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Abstract  16 

Accurate antigen delivery into cytosol of antigen-presenting cells, such as dendritic cells, 17 

is crucially important to induce cellular immunity for achievement of efficient cancer 18 

immunotherapy. Various antigen delivery systems have been studied to date to achieve 19 

cytoplasmic delivery of antigens. Among them, pH-sensitive liposome is regarded as a 20 

promising carrier because of its pH-responsive membrane disruption or fusion ability, 21 

which causes the transfer of encapsulated antigen into cytosol. Recently, highly potent 22 

pH-sensitive liposomes have been prepared as antigen delivery systems using liposomes 23 

modified with pH-sensitive polymers. The control of pH-responsive fusion ability and 24 

intracellular distribution of antigens, the induction of humoral or cellular immunity in 25 

vivo, the induction of protective immunity against pathogens, and the treatment of 26 

tumor-bearing mice have been achieved using these liposomes. The design and function 27 

of these pH-sensitive polymer-modified liposomes are outlined in this review. 28 

 29 
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Introduction 32 

Cancer immunotherapy, which is a treatment activating the patient’s own 33 

immune system to fight cancer or removing immunosuppression in tumor 34 

microenvironments, has gained much attention as an alternative to standard cancer 35 

therapies.1–3 To date, various cancer immunotherapy methods have been studied, such as 36 

adoptive T cell transfer therapy, dendritic cell vaccine, and immune checkpoint 37 

inhibitors.1–7 Among them, activation of the immune system against cancer via dendritic 38 

cells (DCs) is an attractive treatment because of its selectivity and safety.4 In 2010, 39 

Sipuleucel-T (Provenge; Dendreon Corp.), a DC vaccine against prostate 40 

adenocarcinoma, was approved by the US FDA.5, 6 Since then, DC cancer vaccines have 41 

received much attention from numerous researchers. 42 

As an antigen-presenting cell, DC, plays a crucial role in starting and activating 43 

immune systems.8, 9 DC recognizes the tumor antigen and presents to T cells. Activated 44 

T cells or B cells subsequently attack the tumor directly or via antibody. Two major 45 

pathways exist for antigen presentation by DCs (Figure 1). Exogenous antigen is 46 

degraded via endosome pathway, and is carried onto major histocompatibility complex 47 

(MHC) class II molecules, which induces humoral immunity. Endogenous antigen is 48 

degraded in proteasomes and is carried onto MHC class I molecules, thereby inducing 49 
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cellular immunity. To achieve effective cancer immunotherapy, the induction of cellular 50 

immunity is important. To induce cellular immunity, the transfer of exogenous antigen 51 

to cytosol and the induction of MHC class I-mediated presentation, which is termed as 52 

“cross-presentation”, are necessary (Figure 1). Therefore, an efficient cytoplasmic 53 

delivery system of exogenous antigen is necessary to induce “cross-presentation” and to 54 

achieve cancer immunotherapy. 55 

To date, various delivery systems have been studied for cytoplasmic delivery of 56 

antigens.10–26 Among them, lipid-based delivery systems such as liposomes are 57 

attractive because liposomes can achieve cytoplasmic delivery using bio-related 58 

functions such as membrane fusion.10–13, 23–26 Two strategies are used for cytoplasmic 59 

delivery. One is direct delivery of exogenous antigen into cytosol, such as direct fusion 60 

with cellular membrane by Sendai virus fusion protein-incorporated liposomes or a 61 

combination of bubble liposome with ultrasound.10, 11, 27 Another strategy of 62 

cytoplasmic delivery is the promotion of endosomal escape of an antigen, such as 63 

influenza virus fusion protein-introduced liposomes (Virosome) or pH-sensitive 64 

liposomes.12, 13, 23–25, 28 However, viral protein-based liposomes might cause unfavorable 65 

immune responses derived from viral components. Therefore, the use of pH-sensitive 66 

liposomes prepared from synthetic molecules is desired. 67 
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Two methods are used for the preparation of pH-sensitive liposomes: the 68 

inclusion of pH-sensitive amphiphiles and the modification of pH-sensitive polymers to 69 

stable liposomes. In the case of pH-sensitive amphiphiles, non-bilayer forming lipids 70 

such as dioleoylphosphatidylethanolamine (DOPE) are used as a lipid component.24, 25, 71 

29 Therefore, it is difficult to combine the stability of liposome with high sensitivity. 72 

However, poly(carboxylic acid)s such as poly(acrylic acid) derivatives have been used 73 

as typical pH-sensitive polymers to prepare pH-sensitive polymer-modified liposomes 74 

