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This paper deals with the stabilization of a spatially uniform steady state in two coupled one-dimensional
reaction-diffusion systems with Turing instability. This stabilization corresponds to amplitude death that occurs
in a coupled system with Turing instability. Stability analysis of the steady state shows that stabilization does not
occur if the two reaction-diffusion systems are identical. We derive a sufficient condition for the steady state to be
stable for any length of system and any boundary conditions. Our analytical results are supported with numerical
examples.
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I. INTRODUCTION

Over the last quarter-century, much effort has been invested
into understanding the coupling-induced quenching of self-
oscillations. Amplitude death, a quenching phenomenon, has
been widely studied by the nonlinear science community [1,2].
This phenomenon is a stabilization of unstable equilibrium
points embedded within individual oscillators through a diffu-
sive coupling . It is well recognized that both of the following
two conditions are necessary for amplitude death to occur. The
first is a strong coupling strength. The second is that one or
more of the following is satisfied:1 (i) the frequencies of the
oscillations differ [3–8], (ii) the diffusive connection includes
a time delay [9–15], or (iii) the diffusive connection has its
own dynamics [16–20].

In addition to amplitude death, the nonlinear science com-
munity has also paid considerable attention to spatiotemporal
phenomena in reaction-diffusion systems [21–23]. Not only
a single reaction-diffusion system but also a pair of cou-
pled reaction-diffusion systems can exhibit interesting spa-
tiotemporal behavior [24]. Many studies on coupled reaction-
diffusion systems [25–27] have dealt with the well-known
complex Ginzburg-Landau systems [28–30], in which the
reaction terms are oscillatory. Our previous study [31] reported
that a spatially uniform steady state in coupled complex
Ginzburg-Landau systems can be stabilized under condition
(i) or (ii) mentioned above.

It is widely known that, in reaction-diffusion systems, the
diffusion term can destabilize the stable reaction dynamics.
This phenomenon is referred to as Turing instability, which
induces well-known Turing patterns [21,22]. This instability
has been recognized as a fundamental mechanism for pattern
generation in nature [32]. Although a variety of spatiotemporal
behaviors in coupled reaction-diffusion systems with Turing
instability have been investigated analytically and experimen-
tally [33–40], to the best of our knowledge, there have been
few studies on the stabilization of a spatially uniform steady

*http://www.eis.osakafu-u.ac.jp/∼ecs
1Note that there are other conditions in addition to (i), (ii), and (iii).

state in a coupled system with Turing instability (see Sec. V
for details).

The present paper investigates the stability of a spatially
uniform steady state in a pair of reaction-diffusion systems
with Turing instability. We focus on the simplest diffusive type
of connection, which satisfies neither condition (ii) nor (iii). In
addition, condition (i) cannot be satisfied for reaction-diffusion
systems with Turing instability, since these systems are not
oscillatory due to the stable reaction dynamics.2 Hence, in
the present paper, instead of condition (i), we assume that
each system has different diffusion coefficients. These different
coefficients induce different wave patterns in systems. We
analyze the stability of the spatially uniform steady state in the
coupled systems with different-wave Turing instability. The
analytical results for the stability are verified with numerical
simulations.

II. DESIGN OF DIFFUSION COEFFICIENT RATIO

This section will review a condition for the existence of
Turing instability and will present a method to determine a
diffusion coefficient ratio that induces Turing instability.

Let us consider a one-dimensional reaction-diffusion sys-
tem,

∂u

∂t
= f (u,v) + δ

∂2u

∂x2

∂v

∂t
= g(u,v) + ∂2v

∂x2
, (1)

where u := u(t,x) ∈ R and v := v(t,x) ∈ R are state variables
at position x ∈ [0,L] and time t � 0. Here, L > 0 is the
length of x. The nonlinear functions, f (u,v) : R × R → R
and g(u,v) : R × R → R, represent the reaction kinetics. δ ∈
(0,1) is the diffusion coefficient ratio [see Appendix A for
more details on system (1)]. We assume that this system has a

2This means that the reaction terms f and g, explained later,
in reaction-diffusion systems with Turing instability have a stable
equilibrium point (see Lemma 1 for more details).
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spatially uniform steady state,

[u v]T = [u∗ v∗]T , ∀x ∈ [0,L], (2)

where (u∗,v∗) is an equilibrium point of the reaction kinetics,
f (u∗,v∗) = g(u∗,v∗) = 0 .

