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We present a procedure to systematically design the connection parameters that will induce amplitude death
in oscillator networks with time-varying delay connections. The parameters designed by the procedure are valid
in oscillator networks with any network topology and with any connection delay. The validity of the design
procedure is confirmed by numerical simulation. We also consider a partial time-varying delay connection,
which has both time-invariant and time-varying delays. The effectiveness of the partial connection is shown
theoretically and numerically.
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I. INTRODUCTION

Collective behaviors in coupled oscillators have been of
great interest in nonlinear sciences [1]. In one such behavior,
namely amplitude death, a diffusive connection stabilizes an
unstable steady state in a coupled oscillator [2,3]. Amplitude
death has been observed in various systems, such as thermo-
optical oscillators [4], the Belousov-Zhabotinsky reaction [5],
electronic and biological oscillators [6], and the hair cells in
the ear [7]. Although it has been well accepted that amplitude
death cannot occur in identical oscillators with a diffusive
connection [8,9], it has been shown that it can occur with a
delayed diffusive connection [10,11]. Such death by delay has
attracted much attention in nonlinear science, and it has been
investigated both analytically and experimentally [12–26].

Employing amplitude death in engineering systems for the
suppression of undesired oscillations has been reported for
coupled laser systems [27], micropower grids [28], coupled
permanent-magnet synchronous motors [29], and coupled
thermoacoustic oscillators [30]. Hence, amplitude death is ex-
pected to have the potential to suppress undesired oscillations
in various coupled systems. However, if the connection delay
is much longer than the period of the undesired oscillation,
then amplitude death cannot be induced [10]. This suggests
that we are not able to use amplitude death in situations in
which practical constraints require a long connection delay,
such as when the undesired oscillations are far apart, or when
the period of undesired oscillation is much shorter than the
connection delay. To use amplitude death in such situations,
a distributed-delay connection [31] and a multiple-delay
connection [32] have been proposed. Unfortunately, it would
be difficult to implement a distributed-delay connection in
an engineering system, since the coupling signal needs to be
integrated in real time, and a multiple-delay connection would
increase the cost.

In a previous paper, we reported that a time-varying delay
connection has the ability to cause amplitude death with a long
connection delay [33]. Since this connection could be easily
implemented and would not be expensive, it can be considered
a strong candidate for use in engineering systems. This

*http://www.eis.osakafu-u.ac.jp/∼ecs

connection has been verified by experiments with electronic
circuits [34]. Earlier studies [33,34] investigated only a pair
of oscillators, but recently it was reported that a time-varying
connection is also useful for oscillator networks [35,36].

From a practical point of view, we note that two problems
remain for the time-varying delay connection. First, it is
necessary to devise a systematic procedure for designing
the connection parameters in order to avoid a burdensome
trial-and-error process. In a previous study [33], we presented a
delay-independent design procedure for the connection param-
eters for a pair of oscillators. However, to our knowledge, there
is no such design procedure for oscillator networks [35,36].
Second, previous studies [35,36] assumed that it was necessary
to vary all of the connection delays. This would be difficult
and costly to implement for large-scale networks consisting of
a huge number of oscillators.

The present paper tackles the above two problems. First,
we show that a parametric approach in robust control theory
provides a procedure to systematically design the connection
parameters. The design procedure can be used for oscillator
networks with any network topology and with any connection
delay. As preparation for the design procedure, we analytically
derive the stability regions for the various network topologies
in the connection parameter space. Second, we propose a
partial time-varying delay connection [37], which has both
time-varying and time-invariant delays. Since our proposal
requires that only some of the connection delays are varied, it
would be easy and inexpensive to implement it for a large-scale
network. The effectiveness of the partial time-varying delay
connection is analytically and numerically confirmed. This
paper is a substantially extended version of our conference
papers [35,37].

The following notation is used throughout the present paper:
arg[x] ∈ [0,2π ) denotes the principal argument of a complex
number x.

II. COUPLED-OSCILLATOR NETWORK

Let us consider N Stuart-Landau oscillators (see Fig. 1),

Żj (t)={μ + ia− |Zj (t)|2}Zj (t) + Uj (t) (j = 1,2, . . . ,N ),

(1)
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FIG. 1. Sketch of an oscillator network coupled by time-varying
delay connections.

where Zj ∈ C represents the state variable of oscillator j , and
i is

√−1. Each oscillator without a connection [i.e., Uj (t) =
0] has a fixed point Z∗

j = 0. The parameters μ > 0 and
a > 0, respectively, denote the instability of Z∗

j and the natural
frequency of the oscillator. The coupling signal Uj (t) ∈ C can
be written as

Uj (t) = k

{
1

dj

(
N∑

l=1

εjlZl,τ

)
− Zj (t)

}
, (2)

where k is the coupling strength, Zl,τ := Zl[t − τ (t)] is the
delayed state variable, and εjl governs the network topology, as
follows: εjl = εlj = 1 when oscillators j and l are connected,
and 0 otherwise. Here, self-delayed feedback is not used, i.e.,
εjj = 0. The degree of oscillator j is given by dj := ∑N

l=1 εjl .
It should be noted that the present paper deals with oscillators
of arbitrary degree dj > 0, whereas a previous study [36]
dealt only with oscillators of identical degree, d1 = d2 = · · · =
dN > 0 (i.e., a regular network).

