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Direct numerical simulation of turbulent heat transfer

over irregular rough surfaces based on Reynolds analogy
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Abstract

The effect of rough surface topography on heat and momentum transfer is

studied by direct numerical simulations of turbulent heat transfer over uni-

formly heated three-dimensional irregular rough surfaces, where the effective

slope and skewness values are systematically varied while maintaining a fixed

root-mean-square roughness. The friction Reynolds number is fixed at 450,

and the temperature is treated as a passive scalar with a Prandtl number of

unity. Both the skin friction coefficient and Stanton number are enhanced

by the wall roughness. However, the Reynolds analogy factor for the rough

surface is lower than that for the smooth surface. The semi-analytical ex-

pression for the Reynolds analogy factor suggests that the Reynolds analogy

factor is related to the skin friction coefficient and the difference between

the temperature and velocity roughness functions, and the Reynolds analogy

factor for the present rough surfaces is found to be predicted solely based on

the equivalent sand-grain roughness. This suggests that the relationship be-

tween the Reynolds analogy factor and the equivalent sand-grain roughness
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is not affected by the effective slope and skewness values. Analysis of the

heat and momentum transfer mechanisms based on the spatial- and time-

averaged equations suggests that two factors influence the Reynolds analogy

factor. One is the increased effective Prandtl number within the rough sur-

face in which the momentum diffusivity due to the combined effects of tur-

bulence and dispersion is larger than the corresponding thermal diffusivity.

The other is the significant increase in the pressure drag force term above

the mean roughness height.

Keywords: Direct numerical simulation, Rough wall, Turbulent heat

transfer, Lattice Boltzmann method,

Nomenclature

A : plane area of an x− z plane: A = LxLz

Af : fluid phase plane area of an x− z plane

Ar : surface area of a rough surface

B : log-law intercept of the mean velocity profile for smooth wall turbulence

c : specific heat

C : model constant

Cf : skin friction coefficient at a rough wall: Cf = τaw
0.5ρU2

b

Cf0 : skin friction coefficient at a smooth wall

ES : effective slope of a rough surface
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fk : model function for the correlation of St

fpi : mean pressure drag in an x− z plane

fvi : mean viscous drag in an x− z plane

Fpi : contribution of pressure drag to the total shear stress

Fvi : contribution of viscous drag to the total shear stress

h : surface height of a rough surface

hm : mean surface height

hp : peak height of a rough surface

hpe : peak height of a rough surface measured by ye

hrms : root mean square of the surface height elevation

ht : mean peak-to-valley height

Hi : plane-averaged turbulent heat flux

Hi : plane-dispersion heat flux

Hw : wall heat flux contribution to the total heat flux

I+ : gap between the temperature and velocity profiles: I+ =
⟨
θ
⟩+ − ⟨u⟩+

I+td : contribution of turbulence and dispersion transport to I+

I+tot : contribution of total heat flux and shear stress to I+

I+wi : contribution of wall interaction term to I+
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ks : equivalent sand-grain roughness

Ku : kurtosis factor of a surface elevation

ℓy : length scale related to a surface area gradient in terms of y: ℓy =
∂Ar

∂y

ℓx : length scale related to a surface area gradient in terms of x: ℓx = ∂Ar

∂x

L : obstacle perimeter within an x− z plane

Lx : computational domain length in the x−direction

Ly : computational domain length in the y−direction

Lz : computational domain length in the z−direction

ni : unit normal vector pointing outward from the fluid to solid phase

p : pressure

Pr : molecular Prandtl number

Prt : turbulent Prandtl number

Preff : effective Prandtl number: Preff =
νeff
αeff

qw : wall heat flux

qaw : equivalent wall heat flux: qaw = qw
Ar

A

Q : flow rate

Rij : x− z plane-averaged Reynolds stress: Rij =
⟨
u′
iu

′
j

⟩
RA : Reynolds analogy factor for a rough wall: RA = 2St

Cf
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RA0 : Reynolds analogy factor for a smooth wall: RA0 =
2St0

Cf0

Reτ : friction Reynolds number: Reτ = uτ δe
ν

scht : source term for the constant heat flux condition

st : tortuosity molecular diffusion term

sw : wall heat transfer term

Sk : skewness factor of surface elevation

St : Stanton number at a rough wall

St0 : Stanton number at a smooth wall

t : time

tτ : friction temperature: tτ = qaw
ρcuτ

T : temperature

Tw : temperature at a rough surface

Tij : x− z plane-dispersion stress: Tij =
⟨
ũiũj

⟩
ui : velocity

uτ : friction velocity: uτ =
√

τaw
ρ

Ub : bulk mean velocity: Ub =
Q

δeLz

x : streamwise coordinate

y : wall normal coordinate

5



y′ : normal distance from a mean surface height: y′ = y−hm

hm

ye : effective wall normal distance: ye =
∫ y

0
φdy

z : spanwise coordinate

α : thermal diffusivity

αeff : effective thermal diffusivity

β : log-law intercept of the mean temperature profile for smooth wall turbu-

lence

δ : half channel height

δe : effective half channel height: δe = δ − hm

∆ : grid spacing

∆P : mean pressure difference between the inlet and outlet boundary faces

∆U+ : velocity roughness function

∆U+
ir : contribution of the viscous term related to the roughness density vari-

ation to ∆U+

∆U+
pd : contribution of the pressure drag to ∆U+

∆U+
td : contribution of the Reynolds and dispersion stresses to ∆U+

∆U+
vd : contribution of the viscous drag to ∆U+

∆Θ+ : temperature roughness function
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∆Θ+
ir : contribution of the conduction term related to the roughness density

variation to ∆Θ+

∆Θ+
td : contribution of the turbulent and dispersion heat fluxes to ∆Θ+

∆Θ+
tot : contribution of the total heat flux to ∆Θ+

∆Θ+
fig12 : contribution of the wall heat transfer to ∆Θ+

κ : Kármán constant

θ : temperature variance: θ = Tw − T

Θa : arithmetic mean temperature of θ

Θm : bulk mean temperature of θ

ν : kinematic viscosity

νeff : effective viscosity

ρ : fluid density

τaw : wall shear stress at a rough surface

φ : x− z plane porosity: φ =
Af

A

ϕ : variable

ϕ′ : fluctuation of ϕ : ϕ− ϕ

ϕ : time-averaged value of ϕ

⟨ϕ⟩ : superficial x− z plane-averaged value of ϕ
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⟨ϕ⟩f : intrinsic x− z plane-averaged value of ϕ

ϕ̃ : plane-dispersion of ϕ : ϕ− ⟨ϕ⟩f

()+ : value normalized by the inner-scaled (uτ ,tτ , and ν)

1. Introduction

The transport of momentum, mass, and heat for rough wall turbulence

has received considerable attention because the presence of wall roughness

generally leads to an enhancement of those transports, resulting in a con-

siderable increase in the skin friction coefficient, heat, and mass transfer

rate. Practical examples of wall roughness include biofouling on a ship hull

(Townsin et al., 1981; Schultz, 2007); deposition and pitting on internal com-

bustion engines (Zerda et al., 1999; Forooghi et al., 2018b); turbomachinery

(Acharya et al., 1986; Bons et al., 2001; Bons, 2002); and aircraft icing (Bragg

et al., 1986; Lynch and Khodadoust, 2001). In all these cases, the machine

performance was significantly degraded by the roughness. Meanwhile, as the

wall roughness enhances the heat transfer performance, artificial roughness

is frequently created in engineering devices, such as internal cooling inside

turbine blades (Mochizuki et al., 1999; Murata and Mochizuki, 2001), so-

lar thermal systems (Chamoli et al., 2012), and heat transfer pipes (Gee

and Webb, 1980; Akermann et al., 2020). Therefore, considerable effort has

been made in understanding and predicting the effects of wall roughness on

momentum and scalar transport.

An earlier study on the effects of wall roughness on momentum transfer

was conducted by Nikuradse (1933), who measured the pressure drop in
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pipes with walls covered by sand-grains. He found that, at a sufficiently high

Reynolds number flow, the skin friction coefficient at a rough surface depends

only on the relative sand-grain size. Subsequently, the so-called roughness

function ∆U+ was introduced by Clauser (1954); Hama (1954) to quantify

the increase in the skin friction coefficient in a range of flow configurations,

such as pipes, ducts, channels, and boundary layers. The roughness function

is defined as a downward shift in the inner-scaled streamwise mean velocity

relative to the smooth wall at the corresponding friction Reynolds number.

It is expressed as a function of the equivalent sand-grain roughness ks, which

is the size of the sand-grain in Nikuradse (1933) that yields the same skin

friction coefficient as the surface of interest. Since their earlier works, most

studies have focused on how to relate the topological parameters of the rough

surface to ks or ∆U+, with the aim of predicting the effects of wall roughness

on momentum transfer.

Earlier studies on ks were based on the solidity parameter (Schlichting,

1937; Dvorak, 1969; Dirling, 1973; Sigal and Danberg, 1990; Van Rij et al.,

2002). The pioneering work on the effects of solidity on ks was conducted

by (Schlichting, 1937) who investigated the surfaces roughened by spherical,

cone, and plate roughness with varying solidity. Dirling (1973) first pre-

sented a correlation for ks of arbitrary rough surfaces by using the ratio of

the average element space to the roughness height as the solidity parame-

ter. A subsequent study by Sigal and Danberg (1990); Van Rij et al. (2002)

extended this idea to various types of rough surfaces by employing the ra-

tio of the surface area before adding roughness to the total frontal area.

Another representation of solidity, which is significantly easier to define for
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three-dimensional irregular roughness, is the effective slope (ES) proposed

by Napoli et al. (2008). The effective slope is defined as the mean slope of

the undulation and corresponds to double the solidity parameter, as defined

by Sigal and Danberg (1990); Van Rij et al. (2002). Several numerical and

experimental studies have established that ∆U+ increases with ES when the

ES value is lower than a certain threshold value, whereas ∆U+ is indepen-

dent of ES above the threshold value (Napoli et al., 2008; Schultz and Flack,

2009; De Marchis, 2016; MacDonald et al., 2016; Kuwata and Nagura, 2020).

