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ANAPPLICATION OF THEORY OF STRONGLY
          BRANCHED COVERINGS
                Takanori MATSUNO*

ABSTRACT
  R. D. M. Accola [Al developed a theory of strongly branchecd coverings of compact Riemann surfaces
and among other applications of the theory he constructed a Riemann surface admitting only the identity
automorphism. In this short note, applying the theory of strongly branched coverings, we construct a Riemann
surface whose automorphism group is a finite simple group.
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1 Introduction

  Let C be any finite simple group. The main purpose
of this short note is to give a method to construct a
compact Riemann surface whose automorphism group
is isomorphic to G. This is an application of a theory

of strongly branchod coverings of compact Riemann
surfaces due to R. D. M. Accola ([A]).

  Though Greenberg's theorem is known, our method
is very simple and easy(Cf. [Gl, [M-N] ).

   Let T : Ci . C2 be a holomorphic mapping of
compact Riemann surfaces of degree dT and total ram-
ification r.. We denote by gi = g(Ci) for i = 1,2 the
genus of ei. Flrom the Riemann-Hurwitz formula, we
have
          2gi - 2 = d.(2g2 - 2) + rT•

Definition 1.1. The mapping T will be called
strongly branched if

          r7r > 2dT(dT - 1)(g2 + 1).

  Notice that if d. =2 and g2 = O, and r. > 4, we
are in the hyperelliptic case.

  For a non-constant meromorphic function f : Ci .
Pi(C), we denote by o(f) the order of f. The function

field on Ci wi!1 be denoted by Mi. If T : Ci - C2 is
a holomorphic mapping of compact Riemann surfaces
of degree d., then M2(c Mi) will be the subfield of
index d. obtained by lifting functions from C2 to Ci•
  Let f : Ci . Pi(C) be a meromorphic function on
Ci of order o(f). Let T : Ci . C2 be a branched cov-
ering of degree d., not necessarily strongly branched.
We denote by B(c C2) the branch locus of T. For a
point QE C2 XB, let T-i(Q) = {Pi,••• ,Pd.} be the
inverse image of q.

  Define A.(f) as follows,

       A.(f)((?) - ll (f(P,) - f(p,))2 .

                 i<J'
A.(f) is a well-defined meromorphic function on C2 X
B and , from Riemann's extension theorem, Ar(f)
extends to a meromorphic function on C2. The order
of tC)s.(f) is at most 2(d. - 1)o(f) while the number
of zeros of A.(f) is at least r.. Thus if rT > 2(d. -

1)o(f), A.(f) i O. From the unicity theorerm, we
have the following lemma.

Lemma 1.1. Ifr. > 2(d.-1)o(f), then T : Ci - C2
admits a factorization such that p : Ci - C3 and v :
C3 - C2, where T = uop and there is a meromorphie
function A : C3 - Pi(C) on C3 so that f = )t o Ii.
(See Figurel.)
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Lemma 1.2. Let Ci
of genus gi. Let fi

on Cl of order ol
generate Mi = C(fi, f2),

then
            gi S (oi - 1)(o2 - 1).

  Figure 1.

  be a compact Riemann surface
and f2 be meromorphic .functions

and o2, respectively. If fi and f2
     the full .function field on Ci ,
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  Proof. Consider fi :Ci -. Pi(C) as a branched
covering. From the Riemann-Hurwitz formula,

            2gi - 2 = -2oi + ri,
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  where, ri is a total ramification of fi.

  Assume ri > 2(oi - 1)o2. Then Af,(f2) E O. So
from Lemmal.1, there is a factorization p : Ci -
C2 and v: C2 - Pi(C) where fi =uopa . The
degree of p, dp, is strictly greater than 1 and there
             .is a meromorphic function A : C2 - Pi(C) so that

f2 =Aop. The index [Mi:M2] = dp >1and
M2EMi.

fi

Cl

pl

1.Z/:

pi(C)

C2
1]iXxsl

f2

Pi(C)

                  Figure 2.

  Inyrom the diagram above (Figure 2),

            Mi =C(fi,f2)
                =C(voi`,Aoii)
                = Ii*C (v, A)
                cM,EMi.

This is a contradiction. So we have:

              ri $ 2(oi - 1)op.

Then

      2gi -2 S -2oi + 2(oi - 1)op
          9i $ (Oi - 1)(o2 - 1).

2 Preliminaries

we have :

q. e. d.

  In this section we recal1 a theory of strongly
branched coverings of compact Riemann surfaces de
veloped by R. D. M. Accola [A].

  Applying the Riemann-Hurwitz formula to the def-
inition of strongly branched coverings, we have the
following criterions.