(Figures 2a and 2b).30–32 These polymers form mixed micelles with lipids at acidic pH, 75 

which causes liposomal membrane lysis.33–35 The hydrophobicity of poly(acrylic acid) 76 

derivatives strongly affects their membrane disrupting capability.36 Especially, 77 

poly(propyl acrylic acid) showed higher ability to induce membrane disruption 78 

responding weakly acidic pH than poly(ethyl acrylic acid).36, 37 Poly(propyl acrylic acid) 79 

was applied to antigen delivery by direct conjugation to antigenic proteins.38, 39 These 80 

antigen-polymer conjugates or conjugate-based micelles induced “cross-presentation” in 81 

vitro and cellular immune responses in vivo.38–41 Endosomal membrane lysis activity 82 

derived from poly(propyl acrylic acid) might enhance the delivery of antigenic proteins 83 

into cytosol of DCs, thereby causing the induction of efficient cross-presentation. 84 

Our group has developed pH-sensitive polymers of another type using 85 
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poly(glycidol)s, which have a poly(ethylene glycol) (PEG) like main chain structure.42, 86 

43 Dicarboxylic acid anhydrides such as succinic anhydride were reacted with hydroxy 87 

groups of poly(glycidol)s, resulting in succinylated poly(glycidol) (SucPG, Figure 2c). 88 

42, 43 Long alkyl chains were also introduced to a part of carboxy groups (typically 89 

around 10% for hydroxy groups) to fix the polymer onto the liposome membrane. 90 

SucPG-modified egg yolk phosphatidylcholine (EYPC) liposomes showed content 91 

(calcein) release under acidic pH and delivered calcein to cytosol of CV1 cells.43 92 

Analyses of intracellular fusion behavior of liposomes based on fluorescence resonance 93 

energy transfer (FRET) revealed that SucPG-modified liposomes show membrane 94 

fusion ability under acidic pH differently from membrane lysis of poly(acrylic acid) 95 

derivatives.43 The PEG-like main chain structure of SucPG might induce “mild” 96 

insertion of polymer chain to liposome membrane under acidic conditions, resulting in 97 

induction of membrane defects to cause membrane fusion.43 In contrast, poly(acrylic 98 

acid) derivatives, which have a vinyl main chain structures, might be inserted deeply to 99 

the lipid bilayer under the same circumstances, thereby causing the comprehensive 100 

destabilization of the lipid membrane.32 101 

Based on the intracellular delivery performance of carboxylated poly(glycidol)s, 102 

carboxylated poly(glycidol)s-modified liposomes were applied to antigen delivery into 103 
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cytosol of DC to induce cross-presentation and cellular immunity (Figure 3). This 104 

review presents discussion of the effects of carboxylated poly(glycidol) structure on the 105 

performance of intracellular delivery of antigen and the induction of cellular immune 106 

responses against cancer or an infectious disease model. Carboxylated dextrans were 107 

also developed as safer pH-sensitive polymers. Their capability for use as a cancer 108 

vaccine was evaluated. To induce stronger immune responses, adjuvant 109 

(immune-activating) molecules or functions were introduced to pH-sensitive 110 

polymer-modified liposomes. Then their performance was evaluated. 111 

 112 

Design of pH-sensitive polymers for cytoplasmic delivery 113 

When poly(carboxylic acid)s interact with lipid membrane, hydrophobic 114 

interaction of their main chain with hydrophobic domain of lipid bilayers and hydrogen 115 

bonds between carboxy groups of polymer and phosphate groups on the surface of lipid 116 

membrane are regarded as the main mechanisms for lipid membrane destabilization.32 117 

Therefore, the structures of carboxylated poly(glycidol)s might strongly affect their 118 

fusogenic performance. Hence, poly(glycidol)s having various side chain structures 119 

were prepared.44 With increasing hydrophobicity of side chain structures, 120 

membrane-disruption properties of these polymers at acidic pH increased.44 Especially, 121 
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3-methylglutarylated poly(glycidol) (MGluPG, Figure 2d) exhibited strong membrane 122 

fusion activity at weakly acidic pH corresponding to endosomal pH regions, which is 123 

suitable performance for pH-responsive intracellular delivery system. Actually, 124 

MGluPG-modified liposomes achieved cytoplasmic delivery of calcein to HeLa cells at 125 

quicker timing than those of SucPG-modified liposomes.44 126 

SucPG-modified and MGluPG-modified liposomes were applied to antigen 127 

delivery to DCs.45 Ovalbumin (OVA) was encapsulated as a model antigenic protein in 128 

liposomes composed of EYPC and DOPE. OVA-loaded liposomes were added to DC2.4 129 

cells, a murine dendritic cell line. Compared with polymer-unmodified liposomes, both 130 

