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Abstract: We fabricated photonic crystal high-quality factor (Q) nanocavities on a 300-mm-
wide silicon-on-insulator wafer by using argon fluoride immersion photolithography. The 
heterostructure nanocavities showed an average experimental Q value of 1.5 million for 12 
measured samples. The highest Q value was 2.3 million, which represents a record for a 
nanocavity fabricated by complementary metal–oxide–semiconductor (CMOS)-compatible 
machinery. We also demonstrated an eight-channel drop filter with 4 nm spacing consisting 
of arrayed nanocavities with three missing air holes. The standard deviation in the drop 
wavelength was less than 1 nm. These results will accelerate ultrahigh-Q nanocavity research 
in various areas. 
© 2017 Optical Society of America 
OCIS codes: (230.5298) Photonic crystals; (220.3740) Lithography; (220.4610) Optical fabrication; (230.5750) 
Resonators; (140.3948) Microcavity devices. 
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1. Introduction 
Nanocavities based on artificial defects in two-dimensional (2D) photonic crystal (PC) slabs 
have a high-quality factor (Q) with a small modal volume (V) approaching one cubic 
wavelength [1–8]. In particular, nanocavities fabricated on a silicon-on-insulator (SOI) wafer 
have achieved the highest experimental Q (Qexp) exceeding several million [9–14]. A high 
Q/V ratio brings many benefits; therefore, silicon (Si) high-Q nanocavities are being widely 
studied in various fields. Nanocavities with Qexp of less than several hundred thousand have 
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been used in research on ultrasmall wavelength-selective filters [15], highly sensitive 
biosensors [16], and highly efficient Si emitters [17, 18]; these mainly utilize nanocavities 
with three missing air holes (L3) [2]. Heterostructure nanocavities with Qexp of greater than 
several hundred thousand have helped realize unique devices such as an optical pulse trap 
with dynamic control [19–21] and two photon absorption photodiodes with low operating 
energies [22]. Ultrahigh-Q nanocavities with Qexp of greater than 1 million have helped 
realize ultralow-threshold Raman Si lasers [23, 24]. In most of these studies, the nanocavities 
were fabricated with electron-beam (EB) lithography. 

Heterostructure nanocavities can be designed with a theoretical Q (Qideal) value of greater 
than 10 million [3]. However, Qexp is easily reduced to less than 1 million by nanometer-scale 
random variations in PC structures. Previous studies have clarified that fluctuations in the 
radii and positions of the air holes should be reduced to less than 1 nm in order to fabricate 
ultrahigh-Q nanocavities with Qexp of greater than 1 million [25, 26]. High accuracy and high 
resolution are inevitably required for the lithography process, so EB lithography has been 
utilized. The EB machine has another merit in that the lithography pattern can easily be 
changed. However, the EB process requires a long time for lithography. Our research group 
has fabricated nanocavities on a small SOI chip with an area of about 1 cm2. 

Recently, the mass-manufacturing of Si PC functional devices utilizing a complementary 
metal–oxide–semiconductor (CMOS)-compatible process with photolithography has attracted 
attention. Following research on a high-speed optical modulator using a slow-light PC 
waveguide [27], a Qexp value of 0.22 million was reported for glass-clad 2D PC nanocavities 
fabricated with krypton fluoride lithography [28], and a Qexp value of 0.11 million was 
reported for 1D PC nanocavities fabricated with argon fluoride (ArF) immersion lithography 
[29]. However, ultrahigh-Q nanocavities with Qexp of greater than several million have not 
been achieved with the CMOS fabrication process, which would be a significant step toward 
the commercial application of ultrahigh-Q nanocavities. 

In this study, we fabricated high-Q nanocavities on a 300-mm SOI wafer using CMOS 
technologies. We used ArF immersion lithography with a half-tone mask and process recipe 
optimized for PC devices. An average Qexp value of 1.5 million was obtained for 12 measured 
heterostructure nanocavities, where the highest value was 2.2 million. We also estimated the 
magnitude of random air hole variations for the measured sample to be 0.79 nm by comparing 
the Qexp values with the calculated values. We demonstrated eight-channel drop filters with 4 
nm spacing consisting of arrayed L3 nanocavities. The best sample showed a standard 
deviation of less than 0.5 nm for the drop wavelength. 

