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AN APPLICATION OF THEORY OF STRONGLY
BRANCHED COVERINGS

Takanori MATSUNO*

ABSTRACT

R. D. M. Accola [A] developed a theory of strongly branchecd coverings of compact Riemann surfaces
and among other applications of the theory he constructed a Riemann surface admitting only the identity
automorphism. In this short note, applying the theory of strongly branched coverings, we construct a Riemann
surface whose automorphism group is a finite simple group.
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1 Introduction

Let G be any finite simple group. The main purpose
of this short note is to give a method to construct a
compact Riemann surface whose automorphism group
is isomorphic to G. This is an application of a theory
of strongly branched coverings of compact Riemann
surfaces due to R. D. M. Accola ([A]).

Though Greenberg’s theorem is known, our method
is very simple and easy ( Cf. [G], [M-N] ).

Let 7« : C; — C3 be a holomorphic mapping of
compact Riemann surfaces of degree d,; and total ram-
ification r,. We denote by g; = g(C;) for i = 1,2 the
genus of C;. From the Riemann-Hurwitz formula, we
have ‘

291 — 2 =dy(292 — 2) + s

Definition 1.1. The mapping 7 will be called
strongly branched if

T > 2dg(dy — 1)(g2 + 1).

Notice that if d; = 2 and g = 0, and r, > 4, we
are in the hyperelliptic case.

For a non-constant meromorphic function f : C; —
P1(C), we denote by o f) the order of f. The function
field on C; will be denoted by M;. If 7 : C; — Ca is
a holomorphic mapping of compact Riemann surfaces
of degree d,, then My(C M;) will be the subfield of
index d, obtained by lifting functions from C; to C;.

Let f: C; — P1(C) be a meromorphic function on
C of order o(f). Let 7 : C; — C> be a branched cov-
ering of degree d, not necessarily strongly branched.
We denote by B(C Cs) the branch locus of 7. For a
point Q@ € C\ B, let 771(Q) = {Py,---, Py, } be the
inverse image of Q.
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Define A,(f) as follows,
A(HQ) =] (F(P) - ().

i<j

A (f) is a well-defined meromorphic function on Cs\
B and , from Riemann’s extension theorem, A, (f)
extends to a meromorphic function on Cs. The order
of Ar(f) is at most 2(d; — 1)o(f) while the number
of zeros of A.(f) is at least 7. Thus if rp > 2(d, —
1)o(f), Ax(f) = 0. From the unicity theorerm, we
have the following lemma.

Lemma 1.1. Ifr, > 2(d, —1)o(f), thenw : C; — C,
admits a factorization such that u: C; — Cs3 and v :
C3 — C3, where m = voyu and there is a meromorphit
function X : C3 — PY(C) on C3 so that f = Ao p.
(See Figurel.)

C3 e PI(C)

/ A

C
Figure 1.

Lemma 1.2. Let C; be a compact Riemann surface
of genus g1. Let f; and fa be meromorphic functions
on C; of order o, and 0z, respectively. If fi and fa
generate My = C{f1, f2), the full function field on C,
then

91 = (01— 1)(02 - 1).

Proof. Consider f; : C; — P1(C) as a branched
covering. From the Riemann-Hurwitz formula,

291 — 2= —20; + 1y,
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where, 7 is a total ramification of f;.

‘Assume 71 > 2(01 — 1)oa. Then Ay (f2) = 0. So
from Lemmal.l, there is a factorization y : C; —
Cy and v : C; — P}(C) where fi = vou . The
degree of u, d,, is strictly greater than 1 and there
is a meromorphic function A : C; — P(C) so that
fo = Aop. The index [M; : M) = d, > 1 and

My S M.
o)
e\
h Cy f2
AN\
PY(C) P!(C)

Figure 2.
From the diagram above (Figure 2}, we have :

My =C(f1,f2)
=C(vopu,Aop)
=u*C(y,A)

Cc M, g M.

This is a contradiction. So we have:
™ é 2(01 — 1)02.
Then

291 -2
N

—20; +2(01 — 1)og

<
S (o1 —1)(02-1). ged.

2 Preliminaries

In this section we recall a theory of strongly
branched coverings of compact Riemann surfaces de-
veloped by R. D. M. Accola [A] .

Applying the Riemann-Hurwitz formula to the def-
inition of strongly branched coverings, we have the
following criterions.