SucPG-modified and MGluPG-modified liposomes showed five-times-higher cellular 131 

association (Figure 4a).45 DCs and macrophages are known to engulf microorganisms or 132 

apoptotic cells having anionic components via scavenger receptors.46, 47 Considering 133 

that SucPG-modified and MGluPG-modified liposomes have negatively charged 134 

surfaces attributable to their carboxy groups in polymer side chains, these liposomes are 135 

likely to be taken up by DC2.4 cells via interaction with scavenger receptors. Actually, 136 

the addition of dextran sulfate, an inhibitor of interaction between negatively charged 137 

compounds and scavenger receptors, strongly suppressed association of the 138 

SucPG-modified liposome-based nanoparticles to DC2.4 cells.48 In general, negatively 139 
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charged surfaces suppress interaction between cells and nanoparticles.49, 50 Therefore, 140 

these pH-sensitive polymer-modified liposomes were taken up by macrophages or DCs 141 

in preference to other cells in the body that have no scavenger receptors. Such 142 

properties of carboxylated polymer-modified liposomes are particularly beneficial 143 

because they achieve selective association of the liposomes to antigen-presenting cells 144 

in the body. According to analyses of intracellular distribution of liposomes and 145 

FITC-labeled OVA, OVA molecules were delivered into cytosol of DC2.4 cells by 146 

MGluPG-modified liposomes, which showed stronger fusion activity than 147 

SucPG-modified liposomes did.45 148 

Considering the membrane fusion mechanism by viral fusogenic proteins, 149 

three-dimensional structures of these proteins might play an important role in generating 150 

a defect in lipid membrane and subsequently induce membrane fusion.51, 52 Therefore, 151 

fusogenic polymers having three-dimensional structures might be expected to show 152 

stronger fusion activity. For that reason, hyperbranched poly(glycidol)s (HPGs) having 153 

various degrees of polymerization (DPs) were used as a main chain of pH-sensitive 154 

polymer (Figure 2e).53 MGlu-HPG, an analogous polymer of linear MGluPG, formed 155 

more hydrophobic domains at weakly acidic pH than MGluPG having the same DP.53 156 

Reflecting this result, MGlu-HPG showed higher membrane disruption ability at weakly 157 
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acidic pH than MGluPG did.53 These results indicate that the hyperbranched polymer 158 

backbone might be more beneficial for the induction of membrane fusion than the linear 159 

polymer backbone. In addition, cellular association increased concomitantly with 160 

increasing DP of MGlu-HPG (Figure 4b), indicating that bulkier polymer-modified 161 

liposomes might interact with scavenger receptors on DCs by multivalent interactions 162 

because of their three-dimensional structures (Figure 4c).53 After internalization into 163 

cells, MGlu-HPG-modified liposomes showed intracellular fusion activity and delivered 164 

OVA into cytosol of DC2.4 cells more efficiently than MGluPG-modified liposomes 165 

(Figure 4d).53 166 

As another type of pH-sensitive polymer, pH-sensitive polymer-lipids were 167 

prepared for pH-sensitization of liposomes.54 Compared with random anchor polymers, 168 

polymers having phospholipid moiety can introduce the pH-sensitive polymer to the 169 

liposome without disruption of the lipid membrane structure. Polymer-lipids of two 170 

types were synthesized, MGluPG-PE and CHexPG-PE, which are distearyl 171 

phosphatidylethanolamines having 3-methylglutarylated or 172 

2-carboxycyclohexane-1-carboxylated poly(glycidol) groups, respectively (Figure 2f). 173 

Polymer-lipid-incorporated liposomes were prepared.54 The polymer-lipid liposomes 174 

showed content release at specific pH regions depending on their side chain structures 175 
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and polymer-lipid contents.54 In addition, polymer-lipid liposomes showed high cellular 176 

association with DC2.4 cells and delivered contents into the cytosol of cells.54 177 

Especially, CHexPG-PE exhibited excellent delivery performance, even at lower 178 

polymer-lipid contents.54 Hydrophobicity of the side chain in pH-sensitive polymers 179 

strongly affects their pH-sensitivity and intracellular delivery performance. 180 

 181 

Application of pH-sensitive polymer-modified liposomes to antigen carrier 182 

pH-Sensitive polymer-modified liposomes achieved cytoplasmic delivery of 183 

contents into DCs. Cytoplasmic delivery of antigen into DCs induces MHC class 184 

I-mediated presentation (cross-presentation), resulting in induction of cellular immunity 185 

