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ABSTRACT 

 Elastomeric gels are soft-elastic materials consisting of a 
three-dimensional crosslinked polymer network and liquid 
filling the space between this network. To take advantage of 
the swelling-deformation behavior of elastomeric gel and 
explore its possibility for applications in engineering as a 
structural member, the construction of its mechanical model 
is indispensable. Therefore, in this study, two different 
nonaffine models are proposed for the elastomeric gel to 
account for the change of the entangling structure of polymer 
chains during the swelling-deformation process, in which the 
change of the number of polymer chains per unit volume 𝑁 
is depending on the first invariant of right Cauchy-Green 
tensor 𝐼1, or on the volume ratio of the gel 𝐽, separately. It is 
found that the dependency of the entangling structure of 
polymer chains on 𝐼1 and that on 𝐽 has quite different effect 
on the swelling-deformation responses of the gel. Moreover, 
such effects become remarkable in the solvent of its liquid 
phase compared with the solvent of its gas phase. Finally, the 
necessity and the availability of the proposed nonaffine 
models are discussed based on some experimental data of dry 
and swollen rubbers. It is also found that, by using weighting 
factors, the proposed models can reproduce the experimental 
data very well. 
 
INTRODUCTION 

 The elastomeric gels, consisting of crosslinked polymer 
molecules and discrete solvent molecules, have a high 
permeability to small molecules and undergo reversible 
volume change by exuding or absorbing solvent in response 
to a wide range of stimuli, such as light, temperature, pH, 
ionic strength and chemical reactions. As a result, the gel has 
been developed for diverse applications and used as smart 
materials in sensors and actuators1-3). 
 The elastomeric gels are synthesized by crosslinking 
polymer chains dissolved in a solvent. The developed three-
dimensional crosslinked polymers eventually percolate the 
whole solution and change the system from a fluid sol to a 
solid gel4,5). Because the polymer chains continually 
fluctuate in the solution, the crosslinking reaction tends to 
result in a complicated network with substantial defects, 
including dangling ends, loops, entanglements, and 
nonuniform crosslinker distribution6). To account for the 
effect of such defects on the mechanical behavior of gel, in 
our former study7), we investigated the development of the 
microstructure of polymer network of gel based on a 
nonaffine polymer chains network model8,9), which was 
originally developed for the orientation hardening of 
amorphous polymers and may account for the change in the 
entanglement situation for the physical linkages during the 
deformation processes. It was found that the free swelling 

process may lead to a larger change of the entangling 
structure of polymer chains compared with the simple 
tensional process. Moreover, the various combination of the 
effect of each process on the nonaffine movement of polymer 
chains may lead to such interesting mechanical response of 
the gel as yield. 
 On the other hand, the elastomeric gel can undergo large 
deformation of two modes in a solution. The first mode 
results from the fast process of short-range rearrangement of 
molecules, allowing the gel to change shape but not volume. 
The second mode results from the slow process of long-range 
migration of the solvent molecules, allowing the gel to 
change both shape and volume. Therefore, at the first mode, 
the gel deforms corresponding to the mechanical constraints 
only; at the second mode, the gel deforms corresponding to 
the mechanical constraints together with the chemical 
process. To characterize how mechanical constraint affects 
the amount of swelling and how chemical processes generate 
forces, Flory and Rehner proposed a statistical mechanical 
model10) for the network of polymer molecules and indicated 
that the swelling capacity of the gel is diminished by the 
application of an external stress. Recently, to compare 
theoretical prediction and experimental observations 
quantitatively, several nonlinear field theories have been 
developed11-14). As we have discussed the first mode in our 
former study7), in this study, we continue to discuss the 
second mode, namely, the state of equilibrium achieved 
when a network has been in contact with a solvent for a long 
time. At first, the condition of equilibrium between the gel 
and the solution is derived based on the variational principle. 
And then, two different nonaffine models are proposed for 
the elastomeric gel to account for the change of the 
entangling structure of polymer chains during the swelling-
deformation process, in which the change of the number of 
polymer chains per unit volume 𝑁 is depending on the first 
invariant of right Cauchy-Green tensor 𝐼1, or on the volume 
ratio of the gel 𝐽, separately. Continuously, the correspond-
ing stress-stretch relations of the gel are derived. And then, 
based on these derived equations, the effect of the movement 
of the polymer chains on the free swelling ratio and the 
swelling-deformation responses of the gel, such as tensional 
stress and volume ratio, under different chemical constraints 
is clarified. Finally, based on some experimental data of the 
swollen rubber, the necessity and the availability of the 
proposed nonaffine models is discussed. 
 