The connection delay τ (t) > 0, as illustrated in Fig. 2,
varies periodically around a nominal delay τ0 > 0:

τ (t) := τ0 + δf (�t), (3)

FIG. 2. Illustration of the time-varying delay function τ (t).

with amplitude1δ ∈ [0, τ0), frequency � > 0, and a periodic
sawtooth function [33,38,39]:

f (x) :=
{

+ 2
π

(
x − π

2 − 2nπ
)

if x ∈ [2nπ,(2n + 1)π ),

− 2
π

(
x − 3π

2 − 2nπ
)

if x ∈ [(2n+1)π,2(n+1)π )

(n = 0,1,2, . . .).

The oscillators (1) coupled by Eq. (2) have a homogeneous
steady state:

[Z∗
1 ,Z

∗
2 , . . . ,Z

∗
N ]T = [0,0, . . . ,0]T. (4)

Let zj (t) := Zj (t) − Z∗
j be a perturbation from the steady state

(4). Then, the dynamics of the perturbation around this steady
state can be described by

żj (t) = (μ + ia) zj (t) + k

{
1

dj

(
N∑

l=1

εjlzl,τ

)
− zj (t)

}

(j = 1,2, . . . ,N). (5)

This linearized system (5) can be written as

Ẋ(t) = (IN ⊗ As)X(t) + k(E ⊗ I2)X[t − τ (t)], (6)

where

X(t) := [Re[z1(t)],Im[z1(t)], . . . ,Re[zN (t)],Im[zN (t)]]T,

As := A − k I2, A :=
[
μ −a

a μ

]
.

IN is the N -dimensional unit matrix, and the matrix E
governs the network topology; that is, its elements are given by
{E}j l = εjl/dj (l �= j ) and {E}jj = 0.

III. STABILITY ANALYSIS

We will show that the stability of the linear system (6) can
be expressed as a simple characteristic equation. Furthermore,
we will briefly illustrate how to draw the marginal stability
curves, which will allow us to obtain amplitude death regions
in the connection parameter space. Amplitude death regions
will be drawn for various network topologies.

A. Linear stability analysis

The stability of this state (4) is difficult to analyze, since
the linear system (6) has a time-varying delay. However, it has
been reported [40] that the stability of the linear time-invariant
system

Ẋ(t) = (IN ⊗ As)X(t) + 1

2δ
k(E ⊗ I2)

∫ t−τ0+δ

t−τ0−δ

X(θ )dθ (7)

is the same as that of the linear system (6) if � is sufficiently
large compared to the oscillator frequency a. Thus, we can
easily analyze the stability under the assumption � � a. The
characteristic function

G(s) = det[s I2N − (IN ⊗ As) − k(E ⊗ I2)e−sτ0H (sδ)] (8)

1Obviously, the delay amplitude δ must be less than the nominal
delay τ0.
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determines the stability of this system (7), where

H (x) :=
{ sinh x

x
if x �= 0,

1 if x = 0.
(9)

IN − E can be diagonalized as T−1(IN − E)T =
diag(ρ1, . . . ,ρN ) by using a transformation matrix2 T ,
where ρp (p = 1, . . . ,N ) are the eigenvalues of IN − E.
Hence, the characteristic function (8) can be written as

G(s) =
N∏

p=1

g(s,ρp), (10)

where

g(s,ρ) : = det[s I2 − As − k(1 − ρ)I2e
−sτ0H (sδ)]

= {s − μ + k − k(1 − ρ)e−sτ0H (sδ)}2 + a2. (11)

The form of this function (10) suggests that the stability of this
state (4) is equal to that of the characteristic function (11) for
p = 1,2, . . . ,N . Note that the eigenvalues of IN − E always
satisfy

0 = ρ1 � ρ2 � · · · � ρN � 2 (12)

for any network topology [41]. We obtain the stability region
on the connection parameter space (k versus τ0) by drawing
the marginal stability curves in accordance with the procedure
described in Appendix A.