(Figure 1). Therefore, the application of these liposomes to induction of antigen-specific 186 

immune responses was investigated. 187 

First, the antigen presentation pathway was evaluated using T cells 188 

(CD8-OVA1.3 cells or OT4H.1D5 cells), which respectively recognize MHC class I or 189 

class II-dependent antigen presentation (Figure 5a).55, 56 OVA was used as a model 190 

antigen and monophosphoryl lipid A (MPLA) was incorporated to liposomes as an 191 

adjuvant.57 Bone marrow-derived dendritic cells (BMDCs) treated with 192 

MGluPG-modified liposomes induced higher levels of antigen presentation than that of 193 
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unmodified liposomes-treated BMDCs (Figure 5).45, 58 Especially, MGluPG-modified 194 

liposomes induced MHC class I-mediated antigen presentation more efficiently than 195 

unmodified liposomes (Figure 5b). These results indicate that higher cellular association 196 

of liposomes and efficient cytoplasmic delivery of antigen by MGluPG-modified 197 

liposomes promoted MHC class I-mediated antigen presentation. 198 

Next, OVA-loaded liposomes were administered nasally to mice. Then, 199 

OVA-specific antibody production and the induction of OVA-specific cytotoxic T 200 

lymphocytes (CTLs) in spleen were evaluated.45, 59–61 Mucosal surfaces are the main 201 

route for pathogens to enter the body. The induction of both mucosal and systemic 202 

immunity against pathogens is important to guard against the pathogen’s infection.62–66 203 

Nasal administration of pH-sensitive polymer-modified liposomes to mice induced 204 

OVA-specific antibody in serum and intestine.60, 61 In addition, splenocytes produced 205 

Th1 cytokines (IFN-γ) and induced cytotoxic activity against OVA-expressing cells 206 

(E.G7-OVA cells) but not against cells without OVA expression (EL4 cells).45, 61 These 207 

results indicate that pH-sensitive polymer-modified liposomes can induce protective 208 

immunity against pathogens invading mucosal tissues. To evaluate the usefulness of 209 

polymer-modified liposomes as mucosal vaccines, Salmonella enteritidis 210 

antigen-containing liposomes modified with MGluPG were administered to the eyes of 211 
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chickens for control of Salmonella infection.61 Intraocular immunization with S. 212 

enteritidis antigen-containing MGluPG-modified liposomes induced antigen-specific 213 

IgG and IgA production in the serum and intestine. Importantly, MGluPG-modified 214 

liposomes induced higher IgA production than commercial S. enteritidis vaccine did.61 215 

Bacteria in fecal waste and cecum were apparently fewer in liposome-immunized 216 

chickens than in unimmunized controls.61 These results indicate that pH-sensitive 217 

polymer-modified liposomes induced antigen-specific antibody in mucosal tissues and 218 

Th1-polarized immune responses in vivo through efficient cross-presentation of antigen, 219 

which achieved efficient protection against pathogens. 220 

 221 

Application of pH-sensitive polymer-modified liposomes to cancer immunotherapy 222 

The feasibility of pH-sensitive polymer-modified liposomes as antigen delivery 223 

carriers were investigated for their use in cancer immunotherapy. Subcutaneous 224 

administration of these liposomes to mice induced cellular immune responses in the 225 

spleen, as observed for the case of the nasal administration of the same liposomes 226 

(Figure 6).58 Administration of MGlu-HPG-modified and MGluPG-modified liposomes 227 

generated antigen-specific CTL at the same efficiency irrespective of the difference of 228 

their antigen delivery efficiency in vitro (Figures 6b and 4b). Probably, both liposomes 229 
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are taken up by antigen-presenting cells in the body enough to induce strong cellular 230 

immunity. Consequently, protective immunity against OVA-expressing E.G7-OVA 231 

cells was induced, considerably improving mice survival.58 An example of the 232 

therapeutic effects of these liposomes for tumor-bearing mice is depicted in Figure 7. In 233 

the experiment, E.G7-OVA cells were injected to mice. Then the tumor volumes were 234 

monitored 7 days after OVA-loaded liposomes were administered to these mice. Results 235 

show that administration of MGluPG-modified or MGlu-HPG-modified liposomes 236 

suppressed tumor growth and regressed the tumor volumes to a significant degree 237 

(Figure 7a). In fact, 50–75% of mice were cured completely (Figure 7b).58 These results 238 

indicate that strong cellular immunity induced by pH-sensitive polymer-modified 239 

liposomes efficiently killed OVA-expressing tumor cells, leading to tumor rejection and 240 

regression. According to the results of cytotoxic activity of splenocytes against EL4 241 

cells (OVA-non-expressing cells), around 10% of non-specific cytotoxicity was 242 

observed (Fig. 6c). However, OVA-loaded MGluPG-modified liposomes showed no 243 

antitumor effects against EL4-tumor-bearing mice as previously reported.67 These 244 

results clearly indicate that non-specific cytotoxic activity was not sufficient to obtain 245 

antitumor effects and E.G7-OVA tumor cells were killed by OVA-specific CTLs 246 

induced by pH-sensitive polymer-modified liposomes. 247 



15 
 

As described above, the membrane-disrupting capabilities of pH-sensitive 248 

polymers are influenced by the hydrophobicity of the introduced pH-sensitive moieties. 249 