CONDITIONS OF EQUILIBRIUM 
 The basic idea of the derivation of the conditions of 
equilibrium for the dry polymer and the solvent is from the 
work done by Ref. (12). It is convenient to consider that, in 
the reference state, a block of network of dry polymers is a 
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unit cube, and contains no solvent and subject to no applied 
forces. In the current state, the network is submerged in a 
solvent-containing environment, and the six faces of the 
block are subject to applied forces. When the network, the 
solvent, and the applied forces equilibrate, the network 
absorbs 𝐶  number of solvent molecules, and deforms 
homogeneously into the shape of a parallelepiped. When the 
deformation gradient of the network is expressed by 𝐅, the 
ratio of volume of the swollen gel to that of the dry network 
is determined as 𝐽 = det𝐅. As an idealization, it is assumed 
that the volume of the elastomeric gel is a function of the 
concentration of the solvent: 
 

𝐽 = 1 + 𝑣𝐶                                   (1) 
 
That is, all molecules in a gel are incompressible, and the 
volume of the gel is the sum of the volume of the dry 
network and the volume of the pure solvent molecules, 
where 𝑣  is the volume per solvent molecule. Eq. (1) 
determines the concentration of solvent 𝐶 , once the 
deformation gradient is known. Consequently, the nine 
components of the deformation gradient 𝐅 specify the state 
of the gel. Let 𝑊 be the Helmholtz free energy of the gel in 
the current state. The Helmholtz free energy of the gel can 
be taken to be a function of the nine components of the 
deformation gradient 𝐅, and is assumed to be separable into 
contributions from stretching the network and mixing the 
polymer and solvent10): 
 

𝑊 = 𝑊𝑠𝑡𝑟𝑒𝑡𝑐ℎ(F) + 𝑊𝑚𝑖𝑥(𝐽)                   (2) 
 
The free energy due to the stretching of the network, 
𝑊𝑠𝑡𝑟𝑒𝑡𝑐ℎ(F), is a function of the deformation gradient, and 
depends on the density of crosslinks. The free energy due 
to the mixing of the polymer and the solvent, 𝑊𝑚𝑖𝑥(𝐽), is a 
function of the concentration of the solvent in the gel, but 
is independent of the density of crosslinks. For the 
convenience of formulation, it is preferred to introduce 
another free energy function 𝑊̂  by using a Legendre 
transformation: 
 

𝑊̂ = 𝑊 − 𝜇𝐶                              (3) 
where 𝜇 is the chemical potential of the solvent molecules. 
Eq. (1), Eq. (2) and Eq. (3) form the bases for the model of 
ideal elastomeric gels. In equilibrium, the change of the 
Helmholtz free energy of the composite vanishes and one 
can obtain that 
 

𝑠𝑘𝑖 =
𝜕𝑊̂(F,𝜇)

𝜕𝐹𝑖𝑘
,   𝐶 = −

𝜕𝑊̂(F,𝜇)

𝜕𝜇
                  (4) 

where 𝑠𝑘𝑖  is the nominal stress. Empolying Eq. (4), the 
swelling-deformation responses of the gel under different 
mechanical and chemical constraints can be investigated 
directly. 
 