B. Numerical examples

We will now draw the marginal stability curves in (k,τ0)
space for several networks. Throughout this paper, we will
fix the parameters of the oscillators (1) and the frequency of
Eq. (3) as

μ = 0.5, a = π, � = 10π. (13)

Figure 3 shows the curves for four networks with differ-
ent topologies (N = 50): ring topology (ρ1 = 0, . . . ,ρ50 =
2), all-to-all topology (ρ1 = 0, ρ2 = ρ3 = · · · = ρ50 =
50/49), small-world topology with Nc = 10 short cuts
(ρ1 = 0, . . . ,ρ50 = 1.988), and scale-free topology (ρ1 =
0, . . . ,ρ50 = 1.7312). Note that in networks with small-world
and scale-free topologies, the oscillators are not of identical
degree; thus, such situations were not considered in the
previous study [36]. For each network, each of the four delay
amplitudes δ = 0.15, 0.35, 0.50, and 1.00 was employed.
When a connection parameter set (k,τ0) crosses the thin (bold)
line with increasing k, a root s of g(s,ρ) = 0 cuts through
the imaginary axis from left to right (right to left). Here, the
shaded areas represent the stability regions where Eq. (10) has
no roots in the right half of the complex plane.

For δ = 0.15, as shown in Figs. 3(a), 3(e), 3(i), and 3(m),
we see that the networks have small stability regions and that
τ0 is bounded above. An increase in δ is seen to enlarge the

2This is because IN − E and the real symmetric matrix IN −
D−1/2C D−1/2 are similar, where D := diag(d1,d2, . . . ,dN ) and
{C}j l := εjl [41,42].

stability regions. In these regions, there is no upper bound on
τ0. For instance, in Fig. 3(p), the stability region has no upper
bound on τ0 in the range k ∈ (0.500,9.822). In other words, we
can induce amplitude death for any connection delay τ0 within
this range of k. These results indicate that the time-varying
delay connection is useful for inducing amplitude death not
only in a pair of oscillators [33] but also in a larger network of
oscillators.

IV. DESIGN OF CONNECTION PARAMETERS

The stability region depends on the network topology, as
illustrated in Fig. 3; thus, we notice that detailed information
on network topology is inevitably required in order to design
the connection parameters that will induce amplitude death.
However, it would be difficult to obtain detailed information
on the network topology in a real-world situation. Moreover,
it would be difficult to estimate the connection delay, which
might be very long due to practical constraints. Hence, in
this section, we will provide a design procedure for the
connection parameters so that the induction of amplitude
death is independent of both the network topology and the
connection delay.

From Eqs. (11) and (12), the topology-independent stability
of the steady state (4) is equivalent to the stability of the family

	 := {g(s,ρ) | ρ ∈ [0,2]}. (14)

Here, g(s,ρ) can be described by g(s,ρ) = g(+)(s,ρ)g(−)(s,ρ),
where

g(±)(s,ρ) := s − μ + k − k(1 − ρ)e−sτ0H (sδ) ± ia.

It can be easily confirmed that g(−)(s,ρ) = 0 and g(+)(s,ρ) = 0
only have roots with the same real parts. Hence, instead of
g(s,ρ), it is enough to analyze the stability of g(−)(s,ρ): the
stability of 	 can be reduced to that of

	(−) := {g(−)(s,ρ) | ρ ∈ [0,2]}. (15)

Moreover, 	(−) can be described by the segment

	(−) = {ĝ(s,η) := (1−η)g(−)(s,0) + ηg(−)(s,2)|η ∈ [0,1]},
(16)

which has end points at g(−)(s,0) and g(−)(s,2). As a con-
sequence, the stability of the steady state (4) is guaranteed
independently of the network topology if 	(−) is stable;
however, in general, it is difficult to guarantee the stability
of ĝ(s,η) for all η ∈ [0,1].

A parametric approach in robust control theory provides an
easy way to guarantee the stability of 	(−).

Theorem 1. Assume that μ − k < 0 holds. The segment
	(−), ĝ(s,η) for all η ∈ [0,1], is stable if the following two
conditions hold:

(a) ĝ(s,η) is stable for both η = 0 and 1.
(b) ψ(ω) := arg[ĝ(iω,0)] − arg[ĝ(iω,1)] �= ±π , ∀ω ∈ R.
Proof. See Appendix B.
Condition (a) implies that for η = 0 and 1, ĝ(s,η) = 0 has

only roots with negative real parts. Condition (b) implies that
these roots stay in the open left half of the complex plane,
despite the variation in η.
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FIG. 3. Stability regions in (k,τ0) space for four different network topologies (N = 50): (a)–(d) ring topology, (e)–(h) all-to-all topology,
(i)–(l) small-world topology with Nc = 10 short cuts, and (m)–(p) scale-free network topology. Delay amplitudes are δ = 0.15, 0.35, 0.50, and
1.00, as indicated for each column. The curves and shaded areas show the solutions of g(iλ,ρ) = 0 and the stability regions, respectively.

