions for each welding pass are shown in Table 1. Of these welding passes, 

from Pass 1 to Pass 4 (Stage 1) and from Pass 23 to pass 28 (Stage III) were, respectively, 



welding of the main frame and tail frame and finishing welding and welding was performed 

manually. The other passes, from Pass 5 to Pass 22 (Stage II) are the welding of the main 

frame and side frame, for which automatic welding by robot was used. Before this welding, 

tack welding was performed on the main frame and side frame and on the tail frame but 

deformation during tacking was not taken into consideration in this study. Also, the stiffness 

of the locations where welding was performed were modelled by only those elements 

corresponding to the tacks and fillets. There was no constraint during the welding in Stage 1, 

from Pass 1 to Pass 4, and the constraint conditions from Pass 5 to Pass 22 (Stage II) and 

from Pass 23 to Pass 28 (Stage III) during the welding were complete constraint of, 

respectively, the locations shown in Fig. 6 (a) and (b). The welding method for both manual 

and automatic welding was GMA welding. The material for the model was SM490A, with 

the assumption of temperature dependency of the material properties shown in Fig. 724. In the 

analysis, a volumetric heating model was employed in which the elements in a rectangular 

region, with the longer dimension being the direction of torch travel, being heated uniformly. 

An element birth and death method25 is used in which the elements corresponding to the weld 

metal are in a deactivated state when welding starts and when, during welding, the torch 

reaches the weld metal that has been deactivated, the elements are activated. The results of 

heat conduction analysis showed that there were a total of 53,720 temperature steps in the 28 

passes.  

Thermal elastic plastic analysis was carried out by the proposed method using the above 

conditions. A computer, fitted with an Intel Core i7 3.4GHz CPU, 64GB memory and an 

NVIDIA GeForce RTX 2080Ti as the GPU, was used for the analysis.  

3.2 Welding deformation analysis results 

 Fig. 8 shows the analysis results for welding deformation after the initial welding, from 

Pass 1 to Pass 4 (Stage 1). The figure shows displacement distribution in the z direction, with 

a deformation magnification ratio of 100-fold. The shape before welding is shown by the thin 

black line. It is clear from Fig. 8 as welding progresses from Pass 1 to Pass 4, deformation 

occurs so that the tail frame falls in the negative direction along the z axis. As is clear from 

Fig. 5 (b) and (c), this is because, since the welding line up to Pass 4 is located on the lower 

side of the neutral plane as the weldment contracts, the tail frame deforms so that it rotates 

clockwise around the y axis.  

Fig. 9 shows a comparison of the deformation before and after Pass 14 and Pass 17 

welding during automatic welding by robot. Pass 14 and Pass 17 locate respectively on the 

bottom surface and upper surface of the side frame and both have relatively long weld length. 



The deformation magnification ratio in Fig. 9 is 50. It is clear from this that the deformation 

associated with Pass 17 was greater than that at Pass 14. The reason for can be assumed that, 

when Pass 14 welding was carried out, the 23rd pass of welding had not been carried out on 

the lower surface of the side frame so that the stiffness between the side frame and main 

frame was small and the deformation at Pass welding 14, when the lower surface wall was 

welded, is limited to localized deformation. In the case of Pass 17, when the upper surface is 

welded, on the other hand, since Pass 8 and Pass 16 have been completed, stiffness of the 

weldment vicinity is strong and this acts as a constraint with the result that a large shrinkage 

plastic strain is created in the weldment and the entire side frame deforms. 

Fig. 10 shows the displacement distribution in z direction after completion of robot 

welding. As this figure shows, when robot welding has been completed, from Pass 17 of 

welding as shown in Fig. 9(d), it is clear that the end of the side frame in the y axis direction 

deforms so that it is lifted and directed upwards. Since, in welding after Pass 17, there are 

multiple locations, as in Passes 18, 20 and 21 and shown in Fig. 6(a) and (b), where the upper 

surface of the side frame and the main frame are joined, the side frame is lifted with the 

transverse shrinkage during these passes. Fig. 11 shows the displacement distribution in the z 

direction after all the welding passes. It is clear from this figure that, with the final finishing 

weld, although deformation occurs at sections close to the welded parts of the side frame, 

there is no great change in the welding deformation throughout the entire side frame. 