FREE ENERGY FUNCTIONS 
 In the original Flory-Rehner model10), specific functions 
are adopted for 𝑊𝑠𝑡𝑟𝑒𝑡𝑐ℎ(F) and 𝑊𝑚𝑖𝑥(𝐽). In this study, we 
employ the best known formulation as Ref. (15): 
 

𝑊(F) =
1

2
𝑁𝑘𝐵𝑇(𝐹𝑖𝑘𝐹𝑖𝑘 − 3 − 2log𝐽) 

−
𝑘𝐵𝑇

𝑣
[𝑣𝐶log (1 +

1

𝑣𝐶
) +

𝜒

1+𝑣𝐶
]                               (5) 

 
where 𝑁 is the number of polymer chains per unit volume, 
i.e. the density of crosslinks of the polymer chains, 𝑘𝐵  is 
Boltzmann constant, 𝑇 is the absolute temperature and 𝜒 is a 
dimensionless measure of the enthalpy of mixing. A 
combination of Eq. (1), Eq. (3) and Eq. (5) gives the desired 
free energy function: 
 

𝑊̂(F, 𝜇) =
1

2
𝑁𝑘𝐵𝑇(𝐹𝑖𝑘𝐹𝑖𝑘 − 3 − 2log𝐽) 

−
𝑘𝐵𝑇

𝑣
[(𝐽 − 1)log (

𝐽

𝐽−1
) +

𝜒

𝐽
] −

𝜇

𝑣
(𝐽 − 1)          (6) 

 
 Usually, the affine movement of the polymer chains is 
assumed and the value of 𝑁 is fixed, and the affine model of 
the gel is constructed. In this study, to account for the effect 
of the nonaffine movement of the polymer chains on the 
deformation behavior of the elastomeric gel, similar to our 
former study7), we employ the simplest version of the 
nonaffine model8) to accommodate the change of 𝑁. Here, 
two different development equations of 𝑁 is proposed based 
on the first invariant of right Cauchy-Green tensor 𝐼1, or on 
the third invariant of right Cauchy-Green tensor 𝐼3 , 
separately: 
 

𝑁

𝑁0
= 1 −

𝐼1−3

𝐼1
𝑚𝑎𝑥 ,   𝐼1 = 𝐹𝑖𝑘𝐹𝑖𝑘                      (7) 

 
𝑁

𝑁0
= 1 −

𝐼3−1

𝐼3
𝑚𝑎𝑥 ,   𝐼3 = 𝐽2                            (8) 

 
where 𝑁0 is the number of polymer chains per unit volume 
of the gel in the reference state, 𝐼1

𝑚𝑎𝑥  and 𝐼3
𝑚𝑎𝑥  are the limit 

value of 𝐼1 and 𝐼3, respectively. 
 
STRESS-STRETCH RELATIONS 
 Inserting Eq. (6) into Eq. (4), we obtain that 
 

𝑠𝑘𝑖

𝑘𝐵𝑇/𝑣
= 𝑁𝑣(𝐹𝑖𝑘 − 𝐻𝑖𝑘) +

1

2
𝑣(𝐼1 − 3 − 2log𝐽)

𝜕𝑁

𝜕𝐹𝑖𝑘

 

+ [𝐽log (1 −
1

𝐽
) + 1 +

𝜒

𝐽
−

𝜇

𝑘𝐵𝑇
𝐽] 𝐻𝑖𝑘                    (9) 

 
Recall an algebraic identity, 𝜕𝐽 𝜕𝐹𝑖𝑘⁄ = 𝐻𝑖𝑘𝐽, where 𝐻𝑖𝑘  is 
the transpose of the inverse of the deformation gradient F. 
For simplicity, we describe the deformation of the 
elastomeric gel in the coordinates of principal stretches. Let 
𝜆1, 𝜆2, 𝜆3 be the principal stretches of the gel, so that 𝐅 =
diag(𝜆1, 𝜆2, 𝜆3), 𝐽 = 𝜆1𝜆2𝜆3 and 𝐼1 = 𝜆1

2 + 𝜆2
2 + 𝜆3

2 . 
 