In preparation for designing connection parameters for
oscillator networks (i.e., N > 2), we will review our results
for the case of N = 2 [33]. Because the stability of the steady
state (4) with N = 2 is governed by only ĝ(s,0) and ĝ(s,1), it
is enough to consider condition (a), as follows.

Lemma 1 [33]. Assume that the oscillators (1) satisfy

μ <
a(2 + π )

4π
, (17)

and the frequency variation � is sufficiently large (i.e.,
� � a). The characteristic function ĝ(s,η) is stable both for
η = 0 and 1 for an arbitrarily long nominal delay τ0, if the
delay amplitude is set to

δ = π/a, (18)

and the coupling strength is set such that

k ∈ (k̄ − �k,k̄ + �k), (19)

where

k̄ :=
(

2 + π

2π

)
a, �k := 1

2π

√
a(2 + π ){a(2 + π ) − 4πμ}.

(20)

On the basis of our previous study, we will propose a
procedure for designing oscillator networks (i.e., N > 2). It
is obvious that our design must satisfy both conditions (a) and
(b). We now show that the connection parameters designed
according to Lemma 1 also satisfy condition (b).

042928-4
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FIG. 4. Time-series data of Re[Z1(t)] (k = 2.5,δ = 1.00,τ0 = 20).

Lemma 2. Assume that the oscillators (1) satisfy the
inequality (17) of Lemma 1. The condition ψ(ω) �= ±π,∀ω ∈
R [i.e., condition (b) in Theorem 1] holds if the connection
parameters δ and k are designed according to Lemma 1.

Proof. See Appendix C.
As a result, both conditions (a) and (b) are satisfied if the

connection parameters are designed according to Lemma 1.
Moreover, we see that under assumption (17), the coupling
strength k designed according to Lemma 1 satisfies the
assumption of Theorem 1 (i.e., μ − k < 0; see Appendix D).
From these facts, we can now provide a systematic procedure
for designing oscillator networks.

Theorem 2. Assume that the inequality (17) holds for the
oscillators (1), and assume that the frequency variation �

in the connection (2) is sufficiently large (i.e., � � a). The
steady state (4) is stable for the arbitrary nominal delay τ0, for
any number of oscillators N , and for any network topology
E, if the delay amplitude δ and the coupling strength k are
set in accordance with Eq. (18) and the range of Eq. (19),
respectively.

Proof. We omit the proof, as it is obvious from Theorem 1
and Lemmas 1 and 2.

We will now design the connection parameters in ac-
cordance with Theorem 2 for the parameter values given
in Eq. (13). In this case, � is sufficiently large, and the
assumption (17) given in Lemma 1 holds; then, δ = 1.00
and k ∈ (0.561,4.580) are designed by Eqs. (18) and (19),
respectively. The stability region of the scale-free network
(N = 50) with the parameters designed by this procedure
is shown in Fig. 3(p). The area between the dotted lines
represents the designed range (19). As can be seen, this range
(19) lies in the stability region. The time series for oscillator
1 in the scale-free network is shown in Fig. 4. At t = 30,
all the oscillators are coupled with the designed connection
parameters δ = 1.00 and k = 2.5. This result indicates that the
designed connection induces amplitude death after coupling,
even for a long connection delay of τ0 = 20.

From an engineering point of view, the robustness of
our procedure against parameter errors and noise should be
considered. In real systems, it is difficult to set δ to be exactly
according to Eq. (18); δ inevitably has small errors away from
Eq. (18). We have numerically confirmed at parameters (13)
that, even if δ has errors within ±5% away from Eq. (18),
the stability of the steady state remains when condition (19)
holds. Thus, we may say that our procedure would be robust
against small errors away from Eq. (18). Furthermore, noise

FIG. 5. Sketch of an oscillator network coupled by a partial time-
varying delay connection.

is inevitably present in the real world. We have numerically
confirmed that designed parameters can induce amplitude
death even in the situation in which a small random signal
within [−3 × 10−3,3 × 10−3] is added to all the oscillators.
Therefore, we may also say that our procedure would be robust
against small noise.

V. PARTIAL TIME-VARYING DELAY CONNECTION

In the previous sections, we analytically and numerically
showed that a time-varying delay connection is useful for
inducing amplitude death in various network topologies.
However, for large-scale networks with a huge number of
oscillators, it would be difficult to apply a high-frequency
variance to all of the connection delays. Therefore, in this
section, we propose a partial time-varying delay connection
(see Fig. 5), in which some connection delays are varied
and the others are held constant. This is done because a
partial time-varying delay connection is obviously easier to
implement than a conventional time-varying delay connection.
From an engineering viewpoint, it is necessary to know
how many and which delays should be varied for inducing
amplitude death. In this section, we will investigate how
the number of time-varying delays and their configuration
influence amplitude death.