The other important characteristic parameter that has a significant im-

pact on ks is the skewness factor Sk. The skewness factor is related to the

statistical moments of the surface elevation, and quantifies the asymmetry of

the probability density function (PDF) of the surface height elevation. An

earlier attempt to relate the statistical moments to ks was made by Musker

(1980). Moreover, the importance of Sk in predicting ks has been estab-

lished using a large amount of experimental data (Flack and Schultz, 2010;

Flack et al., 2016) and direct numerical simulation (DNS) data (Forooghi

et al., 2017; Thakkar et al., 2017; Kuwata and Kawaguchi, 2019; Kuwata and

Nagura, 2020).

With regard to the turbulent heat transfer over a rough surface, the mod-

ification of heat transfer due to the wall roughness has also been investigated

extensively. The experimental studies by Nunner (1956); Dipprey and Saber-

sky (1963); Gowen and Smith (1968); Yaglom and Kader (1974); Kays and

Crawford (1993) examined a predictive correlation for the Stanton number,

St, at the rough surface. The pioneering experiments by Nunner (1956) on

a surface roughened by two-dimensional transverse ribs offered an empirical
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expression for St with the Reynolds number, Prandtl number, and the ratio

of the rough to smooth skin friction coefficients. A semi-analytical expres-

sion for St based on the law of the wall similarity was proposed by Dipprey

and Sabersky (1963), who demonstrated that St was expressed as a function

of the Prandtl number, skin friction coefficient, and inner-scaled equivalent

sand-grain roughness. In this expression, the effects of ks on St, which can-

not be analytically derived, were expressed based on the experimental data

from a pipe with sand-grain roughness. The validity of this expression has

been widely studied experimentally and numerically, and a modified expres-

sion has been proposed (Webb et al., 1971; Kays and Crawford, 1993; Wassel

and Mills, 1979; Bons, 2002). Most of the experimental studies reached a

consensus that the increase in the skin friction coefficient was greater than

the associated increase in heat transfer. That is, the wall roughness weakens

the similarity between the momentum and heat transfers, which was also

supported by the theoretical study by Katoh et al. (2000). However, there is

still much controversy about the effects of ks on St. Furthermore, owing to

experimental difficulties in obtaining high-fidelity temperature fields within

the roughness sublayer, the underlying physics of the effects of wall roughness

on heat transfer is still unclear.

Meanwhile, recent developments in computer technology have enabled us

to perform DNSs for turbulent heat transfer over resolved rough surfaces

(Miyake et al., 2001; Nagano et al., 2004; Forooghi et al., 2018b,a; Peeters

and Sandham, 2019; MacDonald et al., 2019). The minimal-span channel

DNSs on turbulent heat transfer over a surface with sinusoidal roughness

performed by MacDonald et al. (2019) suggested that the correlation func-

11



tion proposed by Dipprey and Sabersky (1963) provided a faithful account

of the effects of the equivalent sand-grain roughness on St. An analysis of

instantaneous temperature fields suggested that the dissimilarity between

the heat and momentum transfer was due to the pressure drag acting on

the rough wall, which enhanced the momentum transfer but not the heat

transfer. Peeters and Sandham (2019) conducted DNSs for grit-blasted sur-

faces and reported the considerable potential of the correlation proposed by

Dipprey and Sabersky (1963) for predicting St for grit-blasted surfaces. The

dissimilarity between the heat and momentum transfers was distinct in the

recirculation zone behind the roughness elements, where the effective Prandtl

numbers rapidly increased within the rough surface.

The aforementioned DNS studies concluded that the presence of pressure

is closely related to the dissimilarity between heat and momentum trans-

fer. However, it is still unclear how pressure leads to the breakdown of the

Reynolds analogy. Moreover, despite the potential of modern supercomputers

to perform DNSs, only a few simulations have been conducted on turbulent

heat transfer over three-dimensional irregular rough surfaces. The present

study has two main objectives. One is to understand the isolated effects of

the effective slope and skewness factor on the heat transfer over an irregular

rough surface, both of which have a considerable effect on the momentum

transfer. The other is to quantify the effects of pressure on the dissimilarity

between heat and momentum transfer and understand the underlying physics

on the dissimilarity between them.
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2. Methodology

2.1. Flow geometry

As in the previous DNS studies (Coceal et al., 2006; Leonardi and Castro,

2010; Forooghi et al., 2017; Kuwata and Kawaguchi, 2018, 2019; Kuwata and

Nagura, 2020), we chose a rough-walled open-channel flow configuration as

shown in Figure 1 to simulate the turbulence modification near a rough sur-

face with fewer computational resources. Three-dimensional irregular rough

walls were considered for the bottom wall, whereas a symmetric boundary

condition was considered for the top boundary. The computational domain

size (Lx, Ly, Lz) is (6δ, δ, 3δ), in the streamwise, wall-normal, and spanwise

directions, respectively, where δ is the half-channel height. The domain size

is identical to those used in the rough-walled open-channel flow DNS studies

conducted by Kuwata and Kawaguchi (2018, 2019); Kuwata et al. (2020),

and was confirmed to be sufficient through a preliminary simulation with

a computational domain that was twice as large. The flow was periodic in

the streamwise and spanwise directions. The flow was driven by a constant

streamwise pressure difference, and the friction Reynolds number based on

the effective half-channel height δe = δ − hm with hm being the mean rough

surface height, was fixed at Reτ = 450.

For the thermal boundary conditions, the adiabatic boundary condition

was applied to the top boundary, whereas the modified mixed boundary

conditions were applied for the rough surface, in which a statistically uniform

heat flux in space and time is prescribed. This boundary condition was

originally proposed by Kasagi et al. (1992) for the smooth wall turbulence,

and has been widely used in DNS studies (Kawamura et al., 1998; Abe et al.,
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Rough surface

y
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Figure 1: Sketch of the computational geometry of a rough-walled open-channel flow.

2004; Kozuka et al., 2009; Lluesma-Rodŕıguez et al., 2018). The extension

of this approach for the rough surface is available in Appendix A. The fluid

Prandtl number was set to unity, Pr = 1.0, and we assumed a passive scalar

by neglecting the buoyancy effect.

2.2. Numerical method

We employed the lattice Boltzmann method (LBM) as the numerical

method in this study. The LBM solves the time evolution of the particle

distribution function based on the discretized gas kinetic equations, and is

proven to recover the continuity and Navier–Stokes equations in second-order

accuracy in space and time. Although there are several possible choices for

the LBM models, we used the three-dimensional 27 discrete velocity (D3Q27)

multiple-relaxation-time LBM (Suga et al., 2015) for the flow field, whereas

the scalar field was simulated using the three-dimensional 19 discrete velocity

(D3Q19) regularized LBM (Latt and Chopard, 2006; Suga et al., 2017). Note

that the LBM approach has been extensively validated against fundamental

flows (Suga et al., 2015) and applied to simulate the turbulent heat trans-
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fer of complicated flow geometries (Suga et al., 2017; Nishiyama et al., 2020;

Kuwata and Nagura, 2020). A regular grid with an equal spacing of ∆+ ≃ 1.8

was used, where ∆+ is the grid spacing in wall unit defined as ∆uτ/ν, where

ν and uτ denote the kinematic viscosity and friction velocity, respectively.

The number of grid points was 1680(x)×281(y)×840(z), resulting in a total

of 397 million grid points. This spatial resolution was confirmed to be suffi-

cient to accurately resolve fine-scale turbulence near the rough surface and

is comparable to those used in lattice Boltzmann DNS studies of rough wall

turbulence (Kuwata and Kawaguchi, 2018, 2019; Kuwata et al., 2020; Kuwata

and Nagura, 2020). In this simulation, we utilized the bounce-back scheme

for unknown distribution functions propagating from a boundary surface.

For comparison, we also performed the DNS of the turbulent heat transfer

over a smooth wall at Reτ = 450. The flow conditions and simulation param-

eters, including the computational domain size and number of grid points,

were identical to those in the rough wall cases. Note that the grid resolution

of ∆+ ≃ 1.8 is sufficient to provide solutions for the turbulent channel flow,

which is significantly closer to the results obtained by the spectral method

(Suga et al., 2015). For the no-slip boundary and constant heat flux condi-

tions at the rough surface, we employed the linear interpolated bounce-back

method (Pan et al., 2006; Li et al., 2014), as in previous DNS studies (Kuwata

and Kawaguchi, 2019; Kuwata and Nagura, 2020). The symmetric and adia-

batic boundary conditions at the top boundary are satisfied by the specular

reflection bounce-back (Suga et al., 2017).
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2.3. Friction velocity and temperature

Unlike a flow over a smooth surface, the determination of the friction

velocity and temperature for the rough surface are not straightforward be-

cause they strongly depend on the location of the origin of the rough surface.

This is less important when the roughness height is negligibly lower than

the boundary layer thickness. However, this is a crucial issue in the current

DNS study, where the roughness height accounts for a relatively large frac-

tion of the boundary layer thickness (Kuwata and Kawaguchi, 2019; Chan

et al., 2015). In this study, we follow the definition proposed by Kuwata

and Kawaguchi (2019), in which the friction velocity based on the averaged

wall shear stress of the rough surface, uτ =
√
τaw/ρ, is computed from the

streamwise momentum balance between the pressure drop ∆P and the wall

shear stress τaw:

∆PSyz = τawA, (1)

where A = LxLz is the reference surface area, and Syz = Vf/Lx is the mean

y − z plane area occupied by the fluid phase, where Vf is the volume of the

fluid phase. Following Kuwata and Kawaguchi (2019); Kuwata and Nagura

(2020), we can transform the effective area into Syz = δeLz using the effective

half channel height δe. This yields

uτ =

√
∆Pδe
ρLx

. (2)

Note that τaw obtained from Eq.(1) corresponds to the total shear stress at

a mean surface height y = hm (Kuwata and Kawaguchi, 2019), and it is

consistent with the definition provided by Forooghi et al. (2017); Chan et al.