Free Swelling State 

 Submerged in the solvent-containing environment but 
subject to no applied forces, the elastomeric gel attains a 
state of equilibrium, the free swelling state, characterized 
by an isotropic swelling ratio, 𝜆1 = 𝜆2 = 𝜆3 = λ = 𝐽−1/3. 
Therefore, based on Eq. (9), the relation between the 
principal stretch λ and the chemical potential of the solvent 
molecules 𝜇 can be written as: 
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𝑁𝑣 (
1

𝜆
−

1

𝜆3
) −

3𝑁0𝑣

𝐼1
𝑚𝑎𝑥𝜆

(𝜆2 − 1 − 2log𝜆) 

+log (1 −
1

𝜆3) +
1

𝜆3 +
𝜒

𝜆6 =
𝜇

𝑘𝐵𝑇
                (10) 

 
when Eq. (7) is applied, or can be written as: 
 

𝑁𝑣 (
1

𝜆
−

1

𝜆3
) −

3𝑁0𝑣

𝐼3
𝑚𝑎𝑥 𝜆3(𝜆2 − 1 − 2log𝜆) 

+log (1 −
1

𝜆3) +
1

𝜆3 +
𝜒

𝜆6 =
𝜇

𝑘𝐵𝑇
                (11) 

 
when Eq. (8) is applied. 
 
Simple Tension State 

 A unit cube of the elastomeric gel is equilibrated in a 
solvent of chemical potential 𝜇, and is subject to a uniaxial 
stress 𝑠1  along the longitudinal direction. The state of 
deformation can be characterized by the longitudinal stretch 
𝜆1  and two transverse stretch 𝜆2 = 𝜆3 . The stresses in the 
transverse directions vanish, so that Eq. (9) gives 
 

𝑁𝑣 (𝜆2 −
1

𝜆2

) −
𝑁0𝑣

𝐼1
𝑚𝑎𝑥 𝜆2(𝜆1

2 + 2𝜆2
2 − 3 − 2log𝜆1𝜆2

2) 

+ [𝜆1𝜆2
2log (1 −

1

𝜆1𝜆2
2) + 1 +

𝜒

𝜆1𝜆2
2 −

𝜇

𝑘𝐵𝑇
𝜆1𝜆2

2]
1

𝜆2
= 0  (12) 

 
when Eq. (7) is applied, or gives 
 

𝑁𝑣 (𝜆2 −
1

𝜆2

) −
𝑁0𝑣

𝐼3
𝑚𝑎𝑥 𝜆1

2𝜆2
3(𝜆1

2 + 2𝜆2
2 − 3 − 2log𝜆1𝜆2

2) 

+ [𝜆1𝜆2
2log (1 −

1

𝜆1𝜆2
2) + 1 +

𝜒

𝜆1𝜆2
2 −

𝜇

𝑘𝐵𝑇
𝜆1𝜆2

2]
1

𝜆2
= 0  (13) 

 
when Eq. (8) is applied. Eq. (12) and Eq. (13) determine the 
transverse stretch 𝜆2 for a given longitudinal stretch 𝜆1. Eq. 
(9) also relates the longitudinal stress to the stretches as: 
 

𝑠1

𝑘𝐵𝑇 𝑣⁄
= 

𝑁𝑣 (𝜆1 −
1

𝜆1

) −
𝑁0𝑣

𝐼1
𝑚𝑎𝑥 𝜆1(𝜆1

2 + 2𝜆2
2 − 3 − 2log𝜆1𝜆2

2) 

+ [𝜆1𝜆2
2log (1 −

1

𝜆1𝜆2
2) + 1 +

𝜒

𝜆1𝜆2
2 −

𝜇

𝑘𝐵𝑇
𝜆1𝜆2

2]
1

𝜆1
         (14) 

 
when Eq. (7) is applied, or as: 
 

𝑠1

𝑘𝐵𝑇 𝑣⁄
= 

𝑁𝑣 (𝜆1 −
1

𝜆1

) −
𝑁0𝑣

𝐼3
𝑚𝑎𝑥 𝜆1𝜆2

4(𝜆1
2 + 2𝜆2

2 − 3 − 2log𝜆1𝜆2
2) 

+ [𝜆1𝜆2
2log (1 −

1

𝜆1𝜆2
2) + 1 +

𝜒

𝜆1𝜆2
2 −

𝜇

𝑘𝐵𝑇
𝜆1𝜆2

2]
1

𝜆1
        (15) 

 
when Eq. (8) is applied. 
 