We consider an oscillator network with a partial time-
varying delay connection. Instead of Eq. (2), we will use the
coupling signal Uj (t) of the oscillators (1):

Uj (t) = k

[
1

d̃j

{
N∑

l=1

(
vjlZl,τ + wjlZl,τ0

)} − Zj (t)

]
, (21)

where Zl,τ := Zl[t − τ (t)] and Zl,τ0 := Zl(t − τ0) denote the
time-varying and time-invariant delayed signals, respectively,
and vjl and wjl govern the network topology, as follows:
vjl = vlj = 1 (wjl = wlj = 1) denotes that oscillators j and
l are connected by a time-varying (time-invariant) delay
connection; otherwise vjl = vlj = 0 (wjl = wlj = 0). Time-
varying and time-invariant connections (i.e., vjl = wjl = 1)

042928-5
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are not employed in parallel (i.e., vjlwjl = 0,∀j,l). The degree
of oscillator j is defined by d̃j := ∑N

l=1(vjl + wjl).

A. Linear stability analysis

The oscillators (1) coupled by this connection (21) have a
steady state (4). Linearizing Eq. (1) with Eq. (21) around this
steady state (4), we obtain the linear system

Ẋ(t) = (IN ⊗ As)X(t) + k
{
(V ⊗ I2)Xτ (t) + (W ⊗ I2)Xτ0

}
.

(22)

The elements of V and W are given by {V }j l = vjl/d̃j and
{W}j l = wjl/d̃j , respectively. Assume that � is sufficiently
large compared with the oscillator frequency a; then the
stability of the time-varying system (22) is equivalent to that
of the following time-invariant system [40]:

Ẋ(t) = (IN ⊗ As)X(t)

+ k

{
(V ⊗ I2)

2δ

∫ t−τ0+δ

t−τ0−δ

X(θ )dθ + (W ⊗ I2)Xτ0

}
.

(23)

The characteristic function of this time-invariant system (23)
is given by

G̃(s) = det[s I2N − (IN ⊗ As) − k{M(s) ⊗ I2}e−sτ0 ], (24)

where M(s) := VH (sδ) + W . The stability of the steady state
(4) is equal to that of Eq. (24). We shall give the procedure
for deriving the marginal stability curve. Substituting s = iλ

(λ ∈ R) into Eq. (24), we obtain

G̃(iλ) = det[iλI2N − (IN ⊗ As) − k{M̃(λ) ⊗ I2}e−iλτ0 ],

(25)

where M̃(λ) := M(iλ) = V�(λδ) + W . Here, �(x) is de-
fined by Eq. (A2) in Appendix A. The connection
matrix M̃(λ) can be diagonalized3 as T−1 M̃(λ)T =
diag{ρ̃1(λ),ρ̃2(λ), . . . ,ρ̃N (λ)} by a transformation matrix T ,
where ρ̃p(λ)(p = 1, . . . ,N) are the eigenvalues of M̃(λ). We
note that the eigenvalues ρ̃(λ) are functions of λ, since M̃(λ)
includes �(λδ). As a consequence, Eq. (25) can be written as
follows:

G̃(iλ) =
N∏

p=1

g̃(iλ,ρ̃p(λ)),

where

g̃(iλ,ρ̃(λ)) := [iλ − μ + k{1 − ρ̃(λ)e−iλτ0}]2 + a2. (26)

Separating Eq. (26) into real and imaginary parts, we can
analytically derive the marginal stability curves by using the
procedure described in Appendix A.

3This is obvious from the similarity of M̃(λ) and the real symmetric
matrix D̃

1/2
M̃(λ) D̃

−1/2
, with D̃ := diag(d̃1,d̃2, . . . ,d̃N ).

FIG. 6. Oscillator network (N = 8).

B. Numerical example

For a numerical example, we consider the network of
N = 8 coupled oscillators shown in Fig. 6. In this network,
two oscillators are of high degree (i.e., d̃4 = d̃8 = 4), and
we will call them hub oscillators; six oscillators are of low
degree (i.e., d̃1 = d̃2 = d̃3 = d̃5 = d̃6 = d̃7 = 1), and we will
call them nonhub oscillators.

We will investigate how the number of time-varying delays
and their configuration influence amplitude death. For this
purpose, the following situations are considered: one (two)
connection delay(s) is (are) varied, and the others are held
constant. The parameters of the oscillators (1) are fixed as
in Eq. (13), and the delay amplitude is set to δ = 1.00. Note
that, for these parameters, the conventional time-varying delay
connection has large stability regions, and this is independent
of the network topology, as can be seen in Figs. 3(d), 3(h), 3(l),
and 3(p).