Lemma 2.1. ijT : Ci . C2 is a holomorphic map-
ping of compact Riemann surfaces then the following
conditions are equivalent to T being strongly branched:

      (1) gi > d;g2 + (d. - 1)2,
      (2) d. •r. > (dT -1)(2gi-2+4d.).

Definition 2.1.
subfield of Mi, i

covermg.

M2
fT:

will be called strongly branched
Ci . C2 is a strongly branched

  We need the following inequality to prove the lemma
after the next.

Lemma 2.2. Let n, m be positive integers. Then the
following inequatity holds :

       n2(m - 1)2 + (n - 1)2 S (nm - 1)2.

  Proof.

         (nm - 1)2 - n2(m - 1)2 - (n - 1)2

      = -2mn+2n2m-n2-n2+2n
      = 2n(n-1)(m-1)lO. q.e.d.

Lemma 2.3. LetT:Ci -ÅÄ C2,p:Ci - C3, v:
C3 . C2be coverings such that T = uo ii. IfT is
strongly branched then p or v is.

  Proof. Since T is strongly branched, from
Lemma2.1,

            gi > dlg2 + (d. - o2.

Assume that neither p nor v is strongly branched.
Then from Lemma2.1,

          J gi $d-,2,g3+(d.-1)2
          N g3 :-f dl.lg2+(d.-1)2.

  Eliminating g3, we have:

     gig-,ds?,2.Cv,g4+.i,di.1i2,22.+,2d.p:,3),l

  From Lemma2.2,

          9i $d "v g2 + (dpdv - 1)2
             = d?.g2 + (d. - 1)2.

This is a contradiction. q.e.d.

Definition 2.2. A strongly branchod subfield M2 will
be called a maximal strongly branched subfield of Mi ,

if whenever M2 c M3 c Mi and M2 l M3 then M3 is
not a strongly branched subfield. The corresponding
definition will also holds for coverings.

Lemma 2.4. LetT : Ci - C2 , be a maximat strongly
branched covering of degree dr. Suppase fi : Ci .
Pi(C) is a meromorphic .function on Ci such that
2(dT - 1)o(A) < rr. Then there is a meromorphic
.function f2 on C2 so that fi = f2 oT(i.e.fi E M2).

  Proof. Because of the condition 2(d. - 1)o(fi) <
rT, from Lemmal.1, there exists a factorization pt :
Ci - C3,u: C2 -. C3 where T == vo",
and the degree of p, d", is stirictly greater than 1,
and there is a meromorphic function f3 on C3 so that
fi == f3 o". Choose u: C2 . C3 as dv is minimum.
Here we assume du > 1. Since T is maximal, pa is
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not strongly branched. FYom Lemma,
branched. So we have:

           r. $ 2d.(d. - 1)(g3 + 1)

and
           rv > 2dv(dv - 1)(92 + 1)'

  Erom the Riemann-Hurwitz formula

v is strongly

           g3 -2= du (2g2 - 2) + r.

  and direct calculation shows that

                dp'dv(dp - 1)
           rp <•                            • rv.                   dv -1

  It is easy to see that r. = rp + dp•rv from the
Riemann-Hurwitz formula. Then we have:

           d"'dv(dp - 1)
     rT < d.-1 •rv+dp•r.
           dp'dv(dp -' 1) + (dv ' 1)'dp
                                   .rv                    du -1
           dp(d7r - 1)
         == d.-1 'ru•

  So it follows that:

                     2(dv - 1)
     2(dv - 1)'o( f3) =                              •O(fi)
                        dp
                   < 2(d. -1) . r.
                               2(d. - 1)                        dp
                       dv -1
                   = dp(d. - 1) ' rT

                   < rv•

  Then there must exist a factorization of v and this
contradicts the minimality of dv. So dv = 1 and u :
C3 . C2 is a biholomorphic mappinng. Put f2 =
f3 o u-i : C2 - Pi(C). Then

          hoT =(f3ou-i)o(uoi`)
                = f3 o (v-i o u) op
                = f3 0p
                = fi•

So f2 is a required function. q.e.d.

Lemma 2.5. ij a maximal strongly branched subfield
of Mi eststs, then it ts unique.

  Proof Suppose that there exist two maximal
storngly branched coverings p : Ci - C2 and u :
Ci - C3• We denote by dp and by d. the degree of p
and of u, respectively. We may assume that

            d. (g2 + 1) ) d.(g3 + 1)•

Let fi and f2 be meromorphic functtions on C3 of
order o(h) and o(f2), respectively and generate the
full function field of C3.