RESULTS 

 
 In this study, we have normalized the chemical potential 
𝜇 by 𝑘𝐵𝑇, and normalized the stress 𝑠1 by 𝑘𝐵𝑇 𝑣⁄  as shown 

in Eq.(9). The Flory-Rehner free energy function introduces 
two dimensionless material parameters: 𝑁𝑣  and 𝜒 . In the 
numerical results below, we take the values 𝑁𝑣 = 10−3 and 
𝜒 = 0.1. On the other hand, the values of the two parameters 
introduced in the nonaffine model are taken as 𝐼1

𝑚𝑎𝑥 = 50 
and 𝐼3

𝑚𝑎𝑥 = 4000, which are corresponding to a virtual limit 
of the swelling ratio, 𝜆𝑙𝑖𝑚𝑖𝑡 = 4.0, when an elastomeric gel 
is submerged in the solvent. 
 

 
(a)                                              (b) 

Fig. 1 Characteristics of the elastomeric gel in the free 
swelling state: (a) Isotropic swelling ratio-chemical potential 
relations; (b) Development of the number of polymer chains 
per unit volume. 
 
Effect of Chemical Potential 

 In Figure 1(a), the isotropic swelling ratio of an 
elastomeric gel in the free swelling state 𝜆0 is plotted as a 
function of the chemical potential of the solvent 𝜇. When the 
solvent is subject to a pressure 𝑝  greater than its vapor 
pressure 𝑝0 , the solvent is in its liquid phase, and the 
chemical potential of the solvent molecules is 𝜇 = (𝑝 −
𝑝0)𝑣. When the solvent is subject to a pressure 𝑝 less than its 
vapor pressure 𝑝0, the solvent in equilibrium becomes a gas, 
which we assume to be an ideal gas, so that the chemical 
potential of the solvent molecules is 𝜇 = 𝑘𝐵𝑇log(𝑝 𝑝0⁄ ) . 
When the phase of the solvent changes from gas to liquid, i.e. 
the value of 𝜇 𝑘𝐵𝑇⁄  increases from -0.05 to 0, the isotropic 
swelling ratio of the gel 𝜆0 increases at first linearly and then 
exponentially. With regard to the effect of the nonaffine 
movement of the polymer chains on the isotropic swelling 
ratio of the gel, no effect can be observed when the solvent 
is in its gas phase, i.e. the value of 𝜇 𝑘𝐵𝑇⁄  is smaller than 
-0.01. However, when the solvent is close to its liquid phase, 
i.e. the value of 𝜇 𝑘𝐵𝑇⁄  is larger than -0.01, the nonaffine 
movement of the polymer chains leads to a relatively early 
increase of the isotropic swelling ratio. Further details of the 
corresponding values of 𝜇 𝑘𝐵𝑇⁄  for different value of 𝜆0 are 
shown in Table 1. Taking the virtual limit of the swelling 
ratio, 𝜆𝑙𝑖𝑚𝑖𝑡 = 4.0 , into consideration, in the subsequent 
discussion, the range of 𝜇 𝑘𝐵𝑇⁄  is limited to -0.046~-0.0014, 
i.e. the corresponding value of 𝜆0 is limited to 1.5~2.5. 
 
Table 1 Corresponding value of normalized chemical 
potential 𝜇 𝑘𝐵𝑇⁄  for different isotropic swelling ratio 𝜆0. 