Now we examine the linear stability of the steady state (2)
using linearized dynamics,

∂

∂t
X = AX + ∂2

∂x2
DX , (3)

X :=
[
u − u∗
v − v∗

]
, A :=

[
fu fv

gu gv

]
, D :=

[
δ 0
0 1

]
,

where A denotes the Jacobian matrix of the reaction dynamics
at equilibrium point (u∗,v∗). The characteristic function of
system (3) is written as

F (s,γ ) : = det (s I2 − A + γ D)

= s2 + {γ (δ + 1) − fu − gv}s
+ (γ δ − fu)(γ − gv) − fvgu. (4)

Here, γ := k2 is a parameter, where k ∈ R is the wave number.
This parameter depends on the medium conditions, i.e., the
length L and the types of boundaries [21,32] . It must be
noted that system (3) is stable for any L > 0 and any boundary
condition if and only if all of the roots of F (s,γ ) = 0 have
negative real parts for any γ � 0.

Here we review the condition for the existence of Turing
instability [32].

Lemma 1: Suppose that the necessary and sufficient condi-
tion for the equilibrium point (u∗,v∗) of reaction terms to be
stable,

fu + gv < 0, (5)

fugv − fvgu > 0, (6)

holds. If two inequalities

δgv + fu > 0, (7)

(δgv + fu)2 − 4δ(fugv − fvgu) > 0 (8)

are satisfied, then there exists γ � 0 such that F (s,γ ) is
unstable.

If Turing instability occurs, then fu and gv always satisfy
the following condition [32]:

Corollary 1: A necessary condition for matrix A to satisfy
Lemma 1 is given by

fu > 0, gv < 0. (9)

Now we provide a procedure for the design of the diffusion
coefficient ratio δ such that Turing instability occurs.

Lemma 2: Suppose that matrix A satisfies the condi-
tions (5), (6), and (9). If the diffusion coefficient ratio δ is
selected from the range

δ ∈ (0,δ−), (10)

δ− := fugv − 2fvgu − 2
√

fvgu(fvgu − fugv)

g2
v

, (11)

then there exists γ � 0 such that F (s,γ ) is unstable.

Proof. See Appendix B. �
The next section considers the following situation: a pair of

systems (1) with δ designed according to Lemma 2 are coupled
by a diffusive connection.

III. COUPLED REACTION-DIFFUSION SYSTEMS

We consider a pair of one-dimensional reaction-diffusion
systems,

�1 :

{
∂u1
∂t

= f (u1,v1) + δ ∂2u1
∂x2 + ru,1

∂v1
∂t

= g(u1,v1) + ∂2v1
∂x2 + rv,1

,

�2 :

{
∂u2
∂t

= f (u2,v2) + μδ ∂2u2
∂x2 + ru,2

∂v2
∂t

= g(u2,v2) + μ∂2v2
∂x2 + rv,2

, (12)

where μ ∈ (0,1] represents the ratio of the diffusion coef-
ficients for systems �2 and �1. Here, ru,1, ru,2, rv,1, and
rv,2 ∈ R are the connection signals, which shall be explained
later.

The present study assumes that Turing instability has
already occurred in individual systems �1,2 without coupling.
In order for this assumption to be valid, the system �1 without
coupling, which is equivalent to system (1), has to satisfy
Lemma 2. It should be noted that the system �2 without
coupling, which has the additional parameter μ, can be applied
to Lemma 2, since the characteristic function for system �2 is
described by F (s,γμ). This fact indicates that if there exists
γ � 0 such that the characteristic function F (s,γ ) for system
�1 is unstable, then there also exists γ ′ � 0 such that F (s,γ ′μ)
is unstable. As a result, Lemma 2 is valid even for system
�2. Let us summarize the above-mentioned assumption as
follows:

Assumption 1: Assume that system (1) has the length L

and the types of boundaries such that Turing instability occurs,
that is, both systems �1,2 without coupling (i.e., ru,1 = ru,2 =
rv,1 = rv,2 = 0) satisfy Lemma 2.

