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Amplitude death induced by a global dynamic coupling

Keiji Konishi ∗

Abstract

This paper presents a dynamic connection that can induce amplitude death in globally
coupled oscillators. A linear analysis clarifies a local stability condition for global ampli-
tude death. The analysis also indicates that the odd-number property, which is known
in delayed feedback control, exists in global dynamic coupled oscillators. Furthermore,
global amplitude death is experimentally observed in Chua’s circuits coupled by an RC
line.

1 Introduction

Amplitude death, an oscillation stops in diffusive coupled oscillators, has been studied in

the field of nonlinear physics [Yamaguchi & Shimizu, 1984; Bar-Eli, 1985; Aronson et al.;

Pikovsky et al., 2001, 1990; Mirollo & Strogatz, 1990]. It is known that death never occurs

for a pair of identical oscillators [Bar-Eli, 1985; Aronson et al., 1990; Konishi, 2003a; Konishi,

2005]. However, Reddy et al. [1998] found that a time delay connection can induce amplitude

death in coupled identical oscillators. Time-delay induced death has created considerable

interest [Strogatz, 1998]: it was theoretically investigated in detail [Reddy et al., 1999] and

was experimentally observed in electronic circuits [Reddy et al., 2000] and thermo-optical

oscillators [Herrero et al., 2000]. Furthermore, a sufficient condition under which death never

occurs was derived [Konishi, 2003a; Konishi, 2004a; Konishi, 2005].

It was recently reported that amplitude death in two coupled identical oscillators can be

induced by incorporating a dynamic coupling without a time delay [Konishi, 2003b; Kon-

ishi, 2004b]. These reports provided the following results: the death was observed in both

numerical simulations and electronic circuit experiments [Konishi, 2003b; Konishi, 2004b];

a sufficient condition under which death never occurs was derived [Konishi, 2003b]; and a

necessary and sufficient condition for death in van der Pol oscillators was obtained [Konishi,

2004b]. However, these results are exclusive to two identical oscillators. It would be advan-

tageous to extend these results to an arbitrary number of identical oscillators and to confirm

the experimental feasibility of death.

In this paper, a dynamic coupling is proposed that can induce amplitude death in globally

coupled systems with an arbitrary number of identical oscillators. This system can be realized

by electronic oscillators coupled with an RC line connection. It is proven that death induced

by the dynamic coupling never occurs if the Jacobi matrix evaluated at fixed point of an
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isolated oscillator satisfies an odd-number property. The circuit experiments demonstrate

that amplitude death occurs in Chua’s oscillators coupled by an RC line connection.

2 Coupled Oscillators

Consider N identical oscillators that are globally coupled by a coupling unit as illustrated in

Fig. 1. The identical oscillators are described by

Σj :
{

ẋj = F (xj) + buj

yj = cxj ,
(j = 1, 2, . . . , N)

where xj ∈ Rm is the m-dimensional system variable and uj ∈ R and yj ∈ R are the coupling

signals. F : Rm → Rm is a continuously differentiable nonlinear function. The input and

output vectors are denoted by b ∈ Rm and c ∈ R1×m. Each individual oscillator is assumed

to have an unstable fixed point xf (i.e., F (xf ) = 0).

Two types of globally diffusive coupling are considered: static and dynamic. Static coupling

is denoted as

uj = ks





 1

N − 1

N∑
l=1
l �=j

yl


− yj


 , (1)

where ks ∈ R is the coupling strength. The input signal uj is proportional to the difference

between its own signal yj and the mean of the other output signals. The steady state of the

static coupled system is described by[
xT

1 xT
2 · · · xT

N

]T =
[
xT

f xT
f · · · xT

f

]T
. (2)

On the other hand, for dynamic coupling, the oscillators Σj (j = 1, 2, . . . , N) are coupled by