Next, the base of the machine was investigated. Since the base of the machine rotates on 

the drive part, it is mounted on a bearing and, since deformation of the base is linked to the 

performance as the bearing slides, the base, particularly the dimensional accuracy in the out-

of-plane direction of the back surface of the main frame, is important. Fig. 12 shows a 

comparison between  measurements  and analysis results for displacement distribution in the 

z direction on the back surface of the main frame. For measurement of the deformation, a 

triangular shape as a reference surface was prepared from three-dimensional coordinate 

values, measured using FARO26, a three-dimensional coordinate value measurement system, 

and the perpendicular distances between the reference surface to the coordinate values were 

measured as the amount of deformation. As shown in Fig. 12(a), the three-dimensional 

coordinate values are measured in a matrix form from 1 to 16 in x direction and from A to N 

in y direction. It is clear from Fig. 12 that the tendency of the distribution of deformation in 

the analysis results and measurement results agree well. Also, Fig. 13 shows a comparison of 

z direction displacement distribution in the analysis results and measurement results on the 



2B-3B line and on the 13B-13L line, as defined in Fig. 12(a). It is clear from Fig. 13 that both 

of these agree well for amount of deformation and that the analysis has very high accuracy. 

The calculation time required for this analysis was 35 hours and it can be said that welding 

distortion in a real structure can be analysed with high accuracy in a practical computing 

time, by using the proposed method. 

 

4. Influence of welding sequence on weld deformation 

4.1 Setting the welding sequence 

Since an operator’s seat and other parts are to be fitted into the side frame in the machine 

structure that was the object of analysis in the previous section, the deformation of the side 

frame during welding is important for reasons of assembly precision. Accordingly, the 

relationship between the amount of welding deformation and welding sequence was 

investigated using the proposed method with the aim of reducing the weld deformation 

occurring in the side frame. 

The welding sequence is such that manual welding is used from Pass 1 to Pass 4 (Stage 1) 

and from Pass 23 to Pass 28 (Stage III), and it is difficult to alter the welding sequence for 

these stages for reasons of constraining jigs and the welding position. Because of this, the 

welding from Pass 5 to Pass 22, which is carried out by robot welding, is investigated here. 

As shown in Fig 9(d) and Fig 10, and described in the previous section, in the welding 

from Pass 18 to Pass 22 (Stage II), it can be assumed that the side frame is lifted up from the 

main frame due to transverse shrinkage of the upper surface of the side frame during the 

passes when the side frame and main frame are joined. Accordingly, for the welding 

sequence from Pass 18, the welding was first completed at Pass 18, Pass 20 and Pass 21, 

where there is this possibility that the side frame may lift due to transverse shrinkage. The 

aim was to reduce the stiffness during these welding passes and thus to reduce the transverse 

shrinkage produced with the result that the lift of the side frame is minimized. Table 2 shows 

the modified welding sequence, with the assumption that Passes 18, 20 and 21 are prioritized. 

In this particular sequence, however, welding is carried out at Pass 20, the 5th welding pass 

after the start of robot welding starts, and then welding Pass 21 and Pass 18 are performed. 

Subsequent welding was performed without interruption in the sequence before the change, 

and this is defined as the welding sequence which focusses on transverse shrinkage. 