Systems �1,2 are now coupled by a diffusive connection,

ru,1 := ε(u2 − u1), rv,1 := ε(v2 − v1),

ru,2 := ε(u1 − u2), rv,2 := ε(v1 − v2), (13)

where ε � 0 denotes the coupling strength. This type of
connection is a conventional coupling for two reaction-
diffusion systems (see [26,27,33,34,40–43] for more details).
Systems (12) with coupling (13) also have a spatially uniform
steady state,

u∗ : = [u1 v1 u2 v2]T

= [u∗ v∗ u∗ v∗]T , ∀x ∈ [0,L]. (14)

The local dynamics around steady state (14) are given by

∂

∂t

[
X 1

X 2

]
=

[
A − ε I2 ε I2

ε I2 A − ε I2

][
X 1

X 2

]

+ ∂2

∂x2

[
D 0
0 μD

][
X 1

X 2

]
, (15)
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FIG. 1. Roots s of the characteristic equations for system �1

[F (s,γ ) = 0], system �2 [F (s,γμ) = 0], and coupled systems �1 +
�2 [G(s,γ ) = 0], with ε = 0.15 and μ = 0.20 as a function of γ � 0:
(a) all of the roots si(γ ) (i = 1, . . . ,n) on the complex plane, and (b)
real parts of the dominant roots smax(γ ).

where we have X 1,2 := [u1,2 − u∗ v1,2 − v∗]T . The charac-
teristic function of the linear system (15),

G(s,γ )

:= det

(
s I4 −

[
A − ε I2 ε I2

ε I2 A − ε I2

]
+ γ

[
D 0
0 μD

])
,

(16)

allows us to obtain a sufficient condition for steady state (14)
to be unstable.

Lemma 3: Systems �1,2 under Assumption 1 are coupled
by a diffusive connection (13). If systems �1,2 are identical
(i.e., μ = 1), there exists a length L and boundaries such that
the spatially uniform steady state (14) is unstable indepen-
dently of ε.

Proof. For μ = 1, the characteristic function (16) is re-
duced to

G(s,γ ) = F (s,γ ) det [s I2 − A + γ D + 2ε I2]. (17)

Since there exists γ � 0 such that F (s,γ ) defined in Eq. (4)
under Assumption 1 is unstable, there also exists γ � 0 such
that G(s,γ ) with μ = 1 is unstable independently of ε. �

A similar result to Lemma 3 for coupled oscillators has been
reported in a previous study [44].

Here we provide the condition for steady state (14) to be
stable.

Theorem 1: Systems �1,2 under Assumption 1 are coupled
by a diffusive connection (13). The spatially uniform steady
state (14) is stable for any L and boundary condition if and
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FIG. 2. Time series of u1,2 before and after coupling with ε =
0.15 and μ = 0.20: (a) u1(t,x) and (b) u2(t,x). Systems �1,2 are
coupled at t = 1000.

only if the characteristic function G(s,γ ) defined in Eq. (16)
is stable for any γ � 0.

Proof. As this theorem is an obvious consequence of the
above discussion, the proof is omitted. �

We remark that it is easy to analyze the stability of G(s,γ ),
since it can be described by a degree-four polynomial. The next
section will show some numerical results with the well-known
Brusselator model.

IV. NUMERICAL EXAMPLES

This section shows that the analytical results presented
above are valid through numerical simulations. The present
paper deals with the Brusselator model, a well-known reaction-
diffusion system [21]. The reaction terms,

f (u,v) = η{a − (1 + b)u + u2v},
g(u,v) = η{bu − u2v}, (18)

have an equilibrium point (u∗,v∗) = (a,b/a), where a > 0
and b > 0 are the parameters. The parameter η > 0 is used
to transform the Brusselator model [21] into dimensionless
form (1). The Jacobian matrix A around the equilibrium point
has four elements: fu = η(b − 1), fv = ηa2, gu = −ηb, and
gv = −ηa2.

The parameters of the reaction terms (18) are set as

a = 2.0, b = 4.0, η = 1/20.