ż = γ

{(
N∑

l=1

yl

)
− Nz

}
, (3a)

uj = kd(z − yj), (3b)

where kd ∈ R is the coupling strength. The coupling signal uj is proportional to the

difference between z ∈ R and yj , where z is an additional variable governed by dynamical

equation (3a) and γ > 0 is a parameter. It should be noted that this coupling differs from

that described in a previous paper [Konishi, 2003b] (see Appendix A). The steady state of

the dynamic coupled system is described by[
xT

1 xT
2 · · · xT

N z
]T =

[
xT

f xT
f · · · xT

f cxf

]T
. (4)

Since static coupling (1) and dynamic coupling (3) are diffusive, they both exhibit the

following common features: coupling signals uj (j = 1, 2, . . . , N) become zero even if all of

the system variables xj (j = 1, 2, . . . , N) are synchronized; the coupling does not change the

location of fixed point xf .

Wu [2000] provided a generalized form of the coupled systems from the viewpoint of chaotic

synchronization. The coupled system proposed in this paper is a special case of Wu’s form.
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3 Linear Stability Analysis

This section presents a linear stability analysis of steady states (2) and (4). Let xj :=

xf + Xj (j = 1, 2, . . . , N), where Xj is assumed to be small. The linearized subsystems at

xf ,

∆Σj :
{

Ẋj = AXj + bUj

Yj = cXj ,

are obtained by substituting xj into oscillators Σj , where Yj := yj − cxf . The Jacobi matrix

of the nonlinear function F is given by A := {∂F (x)/∂x}x=xf
. A is assumed not to have

an eigenvalue on the origin throughout this paper. The linearized subsystems ∆Σj are then

coupled by

Uj = ks





 1

N − 1

N∑
l=1
l �=j

Yl


− Yj


 , (5)

for static coupling. On the other hand, ∆Σj are coupled with

Ż = γ

{(
N∑

l=1

Yl

)
− NZ

}
, (6a)

Uj = kd(Z − Yj), (6b)

for dynamic coupling, where Z := z − cxf .

3.1 Static Coupling

The linear stability of steady state (2) for the static coupled system is equivalent to that in

the linearized systems ∆Σj with connection (5). Hence, the closed loop system consisting of

∆Σj and (5) is investigated,

Ẋj = AXj + bksc





 1

N − 1

N∑
l=1
l �=j

X l


− Xj


 , (7)

for j = 1, 2, . . . , N . Appendix B provides the characteristic function of linear system (7),

f(λ) = f1(λ)f2(λ)N−1, (8)

where

f1(λ) := det [λIm − A], f2(λ) := det
[
λIm − A +

N

N − 1
bksc

]
. (9)

It is obvious that f1(λ) is the characteristic function of Ẋ = AX. Since A is assumed to be

unstable (i.e., xf is unstable), f1(λ) = 0 has at least one root in the open right-half of the

complex plane. This implies that steady-state stabilization never occurs for any b, ks, c, N .

The above analysis can be summarized as follows: static coupling (1) never induces amplitude

death for any b, ks, c, N .
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3.2 Dynamic Coupling

The linear stability of steady state (4) for the dynamic coupled system is equivalent to that

in the linearized systems ∆Σj with connection (6). The closed loop system consisting of ∆Σj

and (6) is

Ẋj = AXj + bkd(Z − cXj), (10a)

Ż = γ

{(
c

N∑
l=1

X l

)
− NZ

}
. (10b)

The characteristic function of linear system (10) can be simplified to

g(λ) = g1(λ)N−1g2(λ), (11)

where

g1(λ) := det [λIm − (A − bkdc)], g2(λ) := det
[
λIm − (A − bkdc) −Nbkd

−γc λ + γN

]
. (12)

The derivation of (11) is provided in Appendix B. g1(λ) and g2(λ) are the characteristic

functions of the matrices,

A − bkdc,

[
A − bkdc Nbkd

γc −γN

]
, (13)

respectively. Therefore, the necessary and sufficient condition for system (10) to be stable

can be derived as follows: steady state (4) for the dynamic coupled system is stable if and only

if both matrices in (13) are stable matrices. It should be noted that there is no guarantee

that death occurs when steady state (4) is stable, because the stability analysis is valid only

in the neighborhood of steady state (4).