𝜆0 𝜇 𝑘𝐵𝑇⁄  
affine Eq. (10) Eq. (11) 

1.5 -0.0460 -0.0460 -0.0460 
2.0 -0.0066 -0.0067 -0.0066 
2.5 -0.0014 -0.0016 -0.0015 
3.5 0.00004 -0.0003 -0.0004 
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 In Figure 1(b), the development of the number of 
polymer chains per unit volume 𝑁 during the free swelling 
of the gel are shown. When the development of 𝑁  is 
dependent on the first invariant of right Cauchy-Green tensor 
𝐼1, i.e. based on Eq. (7), its value decreases almost linearly 
together with the increase of 𝜆0. On the other hand, when 
such development is dependent on the third invariant of right 
Cauchy-Green tensor 𝐼3 , i.e. based on Eq. (8), its value is 
almost constant at small isotropic swelling ratio, i.e. 𝜆0 <
2.5, and then decreases dramatically. 
 
Swelling-Deformation Responses 

 When an elastomeric gel is subject to a uniaxial stress, 
and is in contact with a solvent of a given chemical potential, 
the state of equilibrium is assumed to achieve after a long 
time. For the calculation convenience, we choose a updated 
reference state such that the network, under no mechanical 
load, equilibrates with a solvent of chemical potential 
𝜇 𝑘𝐵𝑇⁄  and then the network is loaded under simple tension 
with the tensional stretch λ′, which is referred to the updated 
reference state. The swelling-deformation responses such as 
the number of polymer chains per unit volume, tensional 
stress and volume ratio of the gel in the current states are 
investigated. 
 

 
                       (a)                                               (b) 
Fig. 2 Development of the number of polymer chains per unit 
volume of the elastomeric gel during simple tension in a 
solvent with different chemical potential: (a) based on 
Eq.(7); (b) based on Eq.(8). 
 

 
                         (a)                                              (b) 
Fig. 3 Normalized tensional stress-tensional stretch relations 
of the elastomeric gel in a solvent with different chemical 
potential. (thick lines) affine model. (thin lines) nonaffine 
model: (a) based on Eq.(7); (b) based on Eq.(8). 
 
 In Figure 2, the development of the number of polymer 
chains per unit volume of the gel 𝑁 is shown. When 𝑁 is 
dependent on the first invariant of right Cauchy-Green tensor 
𝐼1, i.e. based on Eq. (7), 𝑁 decreases nonlinearly as shown in 
Figure 2(a). Especially, 𝑁 decreases close to its half value at 
early deformation stage when the chemical potential of the 
solvent 𝜇 𝑘𝐵𝑇⁄  increases. When 𝑁 is dependent on the third 
invariant of right Cauchy-Green tensor 𝐼3, i.e. based on Eq. 

(8), 𝑁 decreases linearly, as shown in Figure 2(b), and no 
remarkable change can be found compared with its initial 
value. 
 In Figure 3, the effect of the nonaffine movement of the 
polymer chains on the tensional stress of the gel is shown, 
where the results of nonaffine model based on Eq. (7) and Eq. 
(8) are compared with the affine model in Figure 3(a) and 
Figure 3(b), separately. On the whole, the tensional stress of 
affine model is larger than that of nonaffine model, where 
quite different responses are given by the nonaffine model 
based on Eq. (7) and the difference is quite small when the 
nonaffine model based on Eq. (8) is employed. Moreover, 
from Eq. (9), it can be understood that the mechanical 
response of the gel is dependent on both the parameter of 
deformation λ′, and the parameter of material 𝑁. When 𝑁 
decreases, i.e. the density of crosslinks of the polymer chains 
decreases, the tensional stress-tensional stretch relation of 
nonaffine model deviates from that of affine model and the 
tensional stress decreases eventually, regardless of the 
continuous increase of λ′. 
 

 
                        (a)                                              (b) 
Fig. 4 Development of the volume ratio of the elastomeric 
gel during simple tension in a solvent with different chemical 
potential. (thick lines) affine model. (thin lines) nonaffine 
model: (a) based on Eq.(7); (b) based on Eq.(8). 
 