(2015).
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Analogous to the wall shear stress, the friction temperature is also defined

by the equivalent heat flux qaw as tτ = qaw/(ρcuτ ), where qaw is given by the

energy budget of the system as follows:∫ Lx

0

∫ Ly

0

∫ Lz

0

schtdxdydz = qawA, (3)

where c is the specific heat, and scht denotes the time-averaged source term

included in the energy equation for the constant heat flux condition, as de-

scribed in Appendix A. Note that the integration of scht over the system

(left-hand side of Eq.(3)) analytically yields Arqw after some calculations,

where Ar is the rough surface area (see Appendix B). Thus, qaw is simply

given as qaw = Ar

A
qw. In this study, we discuss the temperature variance rel-

ative to the wall temperature Θ = Tw − T , where Tw and T denote the wall

and fluid temperatures, respectively. Throughout this paper, the value with

“+” denotes the value normalized with the friction velocity or temperature.

2.4. Rough surface

One of the objectives of this study was to clarify the effect of surface char-

acteristics on turbulent heat transfer over a rough surface. Therefore, based

on the previous systematic DNS study by Kuwata and Nagura (2020), we

considered six rough surfaces in which the skewness (Sk) and effective slope

(ES) values were systematically varied while the root-mean-square roughness

remained fixed. The skewness Sk is defined as the statistical moment of the

rough surface elevation, h(x, z)− hm, expressed as follows:

Sk =
1

h3
rmsA

∫
x

∫
z

(h(x, z)− hm)
3 dxdz, (4)
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where h(x, z) is the rough surface height, and hrms is the root-mean-square

roughness height.

h2
rms =

1

A

∫
x

∫
z

(h(x, z)− hm)
2 dxdz. (5)

The fourth moment of surface elevation is referred to as kurtosis, Ku, which

is defined as follows:

Ku =
1

h4
rmsA

∫
x

∫
z

(h(x, z)− hm)
4 dxdz. (6)

The parameters Sk and Ku are closely related to the shape of the PDF of

the surface height. The skewness measures whether the surface of interest

has a valley-dominated or peak-dominated nature, whereas Ku measures the

significance of the tail of the PDF. The effective slope ES proposed by Napoli

et al. (2008) is defined as the average value of the slope of the surface height:

ES =
1

A

∫
x

∫
z

∣∣∣∣∂h(x, z)∂x

∣∣∣∣ dxdz. (7)

The effective slope ES represents the wavelength of the surface undulations

or solidity of the roughness elements (Napoli et al., 2008; Chan et al., 2015;

MacDonald et al., 2016).

The rough surface considered in this study was a three-dimensional ir-

regular rough surface with an isotropic and homogeneous nature. Although

the procedure for generating a rough surface is the same as that in Kuwata

and Nagura (2020), we briefly summarize our process of generating rough

surfaces in which Sk and ES are systematically varied. First, we generated

the original surface tile by superimposing roughness cones of various heights

and widths. The roughness cone was generated by a rotating body of a

hyperbolic sine function, and the shape parameters were adjusted by trial

18



and error such that the obtained Sk and ES values were close to the target

values of Sk = +0.53 and ES = 0.16, respectively. Based on this original

rough surface, we generated the other five rough surfaces with different Sk

and ES values: the sign of the Sk value was changed by inverting the surface

height as hp − h(x, z), where hp is the maximum roughness peak, whereas

the ES value was increased by reducing the surface width in the streamwise

and spanwise directions while preserving the surface height. These transfor-

mations can be observed in Figure 2, where the rough surfaces colored by

the surface elevation are shown together with the Sk and ES values. The

inversion process transformed the surface peaks of the original rough sur-

face, as shown in Fig.2(a), into surface valleys in Fig.2(d), modifying the

peak-dominated surface of Sk = +0.53 into a valley-dominated surface with

Sk = −0.53. Note that this transformation did not affect the values of Ku,

hrms, and ES. The procedure for varying the ES value is shown in Fig.2

(a,b): when the size of the original rough surface of 6δ(x)×3δ(z) of Fig.2 (a)

was reduced by a factor of two, and 2×2 reduced tiles of 3δ(x)×1.5δ(z) were

remapped when the domain size was fixed, the wavelength of the surface was

doubled as shown in Fig.2 (b). Notably, this transformation did not affect

the values of Sk, Ku, and hrms, which only altered the ES value.

The characteristic parameters, including the values of Sk, ES, Ku, hm,

and hrms, and the mean peak-to-valley height ht, are summarized in Table

1, where ht is computed by partitioning the surface in Fig.2(a) into 5 × 5

tiles of equal size (Thakkar et al., 2017). Inversing the surface height alters

the mean roughness height hm, while the roughness height scales of hrms

and ht are fixed (hrms/δ = 0.035 and ht/δ = 0.14) as presented in Table 1.
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The mean peak-to-valley height normalized by the effective channel height

is ht/δe ≃ 0.16, which is close to that in previous DNS studies conducted

by Thakkar et al. (2017), who demonstrated that the blockage by the wall

roughness of ht ≃ δe/6 hardly altered the flow in the outer layer. The present

rough surfaces have relatively low Sk values (Sk = ±0.53) and Ku = 3,

suggesting that the PDF of the height elevation is relatively close to the

Gaussian distribution in which the majority of the real rough surfaces are

clustered (Jelly and Busse, 2019). As for the mean wavelength of the surface

undulation, the range of ES values is ES = 0.16 − 0.64, which covers the

wavy surface to rough surface regimes (Schultz and Flack, 2009).

The advantage of the procedure of reducing and inverting the rough

surface is that this procedure only modified the ES and Sk values while

strictly preserving the roughness height scales such as hrms, ht, and the sur-

face height amplitude. However, strictly speaking, the transformed surfaces

for ES = 0.32 and 0.64 cannot be regarded as perfectly irregular but have

periodicity in the x and z directions. The streamwise period of the tile

for ES = 0.64 is 1.5δ, which is not sufficiently longer than the streamwise

integral scale of the velocity fluctuations. However, Kuwata and Nagura

(2020) reported that the rough surfaces generated by this procedure yielded

hydraulic roughness effects comparable to realistic irregular rough surfaces.

Thus, the effect of periodicity of the rough surface was considered negligible.

With regard to the grid resolution, we confirm from Figure 3 that the cur-

rent grid resolution is sufficiently fine to resolve the roughness geometry even

for the case with ES = 0.64 where the wavelength of the surface undulations

is the smallest. Furthermore, a grid sensitivity study was also performed for
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Figure 2: Three-dimensional irregular rough surfaces colored by the surface elevation

(h − hm)/hm: (a) original surface with Sk = +0.53 and ES = 0.16, (b) surface with

Sk = +0.53 and ES = 0.32, (c) surface with Sk = +0.53 and ES = 0.64, (d) surface with

Sk = −0.53 and ES = 0.16, (e) surface with Sk = −0.53 and ES = 0.32, and (f) surface

with Sk = −0.53 and ES = 0.64.

the case with ES = 0.64 and Sk = +0.53, and we have confirmed that dou-

bling the grid resolution yields a change in the skin friction coefficient and

Stanton number of 0.5% and 1.6%, respectively. Hence, the grid resolution

employed in this study can not only correctly resolve the roughness geometry

but also capture fine-scale turbulent dynamics near the rough wall.

21



Table 1: Characteristic parameters of rough surfaces; Sk is the skewness, ES is the effective

slope, Ku is the kurtosis, hm is the mean roughness height, hrms is the root-mean-square

roughness, ht is the mean peak-to-valley height, and δe is the effective channel height.

(              )

(           )

Figure 3: Grid arrangement for the case with ES = 0.64 and Sk = +0.53 where the

wavelength of the surface undulations is the smallest.
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2.5. Averaging procedure

To statistically discuss turbulence near a rough wall where a time-averaged

variable changes in space owing to the presence of a rough surface, we

employed a double-averaging methodology consisting of spatial- and time-

averaging operators. For spatial averaging, superficial and intrinsic x − z

plane-averaging methods were introduced (Kuwata et al., 2020; Kuwata and

Nagura, 2020; Kuwata and Kawaguchi, 2019). The superficial averaging of a

variable ϕ(x, y, z) is defined as follows:

⟨ϕ⟩(y, t) = 1

A

∫
x

∫
z

ϕ(x, y, z, t)dxdz. (8)

The intrinsic averaging is taken over the fluid phase in the x − z plane as

follows:

⟨ϕ⟩f (y, t) = 1

Af

∫
x

∫
z

ϕ(x, y, z, t)dxdz, (9)

where Af is the fluid phase area within the x−z plane, and the superficial and

intrinsic averaged values are related though the plane porosity φ = Af/A as

⟨ϕ⟩ = φ⟨ϕ⟩f . The variable ϕ(x, y, z, t) can be decomposed into a contribution

from an intrinsic averaged value ⟨ϕ⟩f (y, t) and a deviation from the intrinsic

averaged value ϕ̃(x, y, z, t), referred to as the dispersion, as follows:

ϕ(x, y, z, t) = ⟨ϕ⟩f (y, t) + ϕ̃(x, y, z, t). (10)

The Reynolds decomposition is also introduced to the time-dependent vari-

able ϕ(x, y, z, t) as follows:

ϕ(x, y, z, t) = ϕ(x, y, z) + ϕ′(x, y, z, t), (11)

where ϕ′(x, y, z, t) denotes the fluctuation from the time-averaged value of

ϕ(x, y, z). For time averaging, the statistical properties were assembled over

23



a period of 60T , where T = Lx/Ub is the flow-through time, and Ub is the

bulk mean velocity.

3. Results and discussion

3.1. Mean profiles

The roughness effect on the inner-scaled mean velocity and temperature

with logarithmic scaling is shown in Figure 4, where the effective wall-normal

distance

ye =

∫ y

0

φdy, (12)

proposed by Kuwata and Kawaguchi (2019) is used as the distance from the

rough wall. The effective distance ye is zero at the bottom of the deepest val-

ley, but returns to y− hm above the rough surface (Kuwata and Kawaguchi,

2019). Hence, above the rough surface, the effective distance is regarded as

the normal distance from the virtual origin of y = hm, as in previous studies

(Chan et al., 2015; Forooghi et al., 2017). For comparison, the DNS results

for the smooth-wall turbulent channel flow from Kawamura et al. (1998) were

included. Fig.4(a,c) confirms that the predicted smooth wall results agree

quite well with the reference data, suggesting that the present grid resolu-

tion is sufficient to reasonably resolve fine-scale near-wall eddies. The slight

discrepancy away from the wall is attributed to the difference in the flow

configuration. This study considers an open-channel flow with symmetric

boundary conditions at the channel center, whereas the full-channel flow was

simulated for the reference DNS by Kawamura et al. (1998). For the rough

surface cases, both the mean velocity and temperature profiles are shifted
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downward from the smooth wall results due to the enhancement of momen-

tum and heat transfer by the rough surfaces. In addition, the figure shows

that the profiles away from the wall appear to maintain a logarithmic profile.