Furthermore, a simple sufficient condition under which death never occurs is provided. If

the following two conditions are held; i) limλ→∞ g2(λ) = ∞ for real positive λ: ii) g2(0) < 0,

then at least one root of g2(λ) = 0 is in the open right-half of the complex plane (i.e., steady

state (4) is unstable). Condition i) is obviously held. Condition ii) is described by

g2(0) = Nγdet
[−A

]
= Nγ

m∏
q=1

(−σq) < 0,

where σq (q = 1, 2, . . . , m) are the eigenvalues of A. Hence, if A has an odd-number of real

positive eigenvalues (odd-number property), then g2(0) < 0 is satisfied. This analysis can

be summarized as follows: steady state (4) for the dynamic coupled system is unstable, that

is, amplitude death never occurs for any b, kd, c, N , if A has an odd-number of real positive

eigenvalues.

The odd-number property is well known in the field of delayed feedback control of chaos.

A similar stability analysis can be found in [Ushio,1996; Konishi, 1999; Nakajima, 1997;

Kokame et al., 2001]. Namajūnas, Pyragas, and Tamaševičius [1995] proposed the tracking

filter technique for stabilizing an unstable steady state in the Mackey-Glass system described

by a delay differential equation. Since this technique is similar to dynamic coupling (3), the

dynamic coupling in this paper can be considered an extension of this technique.
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4 Experiments

This paper employs the well-known Chua’s circuit as the oscillator in order to confirm the

stability analysis. The Chua’s circuit is a third order autonomous chaotic oscillator that can

be easily constructed with simple electronic components [Matsumoto et at., 1985; Kennedy,

1992; Chua, 1993]. Since this circuit exhibits various nonlinear phenomena, it has been

typically used to investigate nonlinear dynamics and its applications [Wu, 2002].

4.1 Stability Analysis

Consider N identical Chua’s oscillators as shown in Fig. 2. v
(a)
j , v

(b)
j , and ij denote the

voltage across Ca, Cb, and the current through L of the j-th oscillator respectively. The

coupled Chua’s circuits are governed by


Ca

dv
(a)
j

dt
=

1
r

(
v

(b)
j − v

(a)
j

)
− hc

(
v

(a)
j

)

Cb

dv
(b)
j

dt
=

1
r

(
v

(a)
j − v

(b)
j

)
+ ij +

1
R

(
v0 − v

(b)
j

)
L

dij
dt

= −v
(b)
j

(j = 1, 2, . . . , N). (14)

Current hc

(
v

(a)
j

)
flows through the nonlinear resistor:

hc(v) = m0v +
1
2
(m1 − m0) |v + Bp| + 1

2
(m0 − m1) |v − Bp| .

The parameters are set to

Ca = 0.01[µF], Cb = 0.1[µF], L = 18[mH],
Bp = 1.0[V], r = 1800[Ω], m0 = −0.42 × 10−3, m1 = −0.75 × 10−3,

(15)

and the coupling parameters R and C0 are varied as the accessible parameters.

For open S (i.e., static coupling), the potential in the coupling unit,

v0 =
1
N

N∑
j=1

v
(b)
j , (16)

is the mean of v
(b)
j (j = 1, 2, . . . , N). Using the following dimensionless variables and param-

eters,

xj1 := v
(a)
j /Bp, xj2 := v

(b)
j /Bp, xj3 := rij/Bp, τ := t/(rCb), ĥc(x) := rhc(x)/Bp,

α := Cb/Ca, β := Cbr
2/L, ks := r(N − 1)/(RN),

the oscillators (14) coupled by (16) are transformed into Σj coupled by (1), where

F (x) =


α

{
x2 − x1 − ĥc(x1)

}
x1 − x2 + x3

−βx2


 , b =


0

1
0


 , c =


0

1
0




T

. (17)
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F has three fixed points,

xf+ =
[
η 0 −η

]T
, xf0 =

[
0 0 0

]T
, xf− =

[−η 0 η
]T

, (18)

where η := (m0 − m1)/(m0 + 1/r). The Jacobi matrix evaluated at xf+, xf0, and xf− is

given by

A =


−α(1 + m̂r) α 0

1 −1 1
0 −β 0


 ,

where m̂ is m1 for xf0 and m0 for xf+ and xf−. Substituting parameter values (15) into

A, the eigenvalues of A are estimated as λ1 = 4.55, λ2,3 = −1.03 ± i3.58 at xf0 and are

λ1 = −3.77 and λ2,3 = 0.16 ± i3.41 at xf+ and xf−. Therefore, the Jacobi matrices A at

xf+, xf0, and xf− are unstable.