1. One time-varying delay connection

Here, we deal with the situation in which one connection
delay is varied and the other six connection delays are held
constant. We will use the notation i ∼ j to indicate that the
connection delay between oscillators i and j is varied. The
following two cases can be considered: (a) a nonhub ∼ hub
connection, and (b) a hub ∼ hub connection (i.e., 4 ∼ 8). Now
2 ∼ 4, without loss of generality, is employed for case (a).

The stability region for case (a) is shown in Fig. 7(a), and
that for case (b) is shown in Fig. 7(b). In Fig. 7(a), amplitude
death is never induced, since the nominal delay τ0 in Eq. (3)
must be greater than the delay amplitude δ = 1.00. In contrast,
Fig. 7(b) has a large stability region. The above results imply
that, for one time-varying delay connection, the connection
delay between the two hub oscillators should be varied in
order to enlarge a stability region.

2. Two time-varying delay connections

Here, we deal with a situation in which two connection
delays are varied and the other five are held constant. The
following three cases can be considered: (a) two nonhub ∼
hub connections on the left or right side, as shown in Fig. 8(a);
(b) a nonhub ∼ hub connection and a hub ∼ hub connection,
as shown in Fig. 8(b); and (c) nonhub ∼ hub connections on
both sides, as shown in Fig. 8(c). We choose, without loss of
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(a) (b)

FIG. 7. Stability region for the network in Fig. 6 with one time-
varying delay connection: (a) nonhub ∼ hub, (b) hub ∼ hub. The
time-varying delay connection is denoted by a black diamond. The
delay amplitude is δ = 1.00.

generality, 1 ∼ 4 and 2 ∼ 4 for case (a), 2 ∼ 4 and 4 ∼ 8 for
case (b), and 2 ∼ 4 and 6 ∼ 8 for case (c). The stability regions
for cases (a), (b), and (c) are shown in Figs. 8(a), 8(b), and 8(c),
respectively. For all the cases, we can induce amplitude death
for a long connection delay τ0. Furthermore, we can see that
Fig. 8(a) has a smaller region than Fig. 8(b), which may lead
us to think that the most important connection for expanding
the region is the one between the two hub oscillators, as is the
case in Fig. 7(b); however, this is not always true. The region
in Fig. 8(c) is a little larger than that in Fig. 8(b), even though
the connection delay between the two hub oscillators is not
varied.

3. Large network

In the previous subsection, we showed that, for a large
stability region, not only is the hub oscillator important, but so
is the spatial distribution of the time-varying delays. Although
we considered only a small network (N = 8), in this subsection
we will further investigate how the spatial distribution of the
time-varying delays influences the stability of large networks.
For large N , it is difficult to analytically derive the stability
region, since it is difficult to estimate the eigenvalue ρ̃ in
Eq. (26); therefore, we will numerically estimate the stability
region.

We will examine the influence of the spatial distribution
of the time-varying delays. For this purpose, we will consider
a ring network (N = 20) where each oscillator has the same
degree (i.e., there is no hub oscillator). We focus on the
situation in which 10 connection delays are varied, and the
others are held constant. The following three distributions of
time-varying delays are used, as shown in Fig. 9: (a) a random
distribution, (b) a concentrated distribution, and (c) a uniform
distribution.

Figures 10(a), 10(b), and 10(c), respectively, show the
stability region of the networks in Figs. 9(a), 9(b), and 9(c)
with δ = 1.00 and the parameters stated in Eq. (13). The dots
denote the stable parameter set4 (k,τ0). In spite of having the
same numbers of time-varying delays, the stability regions

4The local stability is judged by the following procedure: the initial
states of all the oscillators over the time interval [−τ0 − δ,0] are

(a) (b)

(c)

FIG. 8. Stability region for the network in Fig. 6 with two time-
varying delay connections: (a) two nonhub ∼ hub on the left, (b)
nonhub ∼ hub and hub ∼ hub, (c) nonhub ∼ hub on both sides. The
time-varying delay connections are denoted by a black diamond. The
delay amplitude is δ = 1.00.

differ greatly. Figure 10(c) has the largest stability region,
and Fig. 10(b) has no stability region. From these figures,
it is conjectured that the network with uniformly distributed
time-varying delays has a larger stability region than that with
concentrated time-varying delays.5 This conjecture does not
contradict the results that we obtained for a small network
(N = 8; see Fig. 8). We note that, for practical purposes, it is
more useful to have a large stability region, and these results
imply that, to achieve this, the time-varying delays should not
be concentrated.

