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INTRODUCTION

The lattice Boltzmann method (LBM) is free from difficul-

ties of grid generation and of convergence of a pressure solver

since it usually applies regular cubic grids and does not require

the Poisson equation for pressure fields. The LBM is based

on a discretized Boltzmann equation expressed by an explicit

time-marching formula and hence it is very much suitable for

parallelized computation with multi GPUs.

However, because the LBM is young compared with the

other CFD methods, it still has many important issues to

overcome, particularly for turbulence simulation. Therefore,

in the present report, we point out some of those issues and

show how to overcome them referring to our recent studies.

D3Q27 MRT LBM

For three-dimensional flows, the LBM usually applies the

D3Q15, D3Q19 or D3Q27 model. (D3 corresponds to three-

dimensional and Qn corresponds to the number of discrete

velocity vectors.) If the simulated results are virtually the

same, the smaller number of the discrete velocities is desir-

able due to the computational costs. Indeed, for laminar pipe

flows, as seen in Fig.1, all those discrete velocity models pro-

duce ideally symmetrical velocity profiles. However, when the

flow becomes turbulent, the D3Q15 and D3Q19 models pro-

duce unphysically patterned profiles. Only the D3Q27 model

predicts a reasonable velocity profile. The reason why such

anomaly occurs was analysed by the authors [1] as follows.

Applying the error analysis method of Holdych et al. (2004)

to each discrete velocity model, the error term Ei arising in the

momentum equation:

∂ui

∂t
+ uj

∂ui

∂xj
= −

∂p

∂xi
+

1

Re

∂2ui

∂x2
j

+ Ei, (1)

was estimated. After projecting the error terms to the cylin-

drical coordinate, the circumferential components were writ-
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Figure 1: Streamwise mean velocity contours of pipe flows.

ten with the relaxation time τ of the LBM:
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respectively for the D3Q15, D3Q19 and D3Q27 models. When

the pipe flow is laminar, since the Reynolds stresses are neg-

ligible, the error term of the D3Q27 model (Eq.4) vanishes

and the total contributions by the parabolic profile of the

streamwize mean velocity ūz in Eqs.2,3 also vanish. Accord-

ingly, the space accuracy of all those models become O(∆4)

or higher. However, in turbulent pipe flows all those contri-

butions by the Reynolds stress and the mean velocity are not

negligible and the errors act as asymmetrical force terms. In

this sense, even the D3Q27 model is not satisfactory. How-

ever, it was found that the magnitude of the error term of

the D3Q27 model is two order smaller than those of the other

models. Thus, the D3Q27 model is desirable for turbulence

simulation.

For high Reynolds number flows, it is known that the

multiple-relaxation-time (MRT) form of the LBM is desirable:

|f(x+ ξαδt, t+ δt)⟩ − |f(x, t)⟩

= −M−1Ŝ [|m(x, t)⟩ − |meq(x, t)⟩] +M−1

(
I− Ŝ

2

)
M |F⟩ δt,

(5)

where ξα is the discrete velocity and M is a Q × Q matrix

that transforms the distribution function f to moments m as

|m⟩= M · |f⟩. For the D3Q27 model, the present authors’

group derived a 27× 27 transformation matrix [2]. The diag-

onal collision matrix Ŝ is:

Ŝ ≡ diag(0, 0, 0, 0, s4, s5, s5, s7, s7, s7, s10, s10, s10, s13,

s13, s13, s16, s17, s18, s20, s20, s20, s23, s23, s23, s26), (6)

and the proposed relaxation parameters [2] are

s4 = 1.54, s7 = s5, s10 = 1.5, s13 = 1.83, s16 = 1.4,
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Figure 2: Turbulent channel flow quantities at Reτ=180.

s17 = 1.61, s18 = s20 = 1.98, s23 = s26 = 1.74. (7)

The relaxation parameter s5 is related to the fluid viscosity,

which is sum of the molecular viscosity ν and the sub-grid-

scale viscosity νSGS for the LES, ν + νSGS = c2s
(

1
s5

− 1
2

)
δt,

where cs is the sound speed of the LBM.

The accuracy of the D3Q27 MRT LBM for turbulent chan-

nel flow DNS is confirmed in Fig.2. DNS was performed by

regular grids of 1539×240×754 for the region of 4πδ×2δ×2πδ

with the resolution of ∆+ = 1.5. Indeed, the identical data to

those by Kim et al. (1987) were obtained.

IBC LOCAL MESH REFINEMENT

To resolve boundary layers, local mesh refinement is essen-

tial for the method employing regular grids. In the context

of the LBM, the widely applied local mesh refinement applies

the communication rule between the distribution functions of

course and fine grids: feq,c
α ⇔ feq,f

α , fneq,c
α ⇔ n τc

τf fneq,f
α ,

with n = ∆c/∆f = δtc/δtf where superscripts c and f cor-

respond to “course” and “fine” grids. The non-equilibrium

distribution function is fneq
α = fα − feq

α .

The well known difficulty of the conventional method by

Dupuis and Chopard (2003) is that kinked profiles of turbulent

flow quantities are inevitable at the interface of the grids. The

present authors pointed out the reason of the difficulty and

proposed the following correction method [3].

The conditions of mass and momentum conservation:

Σαf
neq
α = 0,Σαξαf

neq
α = 0 are not always satisfied at the

interface of the conventional method. To correct such imbal-

ances, the residuals were calculated at the interface shown in

Fig.3 as
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+
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When ερ, εu vanish, the conservation of mass and momentum

is achieved. Hence, by setting the re-calculated residuals with

the corrected density and velocity: ρ∗ = ρ + λρερ,u∗ = u +

λuεu, to zero, the correction coefficients were obtained as

λρ = λux =

{
1−

1

6

(
1− nτc/τf

)(
1 +

c2

c2s

)}−1

, (10)

Figure 3: Stencil of the IBC local mesh refinement.
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Figure 4: Performance of the IBC method in LES; grid inter-

face is set at y+ = 17.7.
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Figure 5: LES of turbulence inside and over a carbon paper

at Reb=3000: left: iso-surfaces of the second invariant of the

velocity gradient tensor, right: close-up view of carbon paper.
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where c = ∆/δt. Those corrected variables were used for the

simulation.

The performance of this imbalance correction (IBC)

method is shown in Fig.4. It does not produce kinks in the

Reynolds stress distributions and improves mass conservation

drastically.

CONCLUSIONS

For turbulent flow simulation by the LBM, the D3Q27 MRT

LBM with the IBC mesh refinement method is recommended.

It is certainly very powerful for turbulence simulation in a very

complex flow region such as that shown in Fig.5.
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