 In Figure 4, the effect of the nonaffine movement of the 
polymer chains on the volume ratio of the gel is shown, 
where the results of nonaffine model based on Eq. (7) and Eq. 
(8) are compared with the affine model in Figure 4(a) and 
Figure 4(b), separately. 𝑉 and 𝑉0 is the volume of the gel in 
the current state and in the updated reference state, 
respectively. On the whole, the volume ratio of the gel 𝑉 𝑉0⁄  
increases together with the tensional stretch λ′ regardless of 
the affine or nonaffine movement of the polymer chains. The 
difference between the results of the affine model and that of 
the nonaffine model becomes remarkable when the chemical 
potential of the solvent 𝜇 𝑘𝐵𝑇⁄  increase, where the results of 
the nonaffine model based on Eq. (7) is smaller than that of 
the affine model and the results of the nonaffine model based 
on Eq. (8) is larger than that of the affine model. 
 
DISCUSSION 

 In this section, the necessity and the availability of the 
proposed nonaffine models above are to be discussed. Gee 
did his experimental work on the elastic behaviour of dry and 
swollen rubbers6). Because the swollen rubber can be 
considered as one kind of the elastomeric gel, Gee's 
experimental data are here employed to validate our 
theoretical model. Gee gave his experimental results in the 
form of 
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𝜌𝑟𝑅

𝑀𝑐
= 𝑁𝑘𝐵                                  (16) 

where 𝜌𝑟 is the density of the rubber, 𝑅 is gas constant, and 
𝑀𝑐 is the mean molecular weight between adjacent junction 
points of the network. One of the Gee's experimental data, 
the dependence of 𝑁𝑘𝐵  on the first invariant of right 
Cauchy-Green tensor 𝐼1  of the dry nature rubber under 
simple tension, are shown in Figure 5. Because there is no 
volume change in this case, the experimental data can be 
employed to identify the value of 𝐼1

𝑚𝑎𝑥  in Eq. (7). To do this, 
we at first linearize the experimantal data to give a linear 
relation as 
 

𝑁𝑘𝐵 = 21.435 − 1.9493𝐼1                      (17) 
 
After inputting the value of 𝐼1 = 3 to Eq. (17), we derive the 
value of 𝑁0𝑘𝐵, which is corresponding to the unstrained state 
of rubber. Continuously, we normalize the vertical axis of 
Figure 5 by 𝑁0𝑘𝐵 and linearize the recalculated data with Eq. 
(7) as 
 

𝑁

𝑁0
= 1 −

𝐼1−3

8
                                    (18) 

 
As a result, the value of 𝐼1

𝑚𝑎𝑥  for the nature rubber is equal 
to 8. With regard to the swollen rubber, Gee indicated that 
𝑁𝑘𝐵 tends to become more nearly constant as the rubber is 
progressively swollen, and becomes substantially constant 
for small extensions at sufficiently high degrees of swelling. 
For example, when the swelling ratio of the swollen rubber 
𝐽 = 3, the value of 𝑁/𝑁0 would be a constant one as 0.65 no 
matter with the degree of tensional deformation. Therefore, 
in this case, the value of 𝑁/𝑁0  can be considered as a 
function of the volume ratio of the swollen rubber 𝐽 only and 
the value of 𝐼3

𝑚𝑎𝑥 in Eq. (8) can be identified as 23. In other 
word, Eq. (8) can be rewritten as 
 

𝑁

𝑁0
= 1 −

𝐼3−1

23
                                    (19) 

 
Based on the above discussion, it can be understand that to 
reproduce the experimantal data of the elastomeric gel, the 
dependence of the entangling structure of polymer chains on 
𝐼1 and on 𝐽 should be investigated separately as shown in Eq. 
(7) and Eq. (8). 
 

 
Fig. 5 Development of 𝑁𝑘𝐵 of the dry nature rubber under 
simple tension. 
 