2. Sample structure and fabrication process 
Figures 1(a) and 1(b) show a schematic illustration and scanning electron microscopy (SEM) 
image, respectively, of a measured heterostructure nanocavity. We used a commercial 300-
mm-wide SOI wafer with a 225-nm-thick Si slab and buried oxide (BOX) layer with a 
thickness of 2 µm. The PC consisted of a triangular lattice of circular air holes with radii of 
105 nm. The nanocavity was formed by a line defect of 23 missing air holes. The lattice 
constant in the x-direction changed by 5 nm every two periods as it approached the center of 
the cavity. The lattice constants of the central, intermediate and outer regions were a3 = 420 
nm, a2 = 415 nm, and a1 = 410 nm, respectively, while the lattice constant in the y-direction 
was 710 nm (W1) for all regions. The excitation waveguide adjacent to the cavity was 10% 
wider in the y-direction (i.e., 1.1W1), and the separation from the cavity was eight rows of air 
holes. No special structure to improve the coupling efficiency to the waveguide was 
introduced at the waveguide edge. The calculated Qideal and resonant wavelength (λ0) using 
the three-dimensional (3D) finite difference time domain (FDTD) method were 2.1 × 107 and 
1605.8 nm, respectively. The fundamental structure of the nanocavity was the same as that for 
previous studies reporting Qexp of several million fabricated with EB lithography [10–12]. 
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The Qideal value in this study is slightly larger than those for our previous papers because of 
the smaller air hole radius [9, 10, 26]. 

 

Fig. 1. Summary of fabricated samples. (a) Illustration of a measured multi-heterostructure 
nanocavity. (b) SEM image. (c) Illustration of a measured eight-channel drop filter consisting 
of arrayed L3 nanocavities. (d) SEM image of a filter unit using an L3 cavity with 0.15an 
shifted holes. (e) Cross-sectional SEM image of a PC slab. The magnified image indicates the 
tilt of the holes (about 3°). (f) AFM image of the Si surface for which Ra = 0.26 nm was 
obtained. 

Figures 1(c) and 1(d) illustrate an eight-channel wavelength filter and SEM image of a 
nanocavity, respectively. This device had eight PC units (PC1,…, PCn,…, PC8), and each 
contained an excitation waveguide and shifted L3 nanocavity to extract transmitted light with 
a resonant wavelength. The separation between the excitation waveguide and nanocavities 
was six rows of air holes. The fundamental structure was the same as that previously reported 
for a 32-channel drop filter fabricated with EB lithography [15]. A single PC unit had 25 
periods of air holes in the x-direction, and the lattice constant an changed in the x-direction by 
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2 nm increments from 404 nm to 418 nm. In order to maintain structural uniformity, the 
lattice constant was kept the same in the y-direction at 710 nm for all units. The width of the 
excitation waveguide was 1.05W1. Air holes at both edges of each L3 nanocavity were shifted 
by 0.15an. Note that the shifted air holes were completely separated from the neighboring 
holes, as shown in Fig. 1(d), which indicated that the proximity effect in photolithography 
process was very small. The calculated Qideal was 42,000, and the spacing of resonant 
wavelengths with an adjacent cavity was about 4.5 nm (grid frequency of 550 GHz). 

The fabrication process related to the photolithography and plasma etching to form air 
hole structures was performed using CMOS compatible machinery in the research and 
development laboratory at AIST. We had to reduce the variation in air holes to less than 1 nm 
to realize Qexp of larger than several million. Therefore, we used an ArF immersion scanner 
(Nikon NSR-S610C) for 45 nm node volume production. The wavelength of an ArF excimer 
laser is 193 nm. Purified water was introduced between the projection lens and resist-coated 
wafer to increase the size of the numerical aperture (N.A.) [30]. The short wavelength and 
large N.A. yielded a high resolution. In addition, we used a half-tone photomask to improve 
the resolution [31]. The shot size of the photomask was 104 mm × 132 mm; this was 
transferred onto a SOI wafer with a reduction in size by a factor of 4 to 26 mm × 33 mm. 
Thus, about 60 chips with the same structure were fabricated on a 300-mm-wide SOI. We 
then used a dry-etching recipe optimized for the fabrication of PC devices to reduce the tilt of 
the air holes. 

