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ABSTRACT

A geochemical and thermochronological study designed for the
elucidation of the burial and exhumation history of an extensive pull-
apart basin was conducted on the East Eurasian longstanding convergent
margin. The trace element compositions of apatite yields from volcanic
ashes intercalated in a marine siliciclastic alternating beds of the Izumi
Group, which buried a late Cretaceous tectonic basin in southwestern
Japan, were determined in this study. It was shown that acidic ashes with
a similar appearance can be successfully discriminated using binary plots
of selected elements, and a firm basis to compare thermal histories
independently reconstructed for selected horizons was established.
Apatite fission track (FT) analysis was executed for the same ash samples
from two sites, and their anomalous track length distributions were found
to be suggestive of tracks having annealed under thermo-tectonic events
after initial cooling. In combination with zircon FT ages obtained from
five volcanic layers of the host sedimentary sequence, a numerical model
for the FT annealing processes indicates the occurrence of two post-
depositional cooling (uplift) periods beginning 8§1-36 Ma (Campanian to
Eocene) and 38-18 Ma (late Eocene to early Miocene). The former
probably reflects regional contraction episodes exemplified by the K/T
gap, whereas the latter is synchronous with the initiation of back arc
rifting around the area of the present-day Japan Sea, which inevitably
provoked a prevailing uplift.

1. INTRODUCTION

The evolutionary process of convergent margins is an important study
theme for geologists because it is key to understanding the dynamics of the
material recycling system of the Earth. The East Asian margin is a typical
site of tectonic events, such as arc migration, amalgamation, and collision,
related to the longstanding subduction of oceanic plates. Itoh and
Takashima (2017) recently executed a well-organized paleomagnetic
investigation on this margin and found that the present-day island arcs
around the northwestern Pacific are a mixture of allochthonous and
autochthonous blocks that experienced massive reshuffle under the
influence of complex plate motion. Based on their quantitative estimate of
the translation history of crustal blocks, Itoh et al. (2017a) presented a
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comprehensive plate reconstruction model representing the most probable
configuration of the region since 100 Ma. Although this model
successfully solves the paradox of the coexistence of multifaceted
geodynamic regimes by theorizing the existence of a lost marginal sea
plate that transported allochthonous terranes, many ambiguous points
remain regarding the timeline of epoch-making events because of
insufficient chronological data.

This paper addresses one of the significant unsolved problems of this
model: the burial and exhumation history of the Cretaceous sedimentary
basins along the East Asian margin, where lateral movements on a
longstanding trench-parallel crustal break called the Median Tectonic Line
(MTL) forced the generation of an adjoining pull-apart basin. The
enormous narrow tectonic depression was buried by marine sediments of
the Izumi Group, the depocenter migration of which represents the
propagation of the termination of the MTL. Itoh et al. (2017b) applied
fission track (FT) thermochronological analysis to turbidite sandstones of
the sedimentary unit. They found that the annealing of apatite FT recorded
three stages of intermittent cooling (uplift) events from the Cenomanian to
late Miocene. Thus, the FT thermochronology of thermally sensitive
apatite is a good tool to describe the process of basin evolution.

During the late Cretaceous, the northern and southern portions of the
East Asian margin were buried by thick piles of marine sediments called
the Yezo and Izumi Groups, respectively. The paleogeographic features of
the Yezo sedimentary basin are difficult to interpret. For example, some
paleomagnetic data obtained from the Yezo Group in Hokkaido (northern
Japan) are indicative of post-Cretaceous large northward migration
(Tamaki et al., 2008), whereas paleolatitudes of other areas show an
affinity to the synchronous Russian data (Tamaki and Itoh, 2008). Because
the pull-apart sag filled by the Izumi Group was pinned at the present
latitude on the basis of a reliable paleoreconstruction of the Far East (Itoh
et al., 2006), the whereabouts of the contemporaneous basins are key to
refining the plate reconstruction model. However, a lack of fossils that can
be efficiently used for interbasinal correlation has hindered the deciphering
of the regional tectonic history recorded in those sequences.
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In the present study, apatite grains separated from volcanic ash layers
intercalated in the Izumi Group were investigated with the aim of precise
stratigraphic correlation. Apatite is commonly found in intermediate to
felsic igneous rocks and is characterized by considerable variation in its
trace element composition, a characteristic that has often been used to
evaluate petrogenetic processes (e.g., Piccoli and Candela, 2002; Chu et
al., 2009). The accessory mineral is also noteworthy for its strong
resistance to alteration and weathering (Takashima et al., 2017), which is
ideal for use in establishing a chronological framework for deeply buried
and exhumed pyroclastic rocks. By exploiting the physicochemical
properties of apatite, the authors present a likely interpretation of
evolutionary process of the Izumi Basin on the northwestern Pacific
convergent margin.

Figure 1. Sampling location index. The geologic map is adapted from the Geological
Survey of Japan (2012).

2. GEOLOGICAL BACKGROUND

As summarized by Noda and Toshimitsu (2009), the subaqueous
deposits of the Izumi Group are classified into peripheral and axial facies,
which are composed of thick mudstones accompanied by basal
conglomerates and alternating beds of turbiditic sandstone and mudstone,
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respectively. They are considered to have deposited as deltas and
submarine fans. The depositional age of the unit around the area of the
present study (western part of Shikoku Island) ranges from early to middle
Campanian (Miyazaki et al., 2016). The Izumi Group fills a 10-20-km-
wide pull-apart basin on the MTL extending along the northern coast of
Shikoku Island (Figure 1). Outcrop volcanic ash samples of the Izumi
Group were obtained from seven sites (Figure 1). These samples are
laminated light-colored fine ashes intercalated in alternating beds of
sandstone and mudstone. The unit is folded with northeastward-plunging
axes, and its age generally decreases toward the east.