It was also noted in the previous section that, in the case of welding deformation at Pass 

14 and Pass 17, as shown in Fig. 9, when the weld line in each of these passes was long and 

welding had also been performed previously in the vicinity of these passes, there is a 



possibility that welding deformation became larger. Accordingly, investigation focusing on 

weld length and welding sequence was performed. Fig. 14 shows the size of the weld length 

at each pass. As shown in the figure, with the welding sequence analysed in the previous 

section, the passes with a comparatively short weld line are performed in the first half and 

those with a long weld line in the second half. Accordingly, a welding sequence was 

considered, as in Fig. 15, in which welding deformation is reduced by passes with long weld 

length being welded at the stage where welding had not been performed nearby. This figure 

shows the welding lengths in the welding sequence after the change when Pass 17, where the 

weld line was longest in the welding sequence before the change, is set as the fifth pass after 

the start of automatic welding and subsequently the pass sequence is set such that the weld 

length becomes shorter in order up to Pass 22, where the automatic welding ends. This 

welding sequence is referred to as the welding sequence focusing on weld length. 

Welding deformation analysis was performed with these two conditions set and the 

influence of the welding sequence on deformation investigated. 

4.2 Analysis results 

Fig. 16 shows the displacement distribution in the z direction when the welding sequence 

focusing on transverse shrinkage is set. The analysis results shown in the figure take the 

deformation produced by manual welding both before and after automatic welding into 

consideration. In the method of representing the deformation the magnification ratio was 50, 

as in Fig. 9. It is clear from Figs. 11 and 16 that it is possible to reduce the welding 

deformation that lifts the side frame through the use of the welding sequence focusing on 

transverse shrinkage. Similarly, Fig. 17 shows the displacement in the z direction when the 

welding sequence focusing on weld length is set. From this figure and Fig. 11, it can also be 

confirmed that in the welding sequence that focuses on weld length, the side frame lifts less 

than in the original welding sequence. 

Fig. 18(a) and (b) show a comparison of the displacement in the z direction on the c-a line 

and a-b line shown in Fig. 4. In these figures, the blue circular symbols    , green square 

symbols      and red diamond symbols       are, respectively, the displacement in the z 

direction with the original welding sequence, with the welding sequence focusing on 

transverse shrinkage and with the welding sequence focusing on weld length. It is clear from 

these figures that, when the welding sequence focusing on transverse shrinkage is set, the z 

direction displacement over almost the entire c-a line and a-b line can be reduced more than 

with the original welding sequence and in the vicinity of point b there was only a small 

increase in the z direction displacement compared to the original sequence. With the welding 



sequence focusing on weld length, on the other hand, deformation is less than with the 

original sequence over the entire c-a line and a-b line so that it can be said that the 

deformation reduction effect is greater than with the welding sequence focusing on transverse 

shrinkage. Thus, with the structure analysed in this study, it is clear that welding sequence 

has a large effect on welding deformation. Since it is possible that, depending on the stiffness 

and constraint of the structure during welding, the welding sequence may influence welding 

deformation, it is preferable that the effects of welding deformation and welding sequence 

should be investigated beforehand. 

As shown in this section, welding deformation analysis of complex real structures was 

performed rapidly through the use of an idealized explicit FEM incorporating the algebraic 

multigrid method proposed in this study. Furthermore, since it was possible to investigate the 

effects of welding sequence in a practical computation time by using the proposed rapid 

analysis method, it is expected that this will be used in the investigation of welding 

deformation in a range of structures. 

 

5. Conclusion 

In this study, a novel idealized explicit FEM incorporating an algebraic multigrid method 

was proposed to make possible a numerical analysis of welding deformation in real large 

structures. In order to show the utility of the proposed method, it was used for the prediction 

of welding deformation when the main frame, tail frame and side frame of the base of a 

construction machine are welded and the computation time and analysis accuracy were 

investigated. The following findings were made as a result of an investigation using the 

proposed method of the influence of the welding sequence on welding deformation when the 

mechanical structure was welded. 

1) As a result of the use of the proposed method for analysis of weld deformation of a 

construction machine, it was possible to perform thermal elastic plastic analysis of 

28 passes in a 600,000-node analytical model analysis in 35 hours using a single 

commercially available computer and it was shown to be possible to conduct an 

analysis of welding deformation when an real large structure is assembled in a 

practical computation time by using the proposed method. 