 Now, let's focus the discussion on the availability of the 
proposed nonaffine models, i.e. Eq. (18) and Eq. (19) to 
reproduce the experimantal data of swollen rubber with 
different swelling ratio as given in Ref. (16). Gee at first 

prepared the partial swollen rubber test pieces and then 
extended them without appreciable loss of liquid by 
evaporation. During the extension, the test pieces change 
their shape only and their volume remain constant, i.e. 
deform in the first mode as mentioned in INTRODUCTION. 
Therefore, we combine Eq. (18) and Eq. (19) in the form of 
 

𝑁

𝑁0
= 𝛼 (1 −

𝐼3−1

23
) − 𝛽

𝐼1−3

8
                    (20) 

 
where 𝛼  and 𝛽  are weighting factors. The first term is 
corresponding to the variation of the entangling structure of 
the polymer chains during the partial swelling process of 
rubber test pieces and the second term is corresponding to 
such variation during the extension. Figure 6 shows the 
experimantial data from Gee and the calculation results of Eq. 
(20). The corresponding values of 𝛼  and 𝛽  for different 
swelling ratio 𝐽 of the swollen rubber are shown in Table 2. 
By using weighting factors, Eq. (20) can reproduce the 
experimental data very well. However, as the value of the 
weighting factor 𝛽 decreases almost linearly together with 
the increase of the swelling ratio 𝐽, the value of the weighting 
factor 𝛼  varies irregularly. It is maybe due to the linear 
formulation of Eq. (8), which is the simplest version of the 
nonaffine model8). 
 

 
Fig. 6 Comparison of the experimantal data (symbols) and 
theoretical calculation results (lines) of the swollen rubber 
under simple tension. 
 
Table 2 Corresponding value of weighting factors 𝛼 and 𝛽 
in Eq. (20) for different swelling ratio 𝐽 of the swollen rubber. 

𝐽 𝛼 𝛽 
1.00 1.02870 1.00 
1.00 0.97782 0.56 
1.30 0.88408 0.55 
1.50 0.81219 0.26 
1.78 0.81040 0.22 
2.35 0.84878 0.14 
3.00 1.00925 0.04 

 
 On the other hand, most calculation of this study is 
carried out for the elastomeric gel that changes both shape 
and volume, i.e. deforms in the second mode as mentioned 
in INTRODUCTION. To show the correctness of the 
calculated results, the corresponding experimental data is 
indispensable. Unfortunately, up to now, we have not found 
such experimental data. However, for diverse applications, 
the elastomeric gel is usually immersed in the solvent and 
deforms under various mechanical environment. The 
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verification of the correctness of our theoretical model can 
be left to the finite element simulation of a real system, which 
contains the elastomeric gel and the solvent. Such simulation 
work is in progress now and the corresponding results is 
hoped to be reported in the foreseeable future. 
 
CONCLUSION 

 In this study, two different nonaffine models are 
proposed for the elastomeric gel to account for the change of 
the entangling structure of polymer chains during the 
swelling-deformation process, in which the change of the 
number of polymer chains per unit volume 𝑁 is depending 
on the first invariant of right Cauchy-Green tensor 𝐼1, or on 
the volume ratio of the gel 𝐽, separately. The effect of such 
dependency on the free swelling ratio and the swelling-
deformation responses of the gel under different chemical 
constraints is investigated. It is understood that the nonaffine 
movement of the polymer chains leads to a relatively early 
increase of the free swelling ratio. Moreover, the decrease of 
𝑁 leads to a early onset of the decrease of the tensional stress 
of the gel under simple tension when the chemical potential 
of the solvent increases, i.e. when the solvent is in its liquid 
phase. On the other hand, the volume ratio of the gel 
increases continuously during the swelling-deformation 
process regardless of the affine or nonaffine movement of the 
polymer chains. Furthermore, it is clarified that the proposed 
two different nonaffine models can be combined with 
weighting factors to reproduce the experimental data of 
swollen rubber. 
 
NOMENCLATURE 

 

 
 

(a)                                                 (b) 
 

Flow charts: (a) free swelling state; (b) simple tension state. 
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