For example, CHexPG-PE liposomes showed sharp destabilization at very weakly 250 

acidic pH of around 6.5–7.0, whereas MGluPG-PE liposomes exhibited destabilization 251 

at around pH 5.54 When these polymer-lipid-incorporated liposomes containing OVA 252 

were administered subcutaneously to mice, the antigen-specific cellular immunity was 253 

induced in mice for both cases.54 However, immunization with CHexPG-PE liposomes 254 

induced stronger therapeutic effects than those with MGluPG-PE liposomes.54 In fact, 255 

we observed complete rejection of OVA-expressing E.G7-OVA cells and marked 256 

regression of E.G7-OVA tumors for mice treated with CHexPG-PE liposomes.54 Strong 257 

and highly sensitive properties to very weakly acidic pH for the liposomes might 258 

engender the efficient induction of antigen-specific cellular immunity. 259 

From the viewpoint of clinical applications, safer materials are desired for 260 

liposome preparation. Therefore, instead of synthetic polymer (poly(glycidol)), 261 

biopolymer-based pH-sensitive polymer, 3-methylglutarylted dextran (MGlu-Dex; 262 

Figure 2g) was developed.68 MGlu-Dex-modified liposomes efficiently delivered 263 

antigen into the cytosol of DC2.4 cells and induced antitumor effects against 264 

tumor-bearing mice.68 The effects of MGlu group contents and molecular weights of 265 



16 
 

dextran on their immune-inducement effects were also evaluated. Results show that 266 

medium amounts of MGlu group-introduced dextran (MGlu56-Dex) showed the 267 

strongest antitumor effects and that the molecular weights of dextran did not affect their 268 

immune-inducement effects.68 269 

 270 

Towards more effective antigen delivery system 271 

Delivery systems require not only cytoplasmic delivery functions but also 272 

activation functions of DCs to produce more effective antigen delivery systems. Hence, 273 

the combination of activation molecules or systems (adjuvant molecules, or systems) 274 

with pH-sensitive polymer-modified liposomes was evaluated to induce more effective 275 

cancer immunity (Figure 3). 276 

To date, various adjuvant molecules have been introduced to antigen delivery 277 

systems. Typically, toll like receptor (TLR) ligands, which are molecules derived from 278 

bacteria or virus components and which are recognized by TLRs expressing in 279 

immune-competent cells, are used as adjuvant molecules.69–71 For example, the 280 

incorporation of CpG-DNA, poly(I:C), and MPLA, which are known respectively as 281 

TLR9, TLR7, and TLR4 ligands, enhanced the immune-inducement effects of antigen 282 

delivery systems. In our studies, MPLA inclusion to MGlu-HPG-modified liposomes as 283 
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a part of the lipid membrane component strongly promoted their antitumor immunity 284 

compared with liposomes without MPLA.72 However, considering that TLR ligands are 285 

obtained from bacteria or viruses, these molecules might present some variations from 286 

the perspectives of biological activities, thereby presenting the possibility of unexpected 287 

side effects originating from their structural variety and molecular purity. Therefore, to 288 

support their practical use, other adjuvants must be considered for the modification of 289 

liposome-based vaccines. One candidate adjuvant might be cationic lipids, which are 290 

known to have adjuvant function by activation of intracellular signaling via interaction 291 

with various membrane proteins.73 1,2-Dioleoyl-3-dimethylammoniumpropane 292 

(DOTAP) is the most-studied cationic lipid that might be used as an adjuvant 293 

molecule.73–76 Actually, DOTAP is recognized by G protein-coupled receptors (GPCRs) 294 

on cellular membranes of DCs and activates MAP kinases, which induce up-regulation 295 

of co-stimulatory molecules CD80 or CD86 on DCs.73 Reactive oxygen species (ROS) 296 

generated by cationic lipids or cationic liposomes also play a role in inducing multiple 297 

signaling pathways for the production of cytokines and up-regulation of co-stimulatory 298 

molecules.77 Furthermore, cationic lipids having an amidine group are known to have 299 

adjuvant functions via interaction not only with GPCRs but also TLR4.73, 78 Inspired by 300 

these studies, 3, 5-didodecyloxybenzamidine (TRX, Figure 3) was selected as a cationic 301 
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lipid and was incorporated into MGlu-HPG-modified liposomes to increase their 302 

immune-inducement effects.72 In fact, TRX inclusion into MGlu-HPG-modified 303 

liposomes increased the cellular association of liposome and promoted the production of 304 

various cytokines (IFN-γ, IL-10, TNF-α, IL-6) from DCs depending on their TRX 305 

contents.72 Moreover, TRX inclusion was found to change the intracellular distribution 306 

of liposomes and antigen: TRX-containing MGlu-HPG-modified liposomes delivered 307 