The wafer was cut into about 60 chips and the following process was performed using our 
small-scale fabrication technologies. A chip was polished to a thickness of 100 μm and 
separated into several pieces with dimensions of 1 mm × 300 μm. They were bonded to small 
cubic blocks for optical measurements. Finally, the BOX layer underneath the PC pattern was 
selectively removed to form an air-bridge structure where 48% hydrofluoric (HF) acid 
without surface active agent was used at room temperature. The air-bridge structure, which 
easily increase the Q factors of nanocavities, could cause problems in CMOS process when 
the high-Q nanocavities are integrated with other opto-electronic devices. Furthermore, wet 
etching using HF acid is not a standard process in CMOS technologies. These can be resolved 
by utilizing the technologies intensively developed for MEMS, such as vapor-phase HF dry 
etching, trench-refill process [32, 33]. 

Figure 1(e) shows the cross-sectional views of a fabricated sample. The tilt of the air holes 
was reduced to less than 3° in average. Figure 1(f) presents an atomic force microscopy 
(AFM) image of the sample surface neighboring the PC pattern, which indicated an average 
roughness (Ra) of 0.26 nm. This value is larger than those for the nanocavities that we 
reported, which are typically less than 0.15 nm. This roughness was due to the 300-mm-wide 
SOI wafer that we used. It should not cause a significant reduction in Qexp for the 
heterostructure nanocavities but may have increased the fluctuation of the resonant 
wavelengths. 

3. Experimental setup 
Figure 2 shows the measurement setup to obtain the resonant spectra of high-Q nanocavities. 
The light from a continuous-wave tunable laser was split into two beams. One was sent to a 
high-precision wavelength meter with a differential accuracy of ± 0.15 pm. The other was 
modulated by a mechanical chopper at a frequency of ~1 kHz and focused by a 0.40-N.A. 
objective lens on the facet of the excitation waveguide after being set to transverse-electric 
(TE) polarization by a polarizer. The experiment was performed at room temperature in a 
standard air atmosphere with a relative humidity of 30%. The sample was placed on a high-
precision six-axis stage, and the sample temperature was stabilized by using a Peltier 
controller. When the incident wavelength matched λ0 of the nanocavity, part of the 
transmitted light was extracted from the nanocavity in the direction perpendicular to the slab. 
The dropped light was collected by a 0.5-N.A. objective lens placed on a three-axis stage. The 
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position of the lens was adjusted by using a near-infrared (NIR) camera so that the dropped 
light was incident on the InGaAs photodiode. The transmitted light that passed through the 
excitation waveguide was similarly collected with a 0.4-N.A. objective lens. A pin hole was 
inserted to eliminate the background light. The intensities of the dropped and transmitted 
lights were measured with a lock-in amplifier system as a function of the laser wavelength. 

 

Fig. 2. Setup for measuring the resonant spectra of nanocavities. PD: photodiode, Pol.: 
polarizer, N.A.: numerical aperture. 

4. Experimental results 
4.1 Multi-heterostructure nanocavities 

Among the 60 chips, we picked a chip located 50 mm away from the center of the 300-mm-
wide wafer. We measured 12 samples of the multi-heterostructure nanocavity with the same 
structure on the chip. Figure 3 plots the dropped (filled circles) and transmitted (open circle) 
spectra for the heterostructure nanocavity showing the highest Qexp. The dropped spectrum 
was fitted to a Lorentzian function (solid curved line) with a full width at half maximum (∆λ) 
of 0.82 pm. The effective Q (Qload) value of the nanocavity, which included the load of the 
excitation waveguide, was determined according to the following relationship: 

 load 0 / .Q λ λ= ∆  (1) 

Here, λ0 is the resonant wavelength. From coupled mode theory, Qexp (i.e., intrinsic Q of the 
measured cavity excluding the load of the excitation waveguide) can be expressed as follows 
[34]: 

 exp load 0/ .Q Q T=  (2) 

T0 is the transmittance at λ0, which was 0.75 as shown in Fig. 3. Thus, a Qexp value of 2.3 
million was obtained for the cavity shown in Fig. 3. This value is the highest recorded for 
nanocavities fabricated by the CMOS process. Although the spectral measurement showed 
uncertainty for the sample with Qexp of greater than 1 million owing to the resolution limit of 
the wavelength meter and temperature fluctuation, we confirmed a value of greater than 2 
million from the time-domain measurement [9]. 
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Fig. 3. Dropped (filled circles) and transmitted (open circle) spectra for the heterostructure 
nanocavity with the highest Qexp of 2.3 million. The solid curve is the fitting by a Lorentzian 
function. 