The coupled Chua’s oscillators contain two types of steady states.

• Type (I):
[
xT

1 xT
2 · · · xT

N

]T =
[
xT

f± xT
f± · · · xT

f±
]T

• Type (II):
[
xT

1 xT
2 · · · xT

N

]T =
[
xT

f0 xT
f0 · · · xT

f0

]T
xf± describes each individual oscillator staying at xf+ or xf−. Therefore, the type (I) has

2N steady states. On the other hand, type (II) simply denotes all the oscillators at xf0. From

the previous section, we notice that if oscillators (14) are coupled only by the resistors R (S

is open), then amplitude death never occurs (i.e., neither type (I) nor (II) states are stable)

for any R and N .

For closed S (i.e., dynamic coupling), v0 is governed by

C0
dv0

dt
=

1
R

{(
N∑

l=1

v
(b)
l

)
− Nv0

}
. (19)

Oscillators (14) coupled by connection (19) correspond to the dynamic coupled system con-

sisting of oscillators Σj and coupling (3), where z := v0/Bp, γ := rCb/(RC0), kd = r/R and

(17). The dynamic coupled system also contains two types of steady states.

• Type (I):
[
xT

1 xT
2 · · · xT

N z
]T =

[
xT

f± · · · xT
f± 0

]T
• Type (II):

[
xT

1 xT
2 · · · xT

N z
]T =

[
xT

f0 · · · xT
f0 0

]T
Type (I) has 2N steady states and type (II) has one steady state.

First, the type (II) steady state is considered. It is noticed that the Jacobi matrix A

at xf0 estimated above satisfies the odd-number property. Hence, amplitude death never

occurs in the type (II) steady state for any R, C0, and N . Next, the stability of the type (I)

steady state is examined. Since A at xf+ and xf− estimated above does not satisfy the odd-

number property, b, kd, c, N, γ must be specified. The matrices (13) including b, kd, c, N, γ

are estimated. If they are stable, then amplitude death may occur in the type (I) steady

state. If not, death never occurs.
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4.2 Implementation

The coupled circuits shown in Fig. 2 were constructed. The nonlinear resistor has the

same structure as in [Kennedy, 1992]. The inductor L was realized by a general impedance

converter [Itoh, 2001] consisting of four resistors and one capacitor. Figure 3 shows the

double scroll attractor in each individual circuit without coupling. Three unstable fixed

points, xf+, xf−, xf0, coexist with the attractor.

The stable region for the R−C0 parameter space, in which the type (I) steady state is judged

to be stable from stability condition (13), was estimated. The region for the twelve coupled

circuits (N = 12) is shown as the gray region in Fig. 4. The dots indicate the parameter set

(R, C0) where death is experimentally observed in the coupled electronic oscillators. It can

be seen that the theoretical gray region is consistent with the experimental dots.

Figure 5 (a) shows the time series data of v
(a)
1 and v

(a)
2 at the parameter set P (R = 6.8[kΩ]

and C0 = 1[µF]) in Fig. 4. The switch S is closed at the center of the figure. It can be

seen that the circuits behave chaotically while S is open. After S is closed, however, the

chaotic behavior is changed to a periodic one, but death is not observed. For parameter set

Q (R = 2.2[kΩ] and C0 = 1[µF]), the time series data are shown in Fig. 5 (b). After S is

closed, v
(a)
1 and v

(a)
2 converge on η and −η, respectively. This fact implies that x1 and x2

converge on xf+ and xf−, respectively. The circuits experiments for N = 1, 2, . . . , 11 have

also been demonstrated by the above procedure, and similar results were obtained.