Note that we have confirmed that, for the uniform dis-
tribution, the stability region becomes small as the number
of time-varying delay connections decreases, and the region
vanishes at a critical number. From an engineering point
of view, it is important to know this critical number in
order to implement the partial time-varying delay connection
inexpensively and easily. Estimation of the critical number is
an open problem.

uniformly and randomly chosen from the range (−0.01,0.01); all
the oscillators run from the initial states; if all the oscillators satisfy
|Zi(t) − Z∗

i | < 0.003, ∀t ∈ [1950,2000] for i = 1,2, . . . ,N , then the
steady state is regarded as stable.

5We also have numerically investigated the uniform and concen-
trated distributions in the following three networks: N = 30 with 15
time-varying delay connections, N = 40 with 20, and N = 50 with
25. The same as shown in Fig. 10, large stability regions were obtained
for the uniform distribution, and no stability region was obtained for
the concentrated distribution.
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(a) (b)

(c)

FIG. 9. Three types of configurations of time-varying delay
connections (N = 20): (a) random distribution, (b) concentrated
distribution, and (c) uniform distribution.

VI. DISCUSSION

We will now review the details of the previous studies that
dealt with using a time-varying delay to stabilize the steady
states of oscillators and networks. In the earliest studies, a
time-varying delay was used in the delayed feedback control
of a single oscillator [38,39,44]; this allowed the stabilization
of steady states with a longer feedback delay than could be sta-
bilized by the original (i.e., time-invariant) delayed feedback
control [45]. A feedback control system with time-varying
delay was extended to two oscillators with a time-varying
delay connection [33], and this connection with an arbitrarily
long delay can cause amplitude death; this phenomenon was
verified with experiments using electronic circuits [34]. These
previous studies [33,34] investigated only a pair of oscillators.
More recently, it was shown that the time-varying delay
connection is also useful for oscillator networks [35,36]. In
a previous study [35], we investigated the stability regions for
various network topologies. Gjurchinovski et al. investigated
the stability regions for different types of time-varying delay
functions, including sawtooth, square, and sine functions
[36], but they considered oscillators of the same degree.
Furthermore, those studies [35,36] did not provide a design
procedure of the connection parameters. In the present paper,
we consider oscillators of differing degree, and we show a
procedure to systematically design the connection parameters.

The parametric approach of robust control theory, which
is used for deriving the design procedure (i.e., Theorem 2),
is the key to the present paper. This approach has been used
in our three papers [25,46,47]. Here, we will compare these
papers with the present study. The first paper [46] provided
a design of a high-dimensional oscillator network with a

(a) (b)

(c)

FIG. 10. Stability regions of the networks illustrated in Fig. 9: (a)
random distribution, (b) concentrated distribution, and (c) uniform
distribution.

dynamic connection. As the dynamic connection does not
contain a time delay, the characteristic equation is given by
a polynomial. Thus, the design procedure was based on the
Segment Lemma or Kharitonov’s Theorem. The second paper
[25] investigated a time-delayed oscillator network with a
time-delayed connection: the oscillators and their connection
contained time-invariant delays. The third paper [47] dealt
with high-dimensional oscillators coupled by a time-invariant
delay connection. In the second and third papers [25,47],
the characteristic equation was given by a quasipolynomial
due to the time delay, and design procedures based on a
condition similar to condition (b) of Theorem 1 in the present
study were provided. In the present study, we deal with
two-dimensional oscillators coupled by a time-varying delay
connection. The characteristic equation is more complex than
that of previous studies [25,47], since the equation is given by
a quasipolynomial with the nonlinear function (9). Our design
procedure is provided on the basis of condition (b) of Theorem
1. As we showed above, the parametric approach can be used
in various oscillator networks. It should be emphasized that
there would still be great potential for the application of robust
control theory, including the parametric approach, to network
science.

VII. CONCLUSION

This paper investigated amplitude death in a coupled
oscillator network with a time-varying delay connection.
A parametric approach in robust control theory provided a
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procedure for designing connection parameters that would in-
duce amplitude death, independent of the connection delay and
the network topology. We also proposed a partial time-varying
delay connection, and the effectiveness of this connection was
verified theoretically and numerically.
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APPENDIX A: PROCEDURE FOR DERIVING
THE MARGINAL STABILITY CURVES

Substituting s = iλ, where λ ∈ R, into g(s,ρ) = 0, we can
separate g(s,ρ) = 0 into its real and imaginary parts,

k − μ − k(1 − ρ)�(λδ) cos(λτ0) = 0,

λ − a + k(1 − ρ)�(λδ) sin(λτ0) = 0,
(A1)

where

�(x) :=
{

sin x
x

if x �= 0,

1 if x = 0.
(A2)

Eliminating τ0 from Eq. (A1), we have

{1 − (1 − ρ)2�2(λδ)}k2 − 2μk + μ2 + (λ − a)2 = 0. (A3)

From Eq. (A3), the marginal stability curves of g(s,ρ) = 0
can be derived using the procedure proposed in our previous
papers [33,35].