 

Fig. 4. (a) Resonant wavelengths and (b) experimental Q of 12 measured nanocavities. The 
solid and dashed lines indicate the average value and its standard deviation. 

Figures 4(a) and 4(b) summarize λ0 and Qexp, respectively, for the measured 12 
nanocavities. The x-axis represents the number of the cavities. The average λ0 was 1606.8 nm, 
which is in good agreement with the calculated value. The standard deviation of the resonant 
wavelength was as small as 0.51 nm. The solid line in Fig. 4(b) indicates the average Qexp 
value of the 12 nanocavities, which was as high as 1.50 × 106. This value is much smaller 
than Qideal because of scattering loss from random variation of the air holes and optical 
absorption loss related to the surface [12]. We obtained similar results for Qexp and the 
standard deviation of λ with a chip picked from another position on the 300-mm-wide SOI 
(the average λ varied in several nanometers, which will be reported elsewhere). These results 
clearly indicate that the mass manufacture of ultrahigh-Q nanocavities with Qexp of greater 
than 1 million is feasible by using CMOS-compatible technologies. We expect that the mass 
manufacture of a nanocavity Raman silicon laser would be possible with the CMOS process 
[23]. Note that the tilt of the air holes in this study was greater than that in previous studies 
using EB lithography [10–12]. In addition, the thickness of the BOX layer for the SOI was 2 
µm in this study, while previous studies utilized an SOI with a 3-µm-thick BOX layer. The 
tilt of the air holes increases the scattering loss, and a thin BOX layer increases the radiation 
loss in the direction toward the substrate. By improving upon these two points, we can 
increase Qexp for CMOS fabrication. 

4.2 Estimation of air hole variation 

Qexp for CMOS fabrication was less than that for EB lithography. This must mainly be due to 
the larger variation of the air holes with CMOS fabrication. To further increase Qexp, we 
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should know the magnitude of the random variation of the air holes, which is represented by 
the standard deviation σhole. As we previously reported, the magnitude of σhole was estimated 
from the comparison with 3D FDTD simulations considering air hole variations [10, 12, 26]. 
In this calculation, random nanometer-scale variations in the positions (δx, δy) and radii (δr) 
were applied to all air holes so that the probability of variations followed a normal 
distribution with a standard deviation. The size of a unit cell in 3D FDTD was set to the one-
twentieth of the lattice constant in the x and y directions, which is twice as small as that of the 
previous report [10]. The smaller unit cell enhanced the accuracy of the simulation, especially 
for λ. The calculated Q (Qfluc) values were strongly dependent on the fluctuation pattern. 
Thus, we performed the calculation for 30 different fluctuation patterns. 

 

Fig. 5. (a) Calculated Q factors of the nanocavity shown in Fig. 1(b) for 30 fluctuation patterns 
with σhole = 1 nm. (b) Schematic view of the variation in an air hole’s radius and position. δx 
and δy represent the variation in position. δr represents the variation in radius. 

Figure 5 shows the Qfluc values for the 30 patterns with σhole of 1 nm (standard deviations 
for δr, δx, and δy are 1 nm). These were less than Qideal = 2.12 × 107 because of the additional 
loss factor (Qloss) from the air hole variations. The three Q had the following relation: 

 loss fluc ideal1 / 1/ 1/ .Q Q Q= −  (3) 

This statistical simulation yielded the following relations for the average value (Avg.) of 
1/Qloss and the standard deviation (S.D.) of 1/Qloss because they are proportional to the square 
of σhole (details of the calculations are given in [26]): 

 7 2
loss holeAvg.(1/ ) 6.17 10 .Q σ−= × ×  (4) 

 7 2
loss holeS.D.(1/ ) 2.57 10 .Q σ−= × ×  (5) 

These coefficients of 6.17 × 10−7 and 2.57 × 10−7 are smaller than those for our previous 
reports on nanocavities with a similar structure [10, 12]. We confirmed that the smaller radius 
decreases the coefficients for the same magnitude of σhole because the refractive index 
variation induced by the air hole fluctuation is decreased. Avg.(1/Qloss) and S.D.(1/Qloss) for 
the 12 nanocavities shown in Fig. 4(b) were estimated to be 6.52 × 10−7 and 1.61 × 10−7, 
respectively, by the substitution of Qexp for Qfluc in Eq. (3). The experimental Avg.(1/Qloss) 
should include the absorption loss related to the nanocavity surface [12,14], which was 
estimated to be about 1.25 × 10−7 (Qloss = 8 million) for the sample in this study. The 
magnitude of the air hole variations for CMOS fabrication was estimated to be σhole = 0.92 nm 
by substituting 5.27 × 10−7 for the Avg.(1/Qloss) in Eq. (4) while σhole = 0.79 nm was estimated 
by substituting 1.61 × 10−7 for the S.D.(1/Qloss) in Eq. (5). 