However, as shown in Figure 5, where the mean velocity and temperature

defect profiles are compared, the similarity in the logarithmic region cannot

be perfectly preserved even away from rough surfaces. This is due to the

fact that for the current rough surfaces, the roughness height relative to the

channel height is not sufficiently small (Jiménez, 2004; Schultz and Flack,

2005; Flack et al., 2007; Flack and Schultz, 2014). Fig.4(a,b) shows that the

downward shift in ⟨u⟩+ is pronounced for the surface with the positive Sk and

larger ES values, which is consistent with the previous DNS studies (Napoli

et al., 2008; Chan et al., 2015; De Marchis et al., 2010; Flack and Schultz,

2010; Flack et al., 2020). A similar trend is apparent for the downward shift

in
⟨
θ
⟩+

, as shown in Fig.4(c,d). However, the downward shifts in
⟨
θ
⟩+

are

found to be somewhat smaller than those in ⟨u⟩+.

To clarify the relationship between the downward shifts in
⟨
θ
⟩+

and ⟨u⟩+,

Figure 6 depicts the roughness function ∆U+ and ∆Θ+, which is evaluated as

the difference in the mean profiles at y+e ≃ 100 with the smooth-wall results

(Kuwata and Kawaguchi, 2019; Kuwata and Nagura, 2020). In addition, the

DNS data for three-dimensional irregular roughness at Pr = 1 from Peeters

and Sandham (2019) and three-dimensional sinusoidal roughness at Pr = 0.7

from MacDonald et al. (2019) are shown. The roughness function ∆U+

exhibits the maximum value of ∆U+ = 9.7 for the case with Sk = +0.53

and ES = 0.64 followed by the case with Sk = +0.53 and ES = 0.32

and Sk = −0.53 and ES = 0.64, and is the smallest for the case with
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Figure 4: Comparison of the mean profiles with logarithmic scaling: (a) mean velocity for

Sk = +0.53, (b) mean velocity for Sk = −0.53, (c) mean temperature for Sk = +0.53, and

(d) mean temperature for Sk = −0.53. The DNS results for the smooth-wall turbulent

channel flow from Kawamura et al. (1998) are also shown.

Sk = −0.53 and ES = 0.16. Based on the criterion of the fully rough

regime of ∆U+ ≳ 7(k+
s > 70) proposed by Nikuradse (1933), the simulated

flows can be categorized as a fully rough regime, except for the cases with

ES = 0.16. The figure also shows that ∆Θ+ is consistently smaller than

∆U+, irrespective of the Sk and ES values. Interestingly, the trend of the

present results is similar to that of the three-dimensional irregular rough

surface of Peeters and Sandham (2019), but deviates from the sinusoidal

roughness of MacDonald et al. (2019) when ∆U+ > 7. The reason for the
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Figure 5: Comparison of the mean velocity and temperature profiles with defect form: (a)

for case Sk = +0.53, (b) for case Sk = −0.53.

deviation is not clear. However, it may be responsible for the differences in

the roughness structure and molecular Prandtl number.

To better understand the physical meaning of the relation ∆U+ > ∆Θ+,

we attempt to derive the relation among the Reynolds analogy factor and

roughness functions. The inner-scaled mean velocity and temperature profiles

in the log-law region can be expressed as follows:

⟨u⟩+ =
1

κ
ln(y+e ) +B −∆U+, (13)⟨

θ
⟩+

=
Prt
κ

ln(y+e ) + β(Pr)−∆Θ+, (14)

where Prt is the turbulent Prandtl number, and κ is the von Kármán con-

stant. The values for B and β(Pr) are the log-law intercepts of the mean

velocity and temperature, respectively (Kader, 1981). Integrations of Eqs.

(13) and (14) over 0 to δ+e divided by δ+e yield the inner-scaled bulk mean
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Figure 6: Velocity and temperature roughness functions. The DNS data for the three-

dimensional irregular roughness from Peeters and Sandham (2019) and three-dimensional

sinusoidal roughness from MacDonald et al. (2019) are included. The black thin line

indicates ∆Θ+ = ∆U+.

velocity and arithmetic mean temperature as follows:

U+
b ≃ 1

δ+e

∫ δ+e

0

⟨u⟩+dy+e =
1

κ
ln(Reτ )−

1

κ
+B −∆U+, (15)

Θ+
a ≃ 1

δ+e

∫ δ+e

0

⟨
θ
⟩+

dy+e =
Prt
κ

ln(Reτ )−
Prt
κ

+ β(Pr)−∆Θ+. (16)

The global flow resistance and heat transfer rate can be quantified by the skin

friction coefficient Cf and the Stanton number St: which can be, respectively,

expressed as follows:

Cf =
2

(U+
b )

2
, St =

1

U+
b Θ

+
m

, (17)

where Θ+
m denotes the bulk (mixed-mean) temperature, which is related to

Θ+
a as follows (MacDonald et al., 2019):

Θ+
m = Θ+

a +
Prt
κ2U+

b

. (18)

Equations (15), (16), (17), and (18) yield the Reynolds analogy factor RA =
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(2St)/Cf as follows:

RA =
1

Prt +
√

0.5Cffk
, (19)

fk = Prt∆U+ −∆Θ+ + β(Pr)− PrtB +
Prt
κ2

√
0.5Cf . (20)

For the current simulations (Pr = 1 and Reτ = 450), the predicted mean

velocity and temperature profiles almost collapse onto each other, which in-

dicates that the slope and intercept values for the logarithmic mean velocity

profile are close to the corresponding values for the logarithmic mean temper-

ature profile. Hence, in this study, we assume that Prt ≃ 1 and β(Pr) ≃ B.

Hence, RA for the present flow conditions is expressed simply as follows:

RA ≃ 1

1 +
√

0.5Cffk
, fk = ∆U+ −∆Θ+ +

√
0.5Cf

κ2
. (21)

The important implications of Eq.(21) shows that RA is lower than unity

when ∆U+ > ∆Θ+ (i.e., fk > 0). Thus, the observation ∆U+ > ∆Θ+

in Fig.6 indicates the breakdown of the Reynolds analogy; that is, the mo-

mentum transfer augmentation is more significant than the heat transfer

augmentation. This is consistent with the observation that the Reynolds

analogy does not hold for rough wall turbulence (Katoh et al., 2000; Bons,

2002; Nagano et al., 2004; Forooghi et al., 2018a; Peeters and Sandham,

2019; MacDonald et al., 2019). For predictive correlation for St for rough

wall turbulence, Dipprey and Sabersky (1963) semi-analytically derived the

same expression of Eq. (19), and an empirical correlation for fk was derived

via experiments on sand-grain roughness as fk = 5.19(k+
s )

0.2Pr0.44 − 8.48

with Prt = 1.0. Kays and Crawford (1993) proposed the other expression

for fk = (k+
s )

0.2Pr0.44/C with a constant of C = 1.0. The experimentally
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Figure 7: Correlation of the function fk against the inner-scaled equivalent sand-grain

roughness. The present DNS data in the fully rough regime ES = 0.32 and ES = 0.64

together with data from Peeters and Sandham (2019), the experimental correlations fk =

5.19(k+s )
0.2Pr0.44− 8.48 by Dipprey and Sabersky (1963), and fk = (k+s )

0.2Pr0.44/C with

a constant C = 1.0 by Kays and Crawford (1993).

derived correlations fk obtained by Dipprey and Sabersky (1963); Kays and

Crawford (1993) are compared with the present DNS data in Figure 7. Note

that the present results are shown only for cases in the fully rough regime,

where the equivalent sand-grain roughness height k+
s can be estimated by

the following relation (Flack and Schultz, 2010):

k+
s = exp

[
κ
(
8.5−B +∆U+

)]
. (22)

where the von Kármán constant κ = 0.4 and the log-law intercept for a

smooth B = 5.2 were used. As shown in the figure, fk by Dipprey and

Sabersky (1963) is generally larger than that by Kays and Crawford (1993),

indicating that fk by Dipprey and Sabersky (1963) predicts a stronger dis-

similarity between momentum and heat transfer because a larger fk value

leads to a smaller RA value in Eq.(21). It is observed that the present DNS
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results lie between the two correlation functions, and we cannot assert which

correlation yields a better prediction for the present DNS data. Further

investigation at a higher Reynolds number flow is required to answer this

question.

Besides those correlations for RA proposed by Dipprey and Sabersky

(1963); Kays and Crawford (1993), other correlation functions that predict

RA have been proposed so far. In this study, three prediction functions are

used for a comparison:

RA =
1

5
√

0.5Cf

[
Pr + ln(1 + 5Pr) + 0.5ln

(
Re
60

√
0.5Cf

)] , (23)

from Martinelli (1947).

RA =
1

1 + 1.5Re−1/8Pr−1/6
(
Pr

Cf

Cf0
− 1
) , (24)

from Nunner (1956).

RA = RA0

[
0.55 + 0.45exp

(
− k+

s

130

)]
, , (25)

from Forooghi et al. (2018a).

Note that these functions are not expressed in the form of Eq.(19); how-

ever, they were all designed to provide smaller RA values by increasing the

roughness effect on the flow, as in the correlations proposed by Dipprey and

Sabersky (1963); Kays and Crawford (1993). In these equations, the rough-

ness effect on the flow is represented by the equivalent sand-grain roughness

k+
s (Forooghi et al., 2018a) or Cf at the rough surface (Martinelli, 1947;

Nunner, 1956).

A comparison of the St predicted by the functions proposed by Dipprey

and Sabersky (1963); Kays and Crawford (1993); Martinelli (1947); Nunner
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(1956); Forooghi et al. (2018a) with the present DNS data is summarized in

Table 2. Note that k+
s is unknown for the cases with ES = 0.16, which is

considered to be located in the transitionally rough regime; thus, the results

from Dipprey and Sabersky (1963); Kays and Crawford (1993); Forooghi et al.