These parameters satisfy inequalities (5) and (6) in Lemma 1
and inequality (9) in Corollary 1. The condition (10) in
Lemma 2 is described by δ ∈ (0,1/4); thus, we set δ = 0.2.
Both systems �1,2 have length L = 64 and a periodic bound-
ary.

Here, the ratio of the diffusion coefficient for system �2

and the coupling strength are set to μ = 0.20 and ε = 0.15,
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FIG. 3. Roots s of the characteristic equations for system �1

[F (s,γ ) = 0], system �2 [F (s,γμ) = 0], and coupled systems �1 +
�2 [G(s,γ ) = 0], with ε = 0.07 and μ = 0.05 as a function of γ � 0:
(a) all of the roots si(γ ) (i = 1, . . . ,n) in the complex plane, and (b)
real parts of the dominant roots smax(γ ).

respectively. The roots s of the characteristic equations for
the individual systems �1 [i.e., F (s,γ ) = 0] and �2 [i.e.,
F (s,γμ) = 0], and coupled systems �1 + �2 [i.e., G(s,γ ) =
0] as a function of γ � 0 are illustrated in Fig. 1(a). The real
parts of the dominant roots for these equations,

smax(γ ) := max
i∈{1,...,n}

Re[si(γ )], (19)

with n = 2 for F (s,γ ) = 0 and F (s,γμ) = 0 and n = 4 for
G(s,γ ) = 0, against γ are plotted in Fig. 1(b). For individual
systems �1 [i.e., F (s,γ ) = 0] and �2 [i.e., F (s,γμ) = 0], a
pair of roots leave γ = 0 (�), and one of them crosses the
imaginary axis from left to right at γ = γmin and crosses it
again at γ = γmax [see the insets in Fig. 1(a)]. This indicates
that F (s,γ ) and F (s,γμ) are unstable for γ ∈ (γmin,γmax). For
coupled systems �1 + �2 [i.e., G(s,γ ) = 0], four roots leave
γ = 0 (�), and one of them crosses the imaginary axis from
left to right at γ = γmin and reaches the maximum positive
value (©),

ŝmax := max
γ�0

smax(γ ) (20)

at γ = γ̂ .
It follows from the behavior of the roots illustrated in Fig. 1

that Turing instability can occur in systems �1,2 coupled by
diffusive connection (13). The time series3 of variables u1,2

3The explicit Euler method (time step 10−4 and 512 space mesh
points) is used for numerical integration.
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FIG. 4. Time series of u1,2 before and after coupling with ε =
0.07 and μ = 0.05: (a) u1(t,x) and (b) u2(t,x). Systems �1,2 are
coupled at t = 1000.

before and after coupling are shown in Fig. 2. Systems �1

and �2 behave independently, and respectively induce the
Turing patterns with a low wave number and a high wave
number until t = 1000, when they are coupled by a diffusive
connection (13). It can be seen that these Turing patterns merge
into a single Turing pattern with a middle wavelength between
those of the original patterns after coupling.

Let us change the parameters to ε = 0.07 and μ = 0.05.
Figure 3 shows the roots s for system �1, system �2, and
coupled systems �1 + �2. For systems �1,2, a pair of roots
leave γ = 0 (�), and one of them crosses the imaginary axis
from left to right and crosses again [see the insets in Fig. 3(a)].
For coupled systems �1 + �2, four roots leave γ = 0 (�); one
of these roots reaches the maximum value (©) but does not
cross the imaginary axis: we have ŝmax < 0.

From Fig. 3, we expect that Turing instability never occurs
in systems �1,2 coupled by connection (13). Figure 4 illus-
trates the time series of variables u1,2 before (t < 1000) and
after (t � 1000) coupling. The Turing patterns after coupling
disappear and a spatially uniform steady state (14) appears.

We numerically investigate the relation between the largest
real part of the roots ŝmax and the parameters (ε,μ). Here ŝmax is
plotted4 in the parameter space (ε,μ) ∈ [0.0,0.2] × [0.0,0.3],
as illustrated in Fig. 5. The stable region with ŝmax < 0 satisfies
Theorem 1; thus, if ε and μ are within this region, the spatially
uniform steady state (14) becomes stable for any L and any
boundary condition. The parameter set (ε,μ) = (0.15,0.20) for
the time series shown in Fig. 2 is outside of the stable region,
but the parameter set (ε,μ) = (0.07,0.05) for Fig. 4 is inside
of it. These time-series data agree with this stable region.