Lemma 2.1. If r : Ci1 — C3 is a holomorphic map-
ping of compact Riemann surfaces then the following
conditions are equivalent to w being strongly branched:

(1) g1>d3ga+(dr - 1)?,
2) dr-ra > (dr —1)(291 — 2+ 4d,).

Definition 2.1. M; will be called strongly branched
subfield of My, if 7 : C; — C3 is a strongly branched
covering.
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We need the following inequality to prove the lemma
after the next.

Lemma 2.2. Let n, m be positive integers. Then the
following inequality holds :

n*(m-1)2 +(n-1)2 < (nm—-1)>2

Proof.

(nm —1)%2 — n?(m — 1) — (n — 1)?
= —2mn+2n?m—-n?-n?4+2n
2n(n-1)(m—-1)20. gqed.

Lemma 2.3. Let 7 : C;, - Cy , p:C, — C3, v :
C3 — Cqbe coverings such that 1 = voyu. Ifrn is
strongly branched then u or v is.

Proof.
Lemma2.1,

Since w is strongly branched, from

91> d3g2 + (dr — 1)%.

Assume that neither p nor v is strongly branched.
Then from Lemma2.1,

{91 S d2gs + (d, —1)?
gs Sdigy+(d, — 1)

Eliminating g3, we have:

o Sd{de+(d —1%}+d, - 1)
=did2gy + d2(dy — 1) + (d, — 1)2.

From Lemma2.2,

g1 Sdid2g; + (dud, —1)?
x92 + (d'lr - 1)2

This is a contradiction. gq.e.d.

Definition 2.2. A strongly branched subfield M3 will
be called a maximal strongly branched subfield of M,
if whenever My C M3 C M; and M, # M3 then Mj is
not a strongly branched subfield. The corresponding
definition will also holds for coverings.

Lemma 2.4. Let 7 : C; — Cy , be a mazimal strongly
branched covering of degree d,. Suppose f; : C; —
PY(C) is a meromorphic function on C; such that
2(dr — 1)o(f1) < 7r. Then there is a meromorphic
Sfunction fa on Cs so that f1 = faom(i.e.fi € Mp).

Proof. Because of the condition 2(d; — 1)o(f;) <
Tx, from Lemmal.l, there exists a factorization u :
C,—C3,v:Cy — Cs wherem =voyu,
and the degree of pu, d,, is stirictly greater than 1,
and there is a meromorphic function f3 on C3 so that
fi = fsopu. Choose v: Cy; — Cj as d, is minimum.
Here we assume d, > 1. Since = is maximal, p is
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not strongly branched. From Lemma, v is strongly
branched. So we have :

u S 2du(dy — 1)(gs +1)

and
Ty > 2d,(dy — 1){g2 +1).

From the Riemann-Hurwitz formula
9g3—-2=dy(292-2)+ 1,

and direct calculation shows that
dy-d,(d, -1
Iy < .#_d';__#l__) .

It is easy to see that rr = 7, +d, - 7, from the
Riemann-Hurwitz formula. Then we have:

r” < .d—d(g_l_._) l/ + dﬂ' /ry
d d (dy ——1)+(d -1)-d,
1 v
_ du(dr—1) 1)
Td, -1 Tv:
So it follows that:
2(dy, —1)-0(f3) = 2(dVT—1')‘ -o(f1)
B Ady—1)  rx
d, 2(d,, -1)
dy
du(dx —1)

<Ty.

Then there must exist a factorization of v and this
contradicts the minimality of d,. Sod, =1 and v :
C3 — C3 is a biholomorphic mappinng. Put f, =
faov~1:Cy = PY(C). Then

=(fzovHo(vou)
~fro(wtov)ou
=faopu

=fi-

So f2 is a required function.

from

g.e.d.

Lemma 2.5. If a marimal strongly branched subfield
of M, exists, then it is unique.

Proof. Suppose that there exist two maximal
storngly branched coverings p : C; — C; and v :
C1 — C3. We denote by d, and by d, the degree of u
and of v, respectively. We may assume that

du(gz +1) 2 du(gs +1).
Let f1 and f, be meromorphic functtions on C3 of

order o(f;) and o(f,), respectively and generate the
full function field of Cj.
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From Lemmal.2, both o(f1) and o(f2) are no
greater than g3 + 1. Then the order of f; o v is no
greater than d,(gs + 1). So, by the assumption, the
order of fi o v is no greater than d,(g2 + 1). From
Lemma2.4, f; ov € M;. By the same argument,
foov € Mj also holds. Because f; ov and foov
generate Ms, it follows that M3 C M, C M;. Since
M3 is maximal, we have M3 = M2, gq.e.d.