(2018a) are not shown in these cases. As presented in Table 2, the RA for

the present DNS tends to be smaller for the cases with positive Sk and larger

ES values, which substantiates the decrease in RA with increasing roughness

effect on the flow. A comparison of the prediction functions reveals that the

St is considerably underpredicted by the functions proposed by Martinelli

(1947); Nunner (1956), whereas the predictions using the functions proposed

by Dipprey and Sabersky (1963); Kays and Crawford (1993); Forooghi et al.

(2018a) show reasonable agreement with the present results with an accuracy

of 15%. Notably, the agreement with the prediction using the function pro-

posed by Forooghi et al. (2018a) indicates that the RA correlates well with

a single parameter of the inner-scaled equivalent sand roughness, despite the

considerable variation in the Sk and ES values, which strongly supports the

findings of Forooghi et al. (2018a).
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Table 2: Comparison of the predicted Reynolds analogy factor with the DNS data. The

Dipprey function of fk = 5.19(k+s )
0.2Pr0.44−8.48 using Eq.(21), and Prt = 1 from Dipprey

and Sabersky (1963); The Kays function of fk = (k+s )
0.2Pr0.44/C with Eq.(21)and C = 1

from Kays and Crawford (1993); Eq.(23) from Martinelli (1947); Eq.(24) from Nunner

(1956); and Eq.(25) from Forooghi et al. (2018a) are compared.

Sk ES RA

(present)

Dipprey

function

Kays

function

Eq.(23) Eq.(24) Eq.(25)

+0.53 0.16 0.77 - - −27% −21% -

+0.53 0.32 0.69 −6% +13% −35% −38% +6%

+0.53 0.64 0.67 −14% +11% −40% −46% −1%

−0.53 0.16 0.79 - - −24% −17% -

−0.53 0.32 0.74 +1% +11% −30% −28% +10%

−0.53 0.64 0.74 −5% +8% −35% −35% +5%
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3.2. Momentum and energy budgets

The previous section focused on global quantities to discuss the augmenta-

tion of heat and momentum transfer. To clarify the underlying physics better,

this subsection focuses on the effects of roughness on the heat and momentum

transfer mechanisms by analyzing the double-averaged equations. Applying

the spatial- (x− z plane) and time-averaging operators to the Navier–Stokes

equation for incompressible flows, we can obtain the double-averaged mo-

mentum equation as follows:

⟨uj⟩
∂⟨ui⟩f

∂xj

= −φ

ρ

∂⟨p⟩f

∂xi

+
∂

∂xj

(
ν
∂⟨ui⟩
∂xj

)
− ∂

∂xj

⟨ũiũj

⟩︸ ︷︷ ︸
Tij

+
⟨
u′
iu

′
j

⟩︸ ︷︷ ︸
Rij


− 1

ρA

∫
L

p̃nidℓy︸ ︷︷ ︸
fpi

− ν

A

∫
L

(
−nj

∂ui

∂xj

)
dℓy︸ ︷︷ ︸

fvi

, (26)

where L represents the obstacle perimeter within an averaging x−z plane, ℓy

represents the length defined as ℓy = ∂Ar/∂y, and nk is its unit normal vector

pointing outward from the fluid to the solid phase. The second moments are

the x−z plane-averaged Reynolds stress Rij and a plane-dispersive covariance

Tij, which arises owing to the inhomogeneous nature of the mean flow in the

x − z plane. The time-averaged viscous and pressure drag force terms (fvi

and fpi , respectively) are expressed as the averaged pressure dispersion and

viscous stress over the obstacle perimeter at a certain plane, respectively.

Note that the viscous drag can be split into contributions of the velocity

dispersion and mean shear, as in Kuwata and Kawaguchi (2019):

fvi =
ν

A

∫
L

(
−nj

∂ũi

∂xj

)
dℓy + ν

∂φ

∂xj

∂⟨ui⟩f

∂xj

. (27)
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However, we ignore this decomposition for simplicity. By integrating Eq.

(26) over the wall-normal direction from 0 to y and normalizing by u2
τ , the

stress balance for the present flow system in non-dimensional form can be

derived after some manipulation (Kuwata and Kawaguchi, 2019):

1− ye
δe

=
∂⟨u⟩+

∂y+
−R+

12 − T +
12 +

∫ h+
p

y+
fvx

+
dy+︸ ︷︷ ︸

Fv+x

+

∫ h+
p

y+
fpx

+
dy+︸ ︷︷ ︸

Fp+x

, (28)

where Fv+x and Fp+x denote the contributions of the viscous and pressure

drag terms, respectively.

Similar to the momentum equation, the double-averaged energy equation

in a non-dimensional form can be derived as follows:

⟨uj⟩
∂⟨θ⟩f

∂xj

=
∂

∂xj

(
α
∂
⟨
θ
⟩

∂xj

)
− ∂

∂xj

⟨θ′u′
j

⟩︸ ︷︷ ︸
Hj

+
⟨
θ̃ũj

⟩
︸ ︷︷ ︸

Hj


− α

A

∫
L

(
−nj

∂θ

∂xj

)
dℓy︸ ︷︷ ︸

sw+

− α

A

∂

∂xj

(∫
L

njθdℓy

)
︸ ︷︷ ︸

st+

+⟨scht⟩,

(29)

where Hj and Hj are the x−z plane-averaged turbulent heat flux and plane-

dispersion heat flux, respectively, and scht is the source term included to

impose constant heat flux conditions for the rough surface (See Appendix

A for the derivation of scht). The time-averaged wall interaction terms (sw

and st) are the wall heat transfer and tortuosity molecular diffusion terms,

respectively, (Kuwahara et al., 1996). Note that st is zero in the present

simulation because the temperature variance at the rough surface is zero

from the definition.
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Figure 8: (a) R+
12 and T +

12 for cases with Sk = +0.53, (b) R+
12 and T +

12 for cases with

Sk = −0.53, (c) H+
2 and H+

2 for cases with Sk = +0.53, and (d) H+
2 and H+

2 for cases

with Sk = −0.53. The black thin line indicates the location of the maximum roughness

crest.

By integrating Eq. (29) over the wall-normal direction from 0 to y and

normalizing by tτuτ , The heat flux balance in a non-dimensional form can

also be derived as follows:

1− 1

δe

∫ y

0

⟨u⟩
Ub

dy =
1

Pr

∂
⟨
θ
⟩+

∂y+
−H+

2 −H+
2 +

∫ h+
p

y+
sw

+dy+︸ ︷︷ ︸
H+

w

(30)

where the wall heat transfer contribution is denoted as H+
w . See Appendix B

for a detailed derivation of the double-averaged heat-flux balance equation.

In the following, the momentum budgets and related terms are shown
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as a function of the effective wall-normal distance ye. As the total stress is

consistently expressed as 1− ye/δe on the left-hand side of Eq.(28) irrespec-

tive of the geometry of rough surfaces, the use of ye/δe makes it easier to

compare the momentum budgets for different rough surfaces. In addition,

it is interpreted using Eq.(12) that ye is the weighted wall-normal distance

with respect to the porosity (void fraction) in the x − z plane. That is, ye

effectively shrinks the region where the porosity is so small that the changes

in the momentum budgets are considerably small. Indeed, Kuwata et al.

(2020); Kuwata and Kawaguchi (2019) reported that the use of ye enables us

to scale the turbulence statistics near rough surfaces better than the normal

distance from the mean surface height y − hm.

The plane-averaged Reynolds and plane-dispersive shear stresses (R+
12 and

T +
12 , respectively, in Eq.(28)) are shown in Figure 8 (a,b), whereas the tur-

bulent and dispersion heat fluxes (H+
2 and H+

2 , respectively, in Eq.(30)) are

shown in Fig.8 (c,d). In Fig.8(a,b), the dispersive shear stress −T +
12 is pro-

nounced below the maximum roughness crest and increases with the ES

value. Conversely, although the results are not shown here, −R+
12 decreases

with the ES value. Consequently, −(R+
12 + T +

12 ) is almost unchanged when

the ES value increases from 0.16 to 0.32, whereas it slightly decreases be-

low the maximum roughness crest when the ES value further increases from

0.32 to 0.64. This observation is consistent with the findings of Kuwata and

Nagura (2020), who concluded that the wall roughness with a larger ES

value prevents the formation of quasi-streamwise elongated vortices, leading

to the considerable reduction in −R+
12. An analogous trend can be observed

for heat transfer in Fig.8(c,d): the dispersion heat flux −H+
2 below the max-
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Figure 9: Effective Prandtl number: (a) for cases with Sk = +0.53, and (b) for cases with

Sk = −0.53. The black thin line indicates the location of the maximum roughness crest.

imum roughness crest increases with the ES value, whereas the sum of the

heat fluxes, −(H+
2 +H+

2 ), decreases below the roughness crest when the ES

value increases from 0.32 to 0.64.

An important quantity in discussing the Reynolds analogy between mo-

mentum and heat transfer is the effective Prandtl number. It is defined as the

ratio of the momentum and heat transfer diffusivities, including the effects

of turbulence and dispersion:

Preff =
νeff
αeff

=
−(R12 + T12)/

(
∂⟨u⟩
∂y

)
−(H2 +H2)/

(
∂⟨θ⟩
∂y

) . (31)

Note that Preff ≃ Prt away from the rough wall, where the plane-dispersive

shear stress (plane-dispersion heat flux) becomes negligible compared with

the plane-averaged Reynolds shear stress (plane-averaged turbulent heat flux).