OVA not only to cytosol but also endosome/lysosome.72 Positively charged TRX might 308 

enhance the association of negatively charged MGlu-HPG chains on the surface of 309 

liposomal membranes through electrostatic interaction. Therefore, the polymer chains 310 

might interact with the liposomal membranes rather than the endosomal membrane, 311 

resulting in OVA delivery in endosomes. This fact suggests that intracellular 312 

distributions of OVA in cytosol, endosomes, and lysosomes can be controlled by 313 

adjusting cationic lipid contents in the liposomes. According to the results of antigen 314 

presentation pathway and analysis of antibody production, not only CTL activation but 315 

also Th1-polarized immune responses were induced by TRX-containing 316 

MGlu-HPG-modified liposomes, which might correspond to efficient 317 

endosome/lysosome delivery of OVA.72 Th1 cells support CTL activation through 318 

secretion of Th1 cytokines such as IFN-γ. Reflecting these results, antitumor effects on 319 
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tumor-bearing mice were found to be improved by TRX inclusion to 320 

MGlu-HPG-modified liposomes.72 321 

It has been demonstrated that Th1 cytokines such as IFN-γ activate cellular 322 

immune response efficiently via the promotion of antigen presentation.79 Therefore, the 323 

combination of cytoplasmic antigen delivery and IFN-γ delivery is an attractive strategy 324 

for the induction of strong cellular immune responses. However, the half-life of IFN-γ 325 

protein administered to the body is too short and systemic delivery of IFN-γ induces 326 

remarkable side effects.80 Therefore, transfection of IFN-γ-encoding gene to DCs or 327 

tumor cells has been studied instead of systemic delivery of IFN-γ protein.81–83 In our 328 

study, the IFN-γ gene was simultaneously delivered as hybrid complexes between 329 

liposomes and lipoplexes, which were previously reported as efficient non-viral gene 330 

carriers for DCs, or as separate administration of liposomes and lipoplexes without 331 

pre-mixing.48, 84 MGluPG-modified liposomes containing OVA were complexed with 332 

TRX-based lipoplexes containing IFN-γ gene via electrostatic interaction. Confocal 333 

laser scanning microscopic analysis using fluorescence-labeled complexes has revealed 334 

that hybrid complexes delivered both antigen and gene into the cytosol of DC2.4 cells 335 

by fusion activity with endosomal membranes derived from MGluPG-modified 336 

liposomes.84 Treatment with hybrid complexes induced IFN-γ production from DC2.4 337 
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cells, which indicates that IFN-γ gene was transfected to DC2.4 cells by hybrid 338 

complexes.84 The OVA-loaded MGluPG-modified liposomes or hybrid complexes were 339 

administered to E.G7-OVA tumor-bearing mice and then, tumor growth was monitored. 340 

Unexpectedly, antitumor effects induced by hybrid complexes were almost identical to 341 

those of MGluPG-modified liposome.84 Next, OVA-loaded MGluPG-modified 342 

liposomes and IFN-γ gene-containing lipoplexes were administered without pre-mixing 343 

at the same site (Combination delivery). In the case of Combination delivery, antitumor 344 

effects were enhanced strongly compared with MGluPG-modified liposome and all 345 

treated mice became completely tumor-free during 60 days.84 For comparison, 346 

liposomes and lipoplexes were administered at distant sites in tumor-bearing mice 347 

(Separate delivery). Separate delivery induced almost identical antitumor effects to 348 

those of liposomes and effects were less than those obtained with Combination delivery, 349 

which suggests that injection of antigen and IFN-γ gene at the same site is important to 350 

obtain their synergetic effects.84 Actually, the induction of CTLs in spleen was enhanced 351 

by Combination delivery.84 In addition, immunofluorescence staining of the tumor 352 

section revealed that infiltration of CTLs into tumor tissues at an early stage of tumor 353 

(Day 10) was promoted to a greater degree by Combination delivery than by 354 

MGluPG-modified liposomes (Figure 8a).84 According to the results of H&E staining of 355 
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tumor sections, more tumor cells were killed at early timing by Combination delivery 356 

than liposomes (Figure 8b). These results indicate that Combination delivery of antigen 357 

and IFN-γ gene is an effective strategy for the enhancement of antitumor immunity. 358 