We denote by A(C) the full group of holomorphic
automorphisms. Let f be a meromorphic function on
C and take any automorphism o € A(C). Then foo
is a meromorphic funciton on C again. So, in this
manner, A(C) acts on the function field on C. Let
7 : C; — C3 be a maximal storngly branched covering.
Since a maximal stongly branched subfield is unique,
A(C)) acts on M, leaving M, invariant. Let N be
the subgroup of A(C;) which leaves the functions of
M, poitwise fixed. Let f; € M; and 7 € N. For any
o€ A(Cl)’

fao(e oT00)
{(faooHor}oo
(fzoa_l)oa
fao(o7loo)

f2.

Then 0! o700 € N. So N is a normal subgroup
of A(C4). C; is biholomorphic to the quotient space
C1/N and N is the covering transformation group of
7 : C; — C3. Naturally there is an exact sequence of
group homomorphisms :

{1} » N > A(C1) S A(Cy/N).

So the quotient group A(C;)/N is isomorphic to a
finite subgroup of A(C;/N).

Then we have the following commutative diagram
(Figure 3):

Cl Cl
™ T
alo)

C; Cy

Figure 3.

Definition 2.3. ([N1]) For a branched covering = :
C, — Cjy, if the covering transformation group acts
transitively on every fiber of , then 7 is said to be
Galois.
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Then we have the following theorem :

Theorem 2.6. If 7 : C; — C3 is a Galois and
strongly branched covering whose covering transforma-
tion group G (C A(C1)) is a simple group , then 7 is
a mazimal strongly branched covering.

Proof. If w:Cy — C; is not maximal, then there
exists a maximal branched covering u : C; — C3 and
a morphism v : C3 — C3 such that # = v o pu. Since p
is maximal, there is a normal subgroup N (C A(C}))
such that Cj is biholomorphic to the quotient space
Ci/N and N C G. 1t is trivial that N is a normal
subgroup not only of A(C}) but also of G. This con-
tradicts the assumption that G is simple. g¢.e.d.

3 Main theorem

In [A], as an application of the theory of strongly
branched coverings, compact Riemann surfaces which
admit only the identity automorphism are con-
structed. In this section modifying the idea of the
proof of the above result, we shall prove the following
main theorem :

Theorem 3.1. Let G be any finite simple group.
Then there is a compact Riemann surface whose au-
tomorphism group is isomorphic to G.

Proof. Let d be the order of G. We denote G as
{z1,z2, -+ ,Z4-1,24 = e}, where e is a unit element
of G. Let s be an integer such as s > 4d — 3. Choose
a set of s points B = {Py,...,P;} on the complex
projective line P}(C) such that no projective trans-
formation except the identity leaves B setwise fixed.
Since s > 5, this choice is possible. It is known that
the fundamental group of the complement of B is pre-
sentated as follows ( Cf. [M1], [N1]) :

m (PHC)NB) < vy, -+, Ysl¥s - Vs1-- M =1>.

Then we define a group homomorphism & such as :

zj (1<j<d-1)
®(y) =4 T J (d<j<s-1)
gt ezl 2t (=),

® is well-defined and is surjective . There is an exact
sequence of group homomorphisms as follows :

{1} —» Ker (®) —» m (PY(C)~ B) 2 G — {1}.

Corresponding to the kernel of ®, Ker(®), there
exists a finite Galois covering 7 : C — P(C) which
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branches at B. The covering transformation group of
7 is isomorphic to G (Cf. [M2], [N1}, [N2]). Since
s>4d -3,

Tw 2 %(s —1) > 2d(d - 1).

So m: C — PY(C) is a strongly branched covering.
From Theorem2.6, since G is simple, 7 is a maximal
strongly branched covering. So G is a normal sub-
group of A(C). Since 7 is Galois, the quotient space
C/G is biholomorphic to the base space P}(C). Then
we have an injection:

A(C)/G = A(P(C)).

Because of our choice of set of branching points B,
the quotient group A(C)/G must be isomorphic to a
unit group {1}. Then the full group of holomorphic
automorphism of C, A(C), must be equal to G. The
proof is completed.
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