The profiles of the effective Prandtl number Preff are shown in Figure

9. For comparison, Prt for the smooth-wall case is also shown. It is ob-

served that the effect of the wall roughness on Preff is confined below the
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maximum roughness crest: Preff below the maximum roughness crest of

0.01 < ye/δe < 0.08 is generally larger than that of the smooth wall, which is

consistent with the observations by Peeters and Sandham (2019); Crimaldi

et al. (2006); Nagano et al. (2004). This indicates that the effective thermal

diffusivity is smaller than the effective eddy diffusivity, and this is consid-

ered to be one of the reasons for the dissimilarity between momentum and

heat transfer, as discussed in §3.1. The reason for the rise in Preff within

the rough wall of 0.01 < ye/δe < 0.08 can be found in the contour maps of

−u′v′
+
and −v′θ′

+
in Figure 10. It is apparent from Fig.10 that −u′v′

+
and

−v′θ′
+
show generally a similar trend; however, a distinct difference between

−u′v′
+
and −v′θ′

+
can be partially observed just behind the roughness crests,

where −v′θ′
+
is somewhat smaller than −u′v′

+
. A similar trend can also be

reported by Peeters and Sandham (2019), who concluded that this is due to

the presence of recirculation zones behind the roughness crest, which had a

detrimental effect on heat transfer. The underlying mechanisms of the dis-

similarity may be responsible for the fundamental difference between the flow

and scalar fields. In a series of studies on dissimilar control by traveling waves

of blowing and suction by Kasagi et al. (2010); Hasegawa and Kasagi (2011);

Yamamoto et al. (2013); Kaithakkal et al. (2020), it was concluded that the

flow field was coupled with the continuity constraint, whereas there was no

such restriction on a scaler field which resulted in a difference in the response

of the vector and scalar fields to wall manipulation. Specifically, Kaithakkal

et al. (2020) reported that the local pressure gradient due to blowing and

suction accelerated or decelerated the velocity but had no direct influence

on the scaler fields. Note that the abrupt increase and decrease in Preff in
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the vicinity of the bottom (ye/δe < 0.01) is attributed to the effective eddy

diffusivity νeff . In this region, the local equilibrium state of turbulence is

no longer hold; the enhanced pressure diffusion serves as an energy source

near the bottom of the rough surface (Dwyer et al., 1997; Ikeda and Durbin,

2007; Yuan and Piomelli, 2014; Kuwata and Suga, 2016), and this leads to

an enhancement of the wall-normal Reynolds stress and the Reynolds shear

stress. Owing to the role of the diffusion terms near the bottom of the rough

surface, the sum of the second moments, (R12 + T12), has a non-zero value

even in the region where the mean velocity gradient is considerably small.

Consequently, the effective eddy diffusivity, which is defined as −(R12 + T12)

divided by ∂⟨u⟩
dy

, does not exhibit a physically meaningful value. To obtain

meaningful value of Preff in the recirculating flow region, the different defi-

nition for Preff would be preferred (Spalart and Strelets, 2000; Peeters and

Sandham, 2019).

Fig.8(a,b) shows that the sum of the second moments is significantly

reduced owing to the flow blockage effects caused by the wall roughness.

Alternatively, the momentum transfer in this region is compensated by the

drag forces (Kuwata et al., 2020; Kuwata and Nagura, 2020; Kuwata and

Kawaguchi, 2019) as shown in Figure 11, where the viscous and pressure

drag contributions Fv+x and Fp+x , respectively, in Eq.(28) are shown. Note

that the sum of the intercept values of Fv+x and Fp+x at ye = 0 is unity

because the momentum budget on the right-hand side of Eq.(28) vanishes

at ye = 0, except for Fv+x and Fp+x . Hence, we can derive the relation

τaw = ρFvx(ye = 0) + ρFpx(ye = 0) from Eq.(28), indicating the intercept

values of Fv+x and Fp+x correspond to the viscous and pressure contributions
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Figure 10: Contour maps of −u′v′
+

and −v′θ′
+

in a x − y plane for Sk = −0.53 and

ES = 0.64; (a) −u′v′
+
, and (b) −v′θ′

+
. White dashed lines indicate the region where the

difference between −u′v′
+
and −v′θ′

+
is apparent.

to the averaged wall shear stress, respectively. As the ES value increases,

Fv+x in Fig.11(a,b) near the bottom decreases, whereas the pressure drag Fp+x

in Fig.11(c,d) considerably increases. Consequently, for the surface with a

larger ES value, the momentum transfer near the bottom is dominated by

the pressure drag. This trend is consistent with the findings of Napoli et al.

(2008); Kuwata and Nagura (2020).

Analogous to the momentum budgets, the reduction in the turbulent and

dispersion heat fluxes near the bottom is compensated by the wall heat trans-

fer term as shown in Figure 12 where the wall heat transfer term, sw
+, and its

contribution to the total heat flux, H+
w , are shown. Fig.12 (a,b) shows that,

as the ES value increases, sw
+ near the bottom (ye/δe < 0.02) decreases, but

it increases away from the bottom (ye/δe > 0.02). The reduction in sw
+ near

the bottom is considered to be due to the presence of an insulation layer in

which the scalar mixing by the turbulent and dispersion heat fluxes is con-
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Figure 11: Drag force contribution in the double-averaged momentum equation: (a) vis-

cous drag F+
vx

for cases with Sk = +0.53, (b) F+
vx

for cases with Sk = −0.53, (c) pressure

drag F+
px

for cases with Sk = +0.53, and (d)F+
px

for cases with Sk = −0.53. The black

thin line indicates the location of the maximum roughness crest.

siderably attenuated by the wall roughness. On the other hand, the increase

in sw
+ away from the bottom is responsible for the increase in the surface

area with the ES value. As a consequence of the change in the sw
+ profiles

with ES, the contribution term H+
w increases with ES values, as shown in

Fig.12(c,d).

As the wall interaction terms dominate the heat and momentum transfers

below the maximum roughness crest, it is of importance to discuss the wall

interaction terms to better understand the dissimilarity between heat and
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Figure 12: Wall heat transfer term s+w and the corresponding contribution term H+
w : (a)

sw
+ for cases with Sk = +0.53 and (b) sw

+ for cases with Sk = −0.53. (c) H+
w for

the cases with Sk = +0.53 and (d) H+
w for cases with Sk = −0.53. The black thin line

indicates the location of the maximum roughness crest.

momentum transfers. Figure 13 presents a comparison of the wall interaction

terms, fvx
+
, fpx

+
, and sw

+ with the scaling of y′ = (y − hm)/hm. The figure

confirms that both (fvx+fpx)
+ and sw

+ exhibit peak values just above the

mean height of 0 < y′ < 0.5. A comparison of (fvx+fpx)
+ and sw

+ confirms

that, except for the case with Sk = −0.53 and ES = 0.16, the sum of the

drag forces (fvx+fpx)
+ is generally larger than sw

+ above the mean height of

y′ > 0.2, whereas (fvx+fpx)
+ is smaller below the mean height of y′ < 0.1.

A possible explanation for sw
+ > (fvx+fpx)

+ is a significant reduction in the
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Figure 13: Comparison of the wall interaction terms with the scaling of y′ = (h−hm)/hm:

(a) for cases with Sk = +0.53 and ES = 0.16, (b) for cases with Sk = +0.53 and

ES = 0.32, (c) for cases with Sk = +0.53 and ES = 0.64, (d) for cases with Sk = −0.53

and ES = 0.16, (e) for cases with Sk = −0.53 and ES = 0.32, and (d) for cases with

Sk = −0.53 and ES = 0.64.

viscous drag fvx owing to the negative wall shear stress. The figure confirms

that fvx
+
decreases with the ES values, and it even takes a negative value

below the mean roughness height (y′ < 0). This trend is consistent with

the observation from Kuwata and Nagura (2020), and is the result of the

negative mean flow by a recirculating bubble behind the roughness crest as

observed in the snapshots of the instantaneous velocity in Figure 14(a). On

the other hand, for the temperature fields as shown in Fig.14(b), a thin

thermal diffusive layer is formed in the vicinity of rough surfaces even in the
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Figure 14: Snapshots of instantaneous u+ and θ+ in a x−y plane at z = 0 for Sk = −0.53

and ES = 0.64; (a) u+, and (b) θ+. The white thin line indicates the iso-contour of

u+ = 0.5 and θ+ = 0.5.

recirculation region, as reported in MacDonald et al. (2019). It should be

noted that, as the spatial variation of the local pressure induced by the wall

roughness affects the flow fields, leading to the modification of fvx
+
. Hence,

the pressure variation near the rough surface generates the pressure drag

fpx
+

but also has an indirect effect on the viscous drag fvx
+

through the

modification of the velocity fields. This indicates that the difference in the

wall interaction terms for heat and momentum transfer cannot be directly

attributed to fpx
+
. Indeed, for the case with Sk = −0.53 and ES = 0.16, as

shown in Fig.13(d), although the pressure drag fpx
+
occupies a large portion

of (fvx+fpx)
+, the profile of sw

+ collapses well onto (fvx+fpx)
+.

45



3.3. Velocity and temperature roughness function

This subsection further discusses the momentum and energy budget terms

to understand how they increase the roughness functions, as in (MacDonald

et al., 2016; Jelly and Busse, 2018; Kuwata and Nagura, 2020). Although

Kuwata and Nagura (2020) derived a mathematical expression for the con-

tribution of momentum budgets to ∆U+, this subsection briefly summarizes

the derivation and analysis result for the sake of completeness. In addition,

we attempt to derive the contribution of energy budgets to ∆Θ+. The math-

ematical expression of the contribution of the momentum budget to ∆U+

starts from Eq.(28).

∂⟨u⟩+

∂y+
= 1− ye

δe
+R+

12 + T +
12 − Fv+x − Fp+x , (32)

The derivative of ⟨u⟩+ with respect to y+ on the left-hand side of Eq.(32)

can be transformed using the definition of ye in Eq.(12) as follows:

∂⟨u⟩+

∂y+
=

∂φ⟨u⟩+

∂y+e
− ∂φ

∂y+e
⟨u⟩+, (33)

By integrating Eq.(32) using Eq.(33) over the wall-normal direction from 0

to y+e , the mean velocity can be expressed in terms of the momentum budget

terms as follows:

φ⟨u⟩+(y+e ) =
1

Reτ

(
Reτy

+
e − 1

2
(y+e )

2

)
+

∫ y+e

0

(
R+

12 + T +
12

)
dy+e

−
∫ y+e

0

Fv+x dy
+
e −

∫ y+e

0

Fp+x dy
+
e +

∫ y+e

0

(
∂φ

∂y+e
⟨u⟩+

)
dy+e ,

(34)

The roughness function ∆U+ can be derived by subtracting Eq.(34) from the

corresponding expression for a smooth wall at y+e = 100. The resultant form
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is expressed as follows:

∆U+ = ∆U+
td +∆U+

vd +∆U+
pd +∆U+

ir , (35)

where

∆U+
td =

∫ 100

0

R+
12dy

+

∣∣∣∣
smooth

−
∫ 100

0

(
R+

12 + T +
12

)
dy+e , (36)

∆U+
vd =

∫ h+
pe

0

Fv+x dy
+
e , (37)

∆U+
pd =

∫ h+
pe

0

Fp+x dy
+
e , (38)

∆U+
ir = −

∫ h+
pe

0

(
∂φ

∂y+e
⟨u⟩+

)
dy+e , (39)

where hpe is the maximum roughness crest evaluated by ye. Contributors

∆U+
td, ∆U+

vd, ∆U+
pd, and ∆U+

ir represent the effects of the sum of the plane-

averaged Reynolds stress and plane-dispersive stress, viscous drag, pressure

drag, and viscous terms related to the roughness density variation (Kuwata

and Nagura, 2020). Note that y+e = y+ for the smooth wall because φ = 1.