In addition, the simulation yielded the following relation for the S.D. of λ, which is known 
to be proportional to σhole. 

 holeS.D.( ) 0.63 .λ σ= ×  (6) 
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The coefficient of 0.63 is larger than that for the previous report [10]. This is probably 
because of the smaller sizes of the unit cell in 3D FDTD. σhole was estimated to be 0.81 nm 
from Eq. (6) by substituting the experimental result of 0.51 nm for the S.D.(λ). The good 
agreement between σhole estimated from λ and the values estimated from the 1/Qloss suggests 
that the surface roughness shown in Fig. 1(f) may not have a large influence on λ. The three 
values of σhole estimated from the three methods mostly showed good agreement with an 
average σhole of 0.84 nm. The lowest value of σhole for EB fabrication was 0.25 nm, for which 
the highest Qexp of 11 million was reported [14]. We expect σhole for CMOS fabrication to be 
further decreased as the accuracy of the photomask can be improved and the photolithography 
conditions will be optimized. 

4.3 Add-drop filter 

Finally, we demonstrate an eight-channel drop filter using arrayed L3 nanocavities for the 
wavelength division multiplexing (WDM) applications. The demultiplexing (DEMUX) filter 
using Si photonics is an important component for future optical links in huge datacenters. The 
size of a DEMUX filter using high-Q nanocavities is much smaller than other types of silicon 
photonics filters such as arrayed waveguide gratings or ring cavities [35, 36]. Recently, an 
eight-channel DEMUX filter with integrated heaters using photonic crystal nanocavities has 
been reported [37]. Figure 6(a) shows the drop spectra for eight channels in the sample 
showing the smallest fluctuation of the λ spacing. Each spectrum was normalized 
independently. The average value of Qload for the eight channels was 3.13 × 104. Figure 6(b) 
shows the relation between the measured drop wavelengths and the lattice constant in the x-
direction. The resonant wavelengths were proportional to the lattice constant. The slope of the 
fitted line indicated that the resonant wavelength changed by 3.9 nm when the lattice constant 
was increased by 2 nm. This value corresponds to a spacing of 460 GHz, which is smaller 
than the calculated value. This is possibly due to an error in the photomask. The variation in 
spacing of resonant wavelengths for neighboring nanocavities had a standard deviation of as 
small as 0.41 nm, which would be negligible when applied to coarse WDM. For future 
applications, it is important to study increasing the 1 dB bandwidth [38]. 

 

Fig. 6. (a) Normalized drop spectra for eight channels (b) Relationship between the drop 
wavelength and lattice constant in the x direction for an eight-channel filter. The red line shows 
a linear fit. 

The 3D FDTD simulation (see section 4.2) for the shifted L3 nanocavity with a = 410 nm 
and r = 105 nm yielded the following relation for the S.D. of λ: 

 holeS.D.( ) 0.68 .λ σ= ×  (7) 

The coefficient is slightly larger than that for the heterostructure nanocavity represented in 
Eq. (6). This suggests that the L3 cavities have a slightly lower tolerance to random structural 
disorders. 
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5. Summary 
Nanocavities fabricated on a 300-mm-wide SOI using ArF immersion photolithography 
showed good properties in terms of the magnitude of Qexp and accuracy of the resonant 
wavelengths. The heterostructure nanocavities showed an average Qexp value of 1.5 million 
for 12 measured samples. The highest Qexp value was 2.3 million, which represents a record 
for PC cavities fabricated by a CMOS-compatible process. We also demonstrated an eight-
channel drop filter with 460 GHz spacing consisting of arrayed L3 nanocavities where the 
variation in drop wavelengths was less than 1 nm. The Qexp values will soon be enhanced 
because we can further improve upon the device structures and the CMOS fabrication 
process. We believe that a nanocavity Raman silicon laser can be realized with the CMOS 
process [23]. Such results will accelerate high-Q nanocavity research for applications in 
various areas. 
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