4ŝmax is estimated from the range γ ∈ [0,10] for a 50 × 50 grid in
(ε,μ) space.
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FIG. 5. Largest real part of the roots ŝmax in parameter space ε –
μ. The yellow area denotes the unstable region and the other colors
are the stable regions.

V. DISCUSSION

This section reviews the previous studies related to our
present paper in detail: phenomena in coupled reaction-
diffusion systems with Turing patterns and those in stable oscil-
lator networks. A large number of studies have been conducted
on phenomena occurring in coupled reaction-diffusion systems
with Turing patterns. A variety of phenomena induced by
diffusive connections have been found, such as black eye and
white eye patterns [33], symmetric, asymmetric, and antiphase
patterns [34], and square patterns [35]. Diffusive connections
have been experimentally implemented in real systems [36,37].
Furthermore, some types of couplings, such as dynamic con-
nections [38], connections with distributed delays [39], and
nonlinear connections [45], have been studied. It was reported
that Turing patterns are induced in coupled reaction-diffusion
systems whose reaction terms are different [43]. Ji and Li
found that individual reaction-diffusion systems with a Turing
pattern and with oscillatory behavior converge to a steady
state after coupling [40]. We may say that this phenomenon
corresponds to amplitude death in coupled reaction-diffusion
systems. On the other hand, the present paper shows that am-
plitude death can occur even when both systems exhibit Turing
patterns.

Recently, Turing patterns in oscillator networks have at-
tracted great attention. Nakao and Mikhailov found that Turing
instability occurs in large random networks whose nodes have
stable dynamics [46]. This phenomenon was also observed in
Cartesian product networks [47], where an extended version
of Lemma 3 for Cartesian product networks was provided.
Asllani et al. reported the following interesting result: for two
Watts-Strogatz networks with different rewiring probabilities
and diffusion constants, where one of the networks induces
Turing instability and another does not, and they are coupled
by a diffusive connection, a spatially uniform steady state
can become stable [48]. This result is likely related to the

stabilization considered in the present paper; however, the
relation is not clear at present. Further insight into the relation
is left for future work.

VI. CONCLUSION

The present paper investigated the dynamics around a
spatially uniform steady state in a coupled reaction-diffusion
system with Turing instability. The main results obtained in
this paper are summarized as follows: it was shown that sta-
bilization does not occur in identical systems (see Lemma 3),
and a condition for the steady state to be stable for any system
length and types of boundaries was derived (see Theorem 1).
Our main analytical results were supported with numerical
simulations.
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APPENDIX A: COMMENTS ON SYSTEM (1)

System (1) is similar to the dimensionless reaction diffusion
system in Sec. 2.2 of [32]. The differences with system (1) are
as follows: the coefficients of ∂2u/∂x2 and ∂2v/∂x2 are 1 and
d ∈ [1, + ∞), respectively. We remark that the range of the
diffusion coefficient ratio in system (1) is finite for δ ∈ (0,1).
The reason for our employing system (1) is the finite range for
the ratio being more convenient for investigating stability in
numerical simulations.

APPENDIX B: PROOF OF LEMMA 2

This proof indicates that the diffusion coefficient ratio δ,
which satisfies both conditions (7) and (8) in Lemma 1 under
assumption (9), can be described by Eq. (10). First, we consider
condition (7). Under assumption (9), the ratio δ satisfying (7)
can be described by

δ ∈ (0,−fu/gv). (B1)

Second, we deal with condition (8). As the left-hand side of
inequality (8) is a quadratic downward-convex function of δ,
condition (8) holds for δ satisfying

δ ∈ (0,δ−) ∪ (δ+, + ∞), (B2)

δ+ := fugv − 2fvgu + 2
√

fvgu(fvgu − fugv)

g2
v

. (B3)

Condition (6), and Eqs. (11) and (B3) suggest that δ− <

−fu/gv < δ+ holds. Thus, δ satisfying both inequalities (B1)
and (B2) is given by condition (10).
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