Furthermore, note that Eqs.(35)–(39) are not exactly the same as those in

Kuwata and Nagura (2020) because Kuwata and Nagura (2020) further split

the viscous drag term into the contributions of the plane-averaged velocity

and its dispersion, as shown in Eq.(27).

The temperature roughness function can be derived by starting from

Eq.(30):

1

Pr

∂
⟨
θ
⟩+

∂y+
= 1− 1

δe

∫ y

0

⟨u⟩
Ub

dy +H+
2 +H+

2 −H+
w . (40)

In a similar fashion to the derivation of ∆U+, ∆Θ+ can be decomposed into

contribution terms as follows:

∆Θ+ = ∆Θ+
tot +∆Θ+

td +∆Θ+
fig12 +∆Θ+

ir, (41)
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Figure 15: Contributors to the roughness functions: (a) contributors of Eqs.(37)–(39) to

the velocity roughness function, and (b) contributors of Eqs.(43)–(45) to the temperature

roughness function.

where

∆Θ+
tot =

Pr

δe

∫ y+e

0

(∫ y

0

⟨u⟩
Ub

dy

)
dy+e −Pr

δ

∫ y+

0

(∫ y

0

u

Ub

dy

)
dy+

∣∣∣∣∣
smooth

, (42)

∆Θ+
td = Pr

∫ 100

0

H+
2 dy

+

∣∣∣∣
smooth

− Pr

∫ 100

0

(
H+

2 +H+
2

)
dy+e , (43)

∆Θ+
fig12 = Pr

∫ h+
pe

0

H+
w dy

+
e , (44)

∆Θ+
ir = −Pr

∫ h+
pe

0

(
∂φ

∂y+e

⟨
θ
⟩+)

dy+e , (45)

where the contributors ∆Θ+
tot, ∆Θ+

td, ∆Θ+
fig12, and ∆Θ+

ir represent the ef-

fects of the total heat flux, the sum of the plane-averaged turbulent and

plane-dispersion heat fluxes, wall heat transfer and conduction related to the

roughness density variation, respectively.

The contributors to ∆U+ in Eqs.(37)–(39) and ∆Θ+ in Eqs.(43)–(45)

are presented in Figure 15. What can be found immediately in Fig.15(a) is
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that the increase in ∆U+ is mainly attributed to the viscous and pressure

drag contributions. As the ES value increases, the viscous drag contribution

∆U+
vd decreases, whereas the pressure drag contribution ∆U+

pd increases fur-

ther, resulting in an increase in the drag force contribution (∆U+
vd +∆U+

pd).

The negative contribution of ∆U+
td is due to the reduction in the sum of

−(R+
12+T +

12 ) by the wall roughness as shown in Fig.8, and this negative contri-

bution partly cancels the increase in the positive contribution (∆U+
vd+∆U+

pd)

with an increase in the ES value. Thus, the roughness function ∆U+ does

not substantially increase when the ES value increases from 0.32 to 0.64.

This observation is consistent with those from Kuwata and Nagura (2020).

Kuwata and Nagura (2020) may be referred to for the detailed physical ex-

planations for this trend.

As for the temperature roughness function in Fig.15(b), the wall heat

transfer ∆Θ+
fig12 is the dominant mechanism for the increase in ∆Θ+. Al-

though ∆Θ+
fig12 is generally smaller than the wall interaction term (∆U+

vd +

∆U+
pd) for the velocity roughness function, ∆Θ+

fig12 shows the same trend as

(∆U+
vd + ∆U+

pd). Another important observation in Fig.15(b) is that ∆Θ+
td

and ∆Θ+
tot have a negative contribution to ∆Θ+. The negative value of ∆Θ+

tot

of Eq.(43) indicates that the total heat flux for the rough wall cases is lower

than that for the smooth wall case, which is due to the reduction in the

streamwise mean velocity by the wall roughness. On the other hand, the

negative value of ∆Θ+
td is associated with a reduction in the sum of the tur-

bulent and dispersion heat fluxes, −(H+
2 +H+

2 ), owing to the wall roughness,

as observed in Fig.8. This is analogous to the corresponding term ∆U+
td for

the velocity roughness function; however, the negative absolute value of ∆Θ+
td
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is smaller than that of ∆U+
td. This means that −(R+

12 + T +
12 ) is lower than

−(H+
2 + H+

2 ). The primary reason for this is that the wall roughness de-

creases U+ more than Θ+ as shown in Fig.4. The reduction in U+ more than

Θ+ results in a reduction in the mean velocity gradient to a greater extent

than the temperature gradient near the rough surface. This leads to less

generation of −(R+
12 + T +

12 ) than for −(H+
2 +H+

2 ) (Kuwata and Suga, 2016).

The other possible reason is the role of the source term scht for constant

heat flux conditions. Owing to the presence of scht in the energy equation,

an additional term appears in the transport equation for the plane-averaged

vertical turbulent heat flux H+
2 , which is given as follows:

G2,θ =
⟨
scht × v′

⟩
=

Arqw
ρcQLx

R12. (46)

As R12 < 0 for the present flow system, G2,θ acts as a production term

for −H+
2 . Thus, the source term scht in the energy equation increases −H+

2 ,

which, in turn, results in a decrease in the negative contribution ∆Θ+
td through

Eq.(44). The figure shows that the molecular viscous effects related to the

roughness density variation (∆U+
ir and ∆Θ+

ir) exhibit negative contribution

to ∆U+ and ∆Θ+, respectively. This is also evident from the definitions in

Eqs.(39) and (45).

3.4. Dissimilarity between the heat and momentum transfer

Finally, the driving mechanisms of the dissimilarity between heat and

momentum transfer are discussed. As indicated in Eq.(21), the Reynolds

analogy factor RA for Pr = 1 can be expressed as a function of the skin

friction coefficient and the difference between the velocity and temperature

roughness functions (∆U+−∆Θ+). Hence, the Reynolds analogy holds when
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∆U+ −∆Θ+ = 0, whereas it breaks down on the negative side when ∆U+ −

∆Θ+ > 0. To obtain a physical insight into the behavior of RA, we analyzed

the growth of the mean velocity minus temperature I+ =
⟨
θ
⟩+−⟨u⟩+, which

is referred to as the dissimilar indicator hereafter. Assuming that Pr = 1,

we can derive I+ using Eqs.(32) and (40) after some calculations, as follows:

I+ =
1

δe

∫ y+

0

(∫ y

0

φUb − ⟨u⟩
Ub

dy

)
dy+︸ ︷︷ ︸

I+tot

+

∫ y+

0

νeff
Preff

(
Preff

∂⟨u⟩+

∂y+
−

∂
⟨
θ
⟩+

∂y+

)
dy+︸ ︷︷ ︸

I+td

+

∫ y+

0

[∫ h+
p

y+

(
fvx

+
+ fpx

+ − sw
+
)
dy+

]
dy+︸ ︷︷ ︸

I+wi

, (47)

where I+tot arises because of the difference between the total shear stress and

heat flux profiles, I+td represents the effects of turbulent and dispersion trans-

ports, and I+wi represents the effects of the wall interaction.

Figure 16 shows a growth of these contribution terms with respect to y′.

The dissimilar indicator I+ shows an almost constant value of I+ ≃ 3 in

y′ > 0.5 irrespective of the Sk and ES values, suggesting that I+ for the

present rough wall case is not significantly affected by the Sk and ES values.

In addition, the figure shows that ∆U+ − ∆Θ+ ≃ I+ in y′ > 0.5, which is

due to the fact that the inner-scaled mean velocity and temperature profiles

are nearly identical, u+
smooth ≃ θ

+

smooth, when Pr = 1:

∆U+ −∆Θ+ =
(
u+
smooth − ⟨u⟩+

)
−
(
θ
+

smooth −
⟨
θ
⟩+) ≃

⟨
θ
⟩+ − ⟨u⟩+. (48)
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Figure 16: Growth of the contribution terms with respect to y′: (a) for cases with Sk =

+0.53 and ES = 0.16, (b) for cases with Sk = +0.53 and ES = 0.32, (c) for cases with

Sk = +0.53 and ES = 0.64, (d) for cases with Sk = −0.53 and ES = 0.16, (e) for cases

with Sk = −0.53 and ES = 0.32, and (f) for cases with Sk = −0.53 and ES = 0.64.

This observation and the approximation of Eq.(21) indicate that the depen-

dence of the topological parameters (Sk and ES) on the Reynolds analogy

factor RA, as presented in Table 2, can be simply attributed to the depen-

dence on Cf . Furthermore, as Cf can be expressed as a function of the

equivalent sand-grain roughness ks, RA for the present rough wall cases can

be predicted solely by ks. This may be the reason why the correlation in

Eq(25) provides a reasonable prediction, as observed in Table 2.