2) A comparison was made of the results of measurement of welding deformation in the 

base plate of a construction machine base using a FARO contact-type three-

dimensional coordinate measurement device and the results of welding deformation 

analysis using the proposed method. As a result, it was confirmed that, since the 



welding deformation predicted by this analysis was a good agreement with the 

deformation measured using FARO, the proposed method has good analysis 

accuracy for welding deformation. 

3) In order to show the utility of the proposed method in the investigation of welding 

deformation in real large structures, an investigation was made of the changes in 

welding deformation when the welding sequence was changed using the proposed 

method. In this investigation, welding sequences focusing on weld length and 

transverse shrinkage were set for analyses of welding deformation. As a result, it was 

clear that when the welding sequence was changed, there was an evident difference 

in welding deformation. These results give some indication of the influence of 

welding sequence on welding deformation and it will be necessary for this to be 

investigated further in the future. 

4) In the present study, since it was possible to achieve a large reduction in the 

computation time required for analysis of welding deformation in complex structures 

by using the proposed idealized explicit FEM incorporating an algebraic multigrid 

method, it was possible to investigate the welding sequence in complex structures. It 

is expected that from now this will be of utility in the analysis of welding 

deformation in a wide variety of large structures. 
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Figure 1. Typical 2D aggregates. 

 
Figure 2. Flow of multigrid method introduced Idealized Explicit FEM. 
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Figure 3. Schematic illustration of multigrid method introduced Idealized Explicit FEM. 

 
Figure 4. Analysis model of the base of construction machine. 
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 (a) View from point A. 

 (b) View from point B. 

   
(c) View from point C.   (d) View from point D. 

(d) View from point E. 
Figure 5. Location of welding passes. 
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Table 1. Welding conditions. 

Stage  
Current 

(A) 
Voltage 

(V) 
Welding speed 

(mm/s) 
Heat 

efficiency 

I 293.0  24.0  4.5  0.8  
II-1 260.0  24.5  5.0  0.8  
II-2 245.0  26.0  3.7  0.8  
II-3 290.0  24.5  6.0  0.8  
III 293.0 24.0 4.5 0.8 

 

 
(a) 5-22 pass (stage II).    (b) 23-28 pass (stage III). 

Figure 6. Constraint condition. 

 

 
Figure 7. Temperature dependent material properties of SM490A. 
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Figure 8. Distribution of displacement in z direction after the 4th welding pass. 

 

 

(a) Before 14th pass.     (c) Before17th pass. 

 
(b) After 14th pass.     (d) After 17th pass. 

Figure 9. Change of displacement in z direction between before and after the 14th and 17th 

welding pass. 
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Figure 10. Distribution of displacement in z direction after the 22nd welding pass. 

 
Figure 11. Distribution of displacement in z direction after all the welding passes. 

 
(a) Measured by FARO.    (b) Predicted by the proposed method. 

Figure 12. Comparison of displacement in z direction on the base plate between 

measurement and analysis. 
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(a) Line 2B-13B. 

(b) Line 13b-13L. 

Figure 13. Comparison of displacement in z direction on the base plate between 

measurement and analysis. 

 

Table 2. Modified welding sequence according to transverse shrinkage. 

Order 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 
Pass no. 18 20 21 5 6 7 8 9 10 11 12 13 14 15 16 17 19 22 

 
Figure 14. Weld length of each pass in robot welding. 
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Figure 15. Modified welding sequence according to weld length. 

 
Figure 16. Predicted distribution of displacement in z direction using modified welding 

sequence according to transverse shrinkage. 

 
Figure 17. Predicted distribution of displacement in z direction using modified welding 

sequence according to weld length. 
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(a) Line c-a. 

(b) Line a-b. 

Figure 18. Comparison of displacement in z direction between original and modified 

welding sequence. 
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