APPENDIX B: PROOF OF THEOREM 1

A previous study provided the stability condition, which
was similar to Theorem 1, for the segment of polynomials
and of quasipolynomials (see Lemmas 2.1 and 2.2 in [43]). In
contrast, the segment 	(−) belongs to neither the polynomials
nor the quasipolynomials, since ĝ(s,η) contains H (x), as
defined by Eq. (9). However, the boundary crossing theorem
will help us to prove Theorem 1, as in the same previous
study [43].

It is obvious that the stability of the segment 	(−) is
guaranteed if the following conditions hold: (i) both ends of the
segment are stable; and (ii) the roots of ĝ(s,η) = 0 never move
to the right half-plane for any η ∈ [0,1]. Although condition
(i) is obviously the same as condition (a), it is not easy to see
that condition (ii) is the same as condition (b). Therefore, we
will focus on condition (ii).

We will consider the stability of ĝ(s,η) separately for η =
1/2 and η ∈ [0,1/2) ∪ (1/2,1], since for η = 1/2, ĝ(s,η) is a
first-degree polynomial, but for η ∈ [0,1/2) ∪ (1/2,1], it is not
a polynomial. For η = 1/2, we see that ĝ(s,η) = 0 has only one
root, s = μ − k + ia, and this root has negative real parts due
to the assumption that μ − k < 0. For η ∈ [0,1/2) ∪ (1/2,1],
the roots of ĝ(s,η) = 0 never move to the right half-plane if no
roots of ĝ(s,η) = 0 cross the imaginary axis as η varies, that
is, if for any ω ∈ R, there is no η such that ĝ(iω,η) = 0. We
note that if there exists an η such that ĝ(iω,η) = 0, then the
line segment that is the set of all points between the end points
of the two vectors ĝ(iω,0) and ĝ(iω,1) passes through the
origin. This indicates that these two vectors point in opposite

directions, i.e., φ(ω) = ±π . Thus, we see that if condition
(b) holds, then the stability of ĝ(s,η) is maintained for η ∈
[0,1/2) ∪ (1/2,1]. It can be concluded that condition (ii) is the
same as condition (b) under the stated assumption.

The proof is completed by the fact that conditions (i) and
(ii) are the same as conditions (a) and (b), respectively.

APPENDIX C: PROOF OF LEMMA 2

The scalar product of two vectors, ĝ(iω,0) and ĝ(iω,1),
∀ω ∈ R, in the complex plane is given by

F (k,ω) := Re[ĝ(iω,0)]Re[ĝ(iω,1)]

+ Im[ĝ(iω,0)]Im[ĝ(iω,1)]

= (k − μ)2 + (ω − a)2 − k2�(ωδ)2.

If the delay amplitude δ and the coupling strength k are
designed according to Lemma 1, then we have the inequality
[33]

F (k,ω) � F (k,ω) > 0, (C1)

where

F (k,ω) := (k − μ)2 + (ω − a)2 − k2�

(
π

a
ω

)
,

�(x) :=
{−2(x − π )/(2 + π ), x � π,

+2(x − π )/(2 + π ), x � π.

It is known that the angle between two vectors is acute if their
scalar product is positive. Thus, the inequality (C1) indicates
that, in the complex plane, the angle ψ(ω) between the two
vectors ĝ(iω,0) and ĝ(iω,1) satisfies

|ψ(ω)| := |arg[ĝ(iω,0)] − arg[ĝ(iω,1)]| <
π

2
.

Therefore, |ψ(ω)| �= ±π holds for any ω ∈ R.

APPENDIX D: PROOF THAT μ − k < 0

From Eqs. (17) and (19), it is obvious that the coupling
strength k designed by Lemma 1 satisfies μ − k < 0 if the
function h(μ), defined as

h(μ) := max
k∈[k̄−�k, k̄+�k]

{μ − k} = μ − (k̄ − �k),

satisfies the inequality

h(μ) < 0, ∀μ ∈
(

0,
a(2 + π )

4π

)
. (D1)

Note that �k, as defined by Eq. (20), is a function of μ. Let us
consider the inequality (D1). It is straightforward to obtain

h(0) = 0,
dh(μ)

dμ

∣∣∣
μ=0

= 0,

dh(μ)

dμ
< 0, ∀μ ∈

(
0,

a(2 + π )

4π

)
.

This shows that h(μ) is a monotonic decreasing function under
Eq. (17), that is, the inequality (D1) holds. As a result, the
coupling strength k designed by Lemma 1 always satisfies
μ − k < 0.
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