When attention is given to the contribution of I+, it is found that in y′ >

0.5, I+tot consistently increases as it moves further away from the wall, whereas

I+td conversely decreases. As a result of these competing effects by I+td and
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I+tot, I
+ in y′ > 0.5 is almost unchanged, suggesting that the increase in I+tot is

canceled by I+td. The other observation from Fig.16 is that, although the value

of I+ is unaffected by the Sk and ES values, the generation mechanisms for

I+ are quite different. Except for the case with Sk = −0.53 and ES = 0.16

in Fig.16(d), the dominant contributor to the increase in I+ in y′ < 0.5 is

observed to be the positive value of the wall interaction I+wi. The positive

value of I+wi indicates that the sum of the viscous and pressure drag forces

exceeds the wall heat transfer term: (that is, fvx
+
+ fpx

+ − sw
+ > 0, as

shown in Fig.13), whereas the negative value of I+td is considered to be due

to the reduction in the mean velocity gradient by the wall roughness from

Eq.(47). In contrast, for the case with Sk = −0.53 and ES = 0.16, as shown

in Fig.16(d), the term related to the turbulent and dispersion transport I+td

in y′ < 0.5 acts as a positive contribution for I+ and I+wi. The positive

value for I+td is considered to be due to two combined factors: One is the

relatively moderate reduction in the mean velocity gradient near the rough

wall in comparison with the other cases, and the other is the rapid increase

in the effective Prandtl number Preff toward the bottom, as shown in Fig.9

(a). Thus, the integrand Preff∂⟨u⟩+/∂y+ − ∂
⟨
θ
⟩+

/∂y+ for I+td in Eq.(47)

is positive, resulting in the positive value of I+td. Note that the region of

the abrupt increase and decrease in Preff (ye/δe < 0.01) as shown in Fig.9

roughly corresponds to the region of y′ < 0 where the contribution of I+td is

considerably smaller than I+wi. Hence, the abrupt increase and decrease in

Preff may not have a significant impact on the dissimilarity between heat

and momentum transfer. To get more insight into the mechanisms of the

dissimilarity, it would be better to analyze the simulations with uniform
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heat generation at Pr = 1.0 in which the energy equation completely similar

to the streamwise momentum equation (Kasagi et al., 2010).
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Conclusion

This study examines the effects of rough surface topography on heat

and momentum transfer through DNSs on turbulent heat transfer over uni-

formly heated three-dimensional irregular rough surfaces where the effective

slope ES and skewness Sk values are systematically varied while maintain-

ing a fixed root-mean-square roughness. The DNSs were conducted at a

friction Reynolds number of 450 in open-channel flows through the double-

distribution-function LBM, in which the time evolutions of the particle and

energy density distribution functions are solved. The temperature is treated

as a passive scalar with a Prandtl number of unity, neglecting buoyancy

effects.

The augmentation of the skin friction coefficient and Stanton number by

the wall roughness are observed to be larger for positively skewed surfaces

with larger effective slope values. However, the Reynolds analogy factor RA,

which is the ratio of the doubled Stanton number to the skin friction coeffi-

cient, is smaller than the corresponding value for a smooth wall turbulence,

and tends to decrease with an increase in the skin friction coefficient. This

trend is reasonably predicted solely by the inner-scaled equivalent sand-grain

roughness, suggesting that the relationship between the Reynolds analogy

factor and the equivalent sand-grain roughness is not affected by the effec-

tive slope and skewness values.

Analysis of the heat and momentum transfer mechanisms based on the

spatial- and time-averaged equations suggests that the reduction in RA due

to the wall roughness can be attributed to two factors. The first factor is

a rapid increase in the effective Prandtl number within the rough wall: the
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effective thermal diffusivity due to the combined effects of turbulence and

dispersion is much smaller than the effective momentum diffusivity within

the rough wall. This is found to be one of the reasons for the reduction

in RA for a negatively skewed surface with a smaller effective slope. As

for the second factor, the dominant mechanism for the reduction in RA is

found to be an increase in the drag force term relative to the wall heat

transfer term. Below the mean surface height, the sum of the viscous and

pressure drag terms is smaller than the wall heat transfer term, which acts

as an increase in RA. Conversely, above the mean surface height, the sum

of the pressure and viscous drag terms considerably overwhelms the wall

heat transfer. Consequently, the contribution of the drag force term to the

momentum transfer is more significant than that of the wall heat transfer to

the heat transfer, resulting in the reduction in RA.

The present DNS study can provide information on the mechanisms of

dissimilarity between heat and momentum transfers, which would be useful

for predicting and controlling the heat transfer augmentation due to the wall

roughness. However, owing to limitations in computational resources, the

present study only considers flows with a single Prandtl number at a single

Reynolds number. Further analysis of the effects of the Prandtl number and

Reynolds number is essential for the optimal design of wall roughness to

enhance heat transfer.

Finally, it should be noted that the above conclusion is drawn based on

DNSs under constant heat flux conditions. However, we have also performed

preliminary DNSs with the uniform heat generation and confirmed that the

conclusion is unaffected by the choice of the thermal boundary conditions.
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Appendix A: Modified mixed boundary condition for rough surface

A widely used approach for the uniform heat flux condition for the DNS

is the so-called mixed boundary condition proposed by Kasagi et al. (1992).

This mixed boundary condition imposes a constant wall temperature with a

source term such that the local mean temperature increases linearly in the

streamwise direction. This approach may be directly applied for a rough

surface as in Forooghi et al. (2018a), who prescribe a constant streamwise

temperature gradient, neglecting the spatial variation in the rough surface

area. However, the streamwise temperature gradient depends on the surface

area of the rough surface area. Therefore, in this study, to account for the

influence of spatial variation in the rough surface area, we extend the mixed

boundary condition for a rough surface. Under uniform heat flux conditions,

the time-averaged energy budget can be expressed as follows:

ρc

∫ Ly

0

∫ Lz

0

uT (x+ dx, y, z)dydz − ρc

∫ Ly

0

∫ Lz

0

uT (x, y, z)dydz = qwdAr,

(A1)

where dAr is the infinitesimal surface area in the region [x, x+dx]× [0, Ly]×

[0, Lz], which is approximated by the length scale of ℓyz(x) as dAr = ℓyz(x)dx

in this study. By dividing the flow rate Q, defined as Q =
∫ Ly

0

∫ Lz

0
udydz, we

can rewrite the energy budget in terms of the bulk temperature Tb as follows:

ρcTb(x+ dx)− ρcTb(x) =
qw
Q
dxℓyz(x). (A2)

Hence, the streamwise bulk mean temperature gradient can be expressed as

follows:
∂Tb

∂x
=

qw
ρcQ

ℓyz(x). (A3)
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The local fluid temperature T can be decomposed into the wall temperature

Tw and temperature variance Θ as follows:

T (x, y, z, t) = Tw(x)− θ(x, y, z, t), (A4)

where the wall temperature is Tw(x) = Tw0 +
∫ x

0
dTb

dx
dx, where Tw0 is the wall

temperature at x = 0. Substituting the definition of temperature variance

in Eq.A4 into the energy equation for an incompressible fluid, we can derive

the energy equation in terms of θ as follows:

∂θ

∂t
+ uj

∂θ

∂xj

= α
∂2θ

∂x2
j

− qw
ρcQ

(
α
dℓyz(x)

dx
− uℓyz(x)

)
︸ ︷︷ ︸

scht

. (A5)

where x1 = x, x2 = y, and x3 = z. For the present DNSs with the modified

mixed boundary condition, a transformed temperature θ = T−Tw is obtained

by solving Eq.(A5), assuming that the wall temperature is zero. Note that

the expression of scht is reduced to that of the smooth wall when ℓyz(x) = Lz.

Appendix B: Heat flux balance in the double-averaged system

Applying integration to the double-averaged energy equation over the

wall-normal direction from 0 to y, the integrated energy equation for the

present flow system can be expressed as

0 = α
∂
⟨
θ
⟩

∂y
−H2 −H2 −

∫ y

0

swdy +

∫ y

0

⟨scht⟩dy + C, (B1)

where C is an integration constant, and it can be determined such that the

total heat flux at the top adiabatic wall is zero, expressed as follows:

C =

∫ δ

0

swdy −
∫ δ

0

⟨scht⟩dy, (B2)
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As sw only has a nonzero value below the maximum roughness crest (y < hp),

the interval of integration for sw can be rewritten as

C =

∫ hp

0

swdy −
∫ δ

0

⟨scht⟩dy. (B3)

Substituting Eq.(B1) into Eq.(B3), we can rewrite the integrated energy

equation as follows:

0 = α
∂
⟨
θ
⟩

∂y
−H2 −H2 +

(∫ δ

0

swdy −
∫ y

0

swdy

)
︸ ︷︷ ︸

Hfig12

−
(∫ δ

0

⟨scht⟩dy −
∫ y

0

⟨scht⟩dy
)

︸ ︷︷ ︸
Scht

. (B4)

The interval of integration for the wall heat transfer term Hfig12 can be

rewritten as

Hfig12 =

∫ δ

0

swdy −
∫ y

0

swdy =

∫ δ

y

swdy. (B5)

From the definition of the plane averaging in Eq.(8), the plane-averaged

source term in the source term contribution Scht is expressed as follows:

⟨scht⟩ = − 1

A

∫ Lz

0

∫ Lx

0

qw
ρcQ

(
α
dℓyz(x)

dx
− uℓyz(x)

)
dxdz

= − qwα

AρcQ

∫ Lx

0

dℓyz(x)

dx
dx

∫ Lz

0

dz +
qw

AρcQ

∫ Lz

0

∫ Lx

0

uℓyz(x)dxdz,

(B6)

The first term on the right-hand side of Eq.(B6) is zero because of the peri-

odicity ℓyz(0) = ℓyz(Lx). Considering a sufficiently large rough surface with

a homogeneous and isotropic nature, ℓyz(x) is no longer a function of x, but

can be approximated as a constant value Ar/Lx. Hence, Eq.(B6) can be

59



simplified as follows:

⟨scht⟩ ≃
qwAr

ρcQLx

⟨u⟩. (B7)

The flow rate Q can be expressed as a product of the bulk mean velocity Ub

and the effective y − z plane area δeLz(Kuwata and Kawaguchi, 2019). The

source term Scht can be expressed using Eq.(B7) as follows:

Scht =
qwa

ρcδeUb

∫ δ

0

⟨u⟩dy − qwa

ρcδeUb

∫ y

0

⟨u⟩dy

=
qwa

ρc
− qwa

ρc

1

δe

∫ y

0

⟨u⟩
Ub

dy, (B8)

Here, the definition of the equivalent heat flux qwa = qwAr/A is used. There-

fore, the total heat flux budget normalized by uτ tτ = qwa/(ρc) can be ex-

pressed as follows:

1− 1

δe

∫ y

0

⟨u⟩
Ub

dy =
1

Pr

∂
⟨
θ
⟩+

∂y+
−H+

2 −H+
2 +

∫ h+
p

y+
s+wdy

+︸ ︷︷ ︸
H+

fig12

. (B9)
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