  FYom Lernmal.2, both o(fi) and o(f2) are no
greater than g3 + 1. Then the order of fi ou is no
greater than d.(g3 + 1). So, by the assumption, the
order of fi ov is no greater than dp(g2 + 1). From
Lemma2.4, fiovE M2. By the same argument,
f2 ov E M2 also holds. Because fi ov and f2 ov
generate M3, it follows that M3 C M2 c Mi. Since
M3 is maximal, we have M3 = M2. q.e.d.

  We denote by A(C) the fu11 group of holomorphic
automorphisms. Let f be a meromorphic function on
C and take any automorphism a E A(C). Then f o a
is a meromorphic funciton on C again. So, in this
manner, A(C) acts on the function field on C. Let
T : Ci - C2 be a maximal storngly branched covering.
Since a maximal stongly branchod subfield is unique,
A(Ci) acts on Mi leaving M2 invariant. Let N be
the subgroup of A(Ci) which leaves the functions of
M2 poitwise fixed. Let h E M2 and T E .IV. For any
a E A(Ci),

               f2o(a-ioToa)
            = {(f2oa-i)oT}oa
            = (f2oa-i)oa
            = f2 o (a-i o a)
            = f2•

  Then a-i oToa E N. So N is a normal subgroup
of A(Ci). C2 is biholomorphic to the quotient space
CilN and N is the covering transformation group of
T : Ci - C2• Naturally there is an exact sequence of
group homomorphisms :

        {1} - N . A(C,) -E!, A(Ci lN) .

So the quotient group A(Ci)IN is isomorphic to a
finite subgroup of A (Ci IN).

  Then we have the following commutative diagram
(Figure 3):

Cl

T

Definition
Cl - C2,i
transitively

Galois.

C2

    a

   a(a)

Cl

T

C2

         Figure 3.

2.3. ([Nl]) For a branched covering T :
f the covering transformation group acts
on every fiber of 7r, then T is said to be
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  Then we have the following theorem :

Theorem 2.6. If T : Ci -ÅÄ C2 is a Galots and
strongly branched covering whose covering transforma-
tion group G (c A(Ci)) is a sirnple group , then T is
a Tnaximal strongly branched covering.

branches at B. The covering transformation group of
T is isomorphic to G (Cf. [M2], [Nl], [N21). Since
s> 4d - 3,

    drr )- i(s - 1) > 2d(d - 1).

  Proof IfT: Ci - C2 is not maximal, then there
exists a maximal branched covering p : Ci . C3 and
a morphism v: C3 - C2 such that T=vop. Since pt
is maximal, there is a normal subgroup N (c A(Ci))
such that C3 is biholomorphic to the quotient space
Ci/N and N c C. It is trivial that N is a normal
subgroup not only of A(Ci) but also of G. This con-
tradicts the assumption that G is simple. q.e,d.

 So T : C - Pi((C) is a strongly branched covering.

From Theorem2.6, since G is simple, T is a maximal
strongly branched covering. So G is a normal sub-
group of A(C). Since T is Galois, the quotient space
C/G is biholomorphic to the base space Pi(C). Then
we have an injection:

           A(C)IG g A (pi(c)) .

3 Main theorem

  In [A], as an application of the theory of strongly

branched coverings, compact Riemann surfaces which
admit only the identity automorphism are con-
structed. In'this section modifying the idea of the
proof of the above result, we shall prove the following

main theorem :

Theorem 3.1. Let C be any finite simple group.
Then thene ds a compact Riemann surfaee whose au-
tofnorphism group is isomorphic to G.

  Proof. Let d be the order of G. We denote G as
{Xi,x2,••• ,xd.i,xd = e}, where e is a unit element
of G. Let s be an integer such as s> 4d - 3. Choose
a set of s points B = {Pi,...,Ps} on the complex
projective line Pi(C) such that no projective trans-

formation except the identity leaves B setwise fixed.
Since s > 5, this choice is possible. It is known that
the fundamental group of the complement of B is pre
sentated as follows(Cf. [Ml], [Nl]):

Ti (Pi(C) x B) {X< 7i,''' ,tysl7s ' 7s-i '''7i = 1 > •

  Then we define a group homomorphism Åë such as :

Åë(7J)= ( :i}, .i-,, .r(,-d) [oi i'sJj,)f<g:ll

  Åë is well-defined and is surjective . There is an exact

sequence of group homomorphisms as follows :

{1} - Ker (O) - Ti (Pi(C) x B) g G . {1}.

 Because of our choice of set of branching points B,
the quotient group A(C)IG must be isomorphic to a
unit group {1}. Then the fu11 group of holomorphic
automorphism of C, A(C), must be equal to C. The
proof is completed.
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  Corresponding to the kernel of Åë, Ker(Åë), there
exists a finite Galois covering T : C - Pi(C) which
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