 359 

Summary and outlook 360 

In this review, pH-sensitive polymer-based antigen delivery systems for the 361 

induction of antigen-specific immune response were overviewed. The pH-sensitive 362 

polymer structures strongly affected their pH-sensitivity, cellular association, 363 

intracellular delivery performance, properties of DC activation, and in vivo 364 

immune-inducing functions. Highly hydrophobic side chain structures are suitable for 365 

the efficient intracellular delivery of antigens and for the induction of antitumor 366 

immunity. Dextran-based pH-sensitive polymers were also developed as safer functional 367 

polymers. For dextran-based polymers, the contents of pH-sensitive units strongly 368 

affected their properties of antigen delivery and induction of antitumor immunity. 369 

Therefore, not only the side chain structure, but also their contents on polymer chains 370 

should be optimized further to obtain more effective pH-sensitive polymer-based 371 

antigen carriers. The inclusion of cationic lipids to pH-sensitive polymer-modified 372 

liposomes has promoted their immune-inducing effects considerably. Not only cationic 373 
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lipids, but varying adjuvant molecules such as TLR ligands can be incorporated into the 374 

liposomes. Specific combinations of TLR ligands are known to induce synergetic 375 

immune-activating effects.85, 86 Therefore, the inclusion of multiple TLR ligands to 376 

cationic lipid-containing liposomes might generate highly potent antigen delivery 377 

systems. Notably, the combination of cytokine gene delivery system (lipoplexes) and 378 

liposomes achieved the complete cure of tumor-bearing mice. The combination of other 379 

cytokine or chemokine genes such as IL-12, TGF-β, or CCR7 might create various 380 

immune-inducing systems or immunosuppression cancelling systems in tumor 381 

microenvironments. 382 

Our recent and current studies have used a model antigen (chicken egg albumin, 383 

OVA), which has strong immunogenicity against mouse, for the evaluation of immune 384 

responses of pH-sensitive polymer-modified liposomes. For more practical evaluation, 385 

we have started the use of human cancer antigenic peptides such as glypican-3 386 

(GPC3)-derived peptide, which is overexpressed in hepatocellular carcinoma, or 387 

insulin-like growth factor II mRNA-binding protein 3 (IMP-3)-derived peptide, which is 388 

overexpressed in cases of head-and-neck malignant tumor, lung cancer, and esophageal 389 

cancer, for the evaluation of pH-sensitive polymer-modified liposomes.87, 88 Actually, 390 

CHexPG-PE liposomes containing any of the respective peptides induced much more 391 
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efficient cross-presentation than free peptide solution on human autologous DCs.87, 88 392 

These latest studies indicate clearly that our pH-sensitive polymer-modified liposomes 393 

present the potential for immune-inducing functions, not only for model antigenic 394 

proteins but also for clinically used cancer antigenic peptides. We believe that further 395 

optimizations of pH-sensitive polymer structures, adjuvant molecules inclusion, and the 396 

combination of cytokine gene delivery systems on pH-sensitive polymer-modified 397 

liposomes will provide practical levels of antigen delivery systems for use in cancer 398 

immunotherapy. 399 
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Titles and legends to figures 681 

Figure 1. Antigen presenting pathway of dendritic cell. Cellular immunity is generally 682 

induced via MHC class I presentation of endogenous antigen. It is known that a part of 683 

exogenous antigen escape from endosome and presented by MHC class I molecules 684 

(“Cross-presentation”). To promote the cross-presentation process, pH-sensitive 685 

molecules have been studied for destabilization of endosomal membrane or induction of 686 

fusion with endosomal membrane.  687 

Figure 2. Structures of pH-sensitive polymers: (a) poly(2-ethylacrylic acid), (b) 688 

poly(2-propylacrylic acid), (c) SucPG, (d) MGluPG, (e) MGlu-HPG with DP of 40, (f) 689 

MGluPG-PE and CHexPG-PE, and (g) MGlu-Dex. 690 

Figure 3. Design of liposomal vaccine having pH-sensitive activity and immune 691 

activation function. Antigen-loaded liposomes were modified with pH-sensitive 692 

polymers and adjuvant molecules/systems (such as TLR ligands, cationic lipids, or 693 

cytokine (IFN-γ) gene delivery systems). After internalization via endocytosis, 694 

liposomes induce fusion with endosomal membrane responding to acidic pH inside of 695 

endosomes, which causes the transfer of most of antigen into cytosol as shown in the 696 

fluorescence microscopic image. As a result, cross-presentation is promoted, leading to 697 

the induction of cellular immunity. In addition, dendritic cells are activated by 698 
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stimulation via interaction between adjuvant molecules and receptors, which causes 699 

activation of immune responses. Otherwise, IFN-γ produced by Th1 cells or IFN-γ 700 

gene-transfected dendritic cells also activate cellular immunity. Microscopic image in 701 

the figure shows DC2.4 cells treated with FITC-OVA-loaded MGlu-HPG liposomes 702 

labeled with Rhodamine-PE. Green fluorescence shows the location of FITC-OVA and 703 

red fluorescence shows the location of liposomes. 704 

Figure 4. (a, b) Mean fluorescence intensity of DC2.4 cells treated with liposomes 705 

modified with SucPG, MGluPGs and MGlu-HPGs having various DPs. Cellular 706 

association of liposomes to DC2.4 cells was promoted by carboxylated polymer 707 

modification (a) and increased with increasing DP of MGlu-HPG (b). (c) Schematic 708 

illustration for the interaction of MGlu-HPG-modified liposomes with DCs. (d) 709 