The circuit elements used in these experiments are low in cost and can be easily found,

although they have an error of several percent. Therefore, these experiments demonstrated

that death induced by dynamic coupling is a robust phenomenon for external noise and

parameter mismatch.

5 Conclusion

In this study, a dynamic connection that can induce amplitude death in globally coupled os-

cillators is proposed. The linear stability analysis provides the following results: death never

occurs in a static coupling system and death never occurs when the odd-number property

is satisfied. It should be noted that the analysis can be applied to general oscillators. Fur-

thermore, amplitude death was experimentally observed in global-dynamic coupled Chua’s

oscillators.

This research was supported by the Grants-in-Aid for Young Scientists (17760355) from

the Japanese Ministry of Education, Culture, Sports, Science, and Technology.

A Type of dynamic coupling

The previous paper [Konishi, 2003b] considered two oscillators, α- and β-oscillators coupled

by {
żα = yβ − zα

uα = k(zα − yα),

{
żβ = yα − zβ

uα = k(zβ − yβ),
(20)
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where yα,β , uα,β , and zα,β are the coupling signals and additional variables, respectively.

Equation (20) is a diffusive dynamic coupling; however, there is a difference between coupling

(3) and (20). If coupling (20) is applied to N oscillators, N additional variables zi (i =

1, 2, 3, . . . , N) are required. On the contrary, one additional variable z is used for coupling

(3). For example, consider five oscillators coupled by a dynamic connection where each

oscillator has three variables. The dimension of the coupled system with (20) is twenty; on

the other hand, that with (3) is sixteen.

B Derivations of Eqs. (8) and (11)

System (7) is rewritten in a matrix form:



Ẋ1

Ẋ2
...

ẊN


 =




As bs · · · bs

bs As · · · bs
...

...
. . .

...
bs bs · · · As






X1

X2
...

XN


 , (21)

where As := A − bksc and bs := 1
N−1bksc. A property of the determinant states that it is

invariant under the addition of a scalar multiple of a row (column) to another row (column).

This property can simplify the characteristic function of linear system (21):

f(λ) = det




λIm − As −bs · · · −bs

−bs λIm − As · · · −bs
...

...
. . .

...
−bs −bs · · · λIm − As




= det
[
λIm − As − (N − 1)bs

]
det




λIm − As + bs 0 · · · 0
0 λIm − As + bs · · · 0
...

...
. . .

...
0 0 · · · λIm − As + bs




= f1(λ)f2(λ)N−1, (22)

where f1(λ) and f2(λ) are given by Eq. (9).

System (10) is rewritten as




Ẋ1

Ẋ2
...

ẊN

Ż


 =




Ad 0 · · · 0 bkd

0 Ad · · · 0 bkd
...

...
. . .

...
...

0 0 · · · Ad bkd

γc γc · · · γc −γN







X1

X2
...

XN

Z


 , (23)

where Ad := A− bkdc. The characteristic function of linear system (23) can be simplified as
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follows:

g(λ) = det




λIm − Ad 0 · · · 0 −bkd

0 λIm − Ad · · · 0 −bkd
...

...
. . .

...
...

0 0 · · · λIm − Ad −bkd

−γc −γc · · · −γc λ + γN




= det




λIm − Ad 0 · · · 0 −bkd

0 λIm − Ad · · · 0 −bkd
...

...
. . .

...
...

0 0 · · · λIm − Ad −Nbkd

0 0 · · · −γc λ + γN




= g1(λ)N−1g2(λ), (24)

where g1(λ) and g2(λ) are given by Eq. (12).
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Figure 2: Globally coupled Chua’s oscillators
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Figure 5: Time series data (v(a)
1 and v
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2 ) of Chua’s circuits connected by a globally dynamic

coupling. (a) parameter set P (R = 6.8[kΩ] and C0 = 1[µF]). (b) parameter set Q (R =
2.2[kΩ] and C0 = 1[µF]).