Confocal laser scanning microscopic (CLSM) images of DC2.4 cells treated with 710 

Rh-PE-labeled and FITC–OVA-loaded liposomes modified with MGlu-HPG60, 711 

MGluPG76 or without polymers. Intracellular localization of Rh-PE (red) and FITC–712 

OVA (green) was observed using a CLSM. Scale bar represents 10 μm. Partially 713 

reproduced from Yuba et al.45, 53 with permission. Copyright (2010 and 2011) Elsevier. 714 

Figure 5. Presentation of OVA-derived epitope peptides via MHC molecules in 715 

BMDCs. (a) Schematic illustration of experimental procedure. BMDCs were incubated 716 



42 
 

with free OVA (diamonds), OVA-loaded MGluPG-modified liposomes (triangles) and 717 

unmodified liposomes (squares) at varying OVA concentrations for 3 h. Concentrations 718 

of IL-2 in the medium after co-culture of OVA-treated BMDCs with (b) CD8-OVA1.3 719 

(specific for OVA257–264/H-2 Kb complex, MHC class I pathway) and (c) OT4H.1D5 720 

(specific for OVA265–277/I-Ab complex, MHC class II pathway) cells for 24 h as a 721 

function of OVA concentration during the BMDCs treatment were shown. Partially 722 

reproduced from Yuba et al.45 with permission. Copyright (2010) Elsevier. 723 

Figure 6. OVA-specific CTL induction in spleen after 7 days from subcutaneous 724 

immunization with PBS (closed diamonds), OVA solution (open diamonds), 725 

unmodified liposomes (closed triangles), MGluPG-modified liposomes (open triangles), 726 

MGlu-HPG-modified liposomes (closed squares) and Complete Freund’s adjuvant 727 

(CFA, open squares). (a) Schematic illustration of experimental procedure. Cytotoxic 728 

activity was measured by a lactate dehydrogenase (LDH) assay at various effecter 729 

cell/target cell (E/T) ratios. Amount of OVA administered was 100 µg per mouse. 730 

E.G7-OVA cells (b) and EL4 cells (c) were used as target cells. Partially reproduced 731 

from Yuba et al.58 with permission. Copyright (2013) Elsevier. 732 

Figure 7. Antigen-specific antitumor effect induced by subcutaneous administration of 733 

pH-sensitive polymer-modified liposomes. The E.G7-OVA cells were subcutaneously 734 
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inoculated into the left backs of C57BL/6 mice and then liposomes with or without 735 

pH-sensitive polymers containing 100 µg of OVA were subcutaneously administered 736 

into the right backs of the mice on days 7 and 14. Mice immunized with PBS were 737 

shown as controls. All treated groups contained four mice. (a) Change in tumor volume 738 

and (b) survival curves of mice were shown. Partially reproduced from Yuba et al.58 739 

with permission. Copyright (2013) Elsevier. 740 

Figure 8. (a) Immunofluorescence analysis of tumor sections from mice subcutaneously 741 

administered with PBS, OVA-loaded MGluPG-modified liposomes, or combination of 742 

OVA-loaded MGluPG-modified liposomes and the IFN-γ gene-containing lipoplexes on 743 

days 5 and/or 12. CD8 positive cells in tumor sections were stained using anti-mouse 744 

CD8 antibody and Cy3-anti-rat IgG as a secondary antibody (Red). Cellular nucleus 745 

were stained by DAPI (Blue). (b) H&E staining for tumor sections from mice 746 

subcutaneously administered with PBS, OVA-loaded MGluPG-modified liposomes, or 747 

combination of OVA-loaded MGluPG-modified liposomes and the 748 

IFN-γ gene-containing lipoplexes on days 5 and/or 12. Magnified images for regions (1: 749 

normal tumor cells, 2/4: damaged cells with deformed nuclei, 3: denucleated necrotic 750 

cells, 5: fibrotic tissues and fibroblast-like cells) in the middle images are shown in the 751 

bottom. Partially reproduced from Yuba et al.83 with permission. Copyright (2015) 752 
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