3. ANALYTICAL METHODS

As a common pretreatment for the thermo- and tephrochronological
analyses, dried hand samples were crushed in a jaw crusher. The ground
samples were rinsed to remove dust and processed by conventional mineral
separation techniques, namely heavy liquid (e.g., liquid sodium
polytungstate) and magnetic separation. Zircon grains were found in five
sites (160701-1, 160701-2, 161011-1, 161011-2, and 161011-4) and were
used for the FT dating. Apatites were obtained from the heavy fraction of
two sites (160701-1 and 160701-2) and assessed using FT analysis for age
determination and track length measurements, and electron microprobe
analysis.

3.1. Fission Track Analysis

The acquired apatite grains were mounted in thermoplastic epoxy
sheets set on heated glass slides. The samples were polished to reveal the
internal surfaces of the crystals and then etched for 20 s in 5 M HNO; at
room temperature (20°C) to allow the visualization of spontaneous FTs.
Zircon grains were embedded in Teflon fluorinated ethylene propylene
(FEP) sheets between heated microscope slides on a hot plate, polished to
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expose the crystalline internal surfaces, and etched in a molten KOH-
NaOH eutectic etchant at approximately 220°C for an appropriate time
(10-100 h) to reveal properly etched FTs.

After the etching, all mounts were cut square to 1.5 cm X 1.0 cm, and
soaked successively in detergent, alcohol, and distilled water to clean
them. They were then tightly sealed in contact with low-uranium detectors
made of muscovite wrapped in a heat-shrinking membrane. Each batch of
mounted samples was stacked between two pieces of uranium standard
glass prepared in a similar fashion. The batches were then settled in an
aluminum can for neutron irradiation. The muscovite detectors were peeled
away from the mounted grains and standard glasses after irradiation and
then etched in hydrofluoric acid to allow the visualization of the induced
tracks produced by the nuclear fission of #**U, which is inherently present
in the apatite/zircon and standard glass.

The FT ages were calculated based on the standard equation using the
zeta calibration method (see Eq. 5 of Hurford and Green, 1983). In this
study, the external detector method (EDM; Gleadow, 1981) was used for
age determination; this method can be used to determine FT ages for single
grains. In the case of apatite, tracks were counted in 20 grains for each
mount. If 20 grains could not be obtained from a mount, all available
grains were used. The number of grains used for counting depended upon
the availability of suitably etched and oriented grains. Only grains that
were oriented with surfaces parallel to the crystallographic c-axis were
analyzed. Such grains were found based on the etching characteristics
together with morphological evidence for euhedral grains. The grain mount
was then sequentially scrutinized, and the first 20 suitably oriented objects
encountered were treated as described by the following procedure.

Tracks falling within an eyepiece graticule divided into 100 grid
squares were counted. The number N, of spontaneous tracks within a
certain number N, of grid squares was recorded for each grain. Next, the
number N; of induced tracks within the corresponding locations of the
muscovite external detector was recorded. The densities p, and p; of
spontaneous and induced tracks were calculated by dividing the track
counts by the total area counted, which is the product of N, and the area of
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each grid square. The FT ages were eventually determined by substituting
the track counts N, and ; for the track densities p, and p;.

Neutron irradiation was carried out in a well-thermalized flux (X-7
facility; ratio of Cd to Au of approximately 98) in the High Flux Australian
Reactor (HIFAR) of the Australian Atomic Energy Commission. The total
neutron fluence was evaluated based on the number of tracks counted in
mica external detectors attached to two pieces of Corning Glass Works
standard glass CN5 (containing approximately 11 ppm U) in the irradiation
canister at each end of the sample stack. Twenty-five fields were usually
counted in each detector to determine the track densities within the
external detectors irradiated adjacent to the uranium standard glasses. The
track density pp was determined by dividing the total track count Np by the
total area counted. The counted fields were arranged in a 5 x 5 grid that
spanned the entire area of the detector. In the irradiation facility, a small
flux gradient was occasionally observed over the length of the sample
package. If a detectable gradient was present, the track count in the
external detector adjacent to each standard glass was converted to a track
density pp, and a value for each mount in the stack was deduced through
linear interpolation. When no gradient was detected, the track counts from
the two external detectors were pooled to give a single value of pp, which
was then used to calculate the FT age for each sample.

The FT dating of apatites from deeply buried rocks revealed that the
technique is extremely thermally sensitive, suggesting that FT ages may be
reset at relatively low temperatures around 100°C over geological
timescales (Wagner and Reimer, 1972). The integration of FT ages with
confined track length measurements (Bhandari et al., 1971) has provided a
deeper understanding of the analytical method. Early studies have shown
that even in volcanic rocks that have experienced only moderate
temperatures after initial post-eruption cooling, the mean lengths of
confined tracks (approximately 14—15 um) were less than those of induced
tracks (approximately 16 pum) within the same apatites. Green (1980)
presented a justification for this in terms of the thermal annealing of these
tracks at low temperatures (<50°C) over prolonged geological timescales.
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Confined FTs are used for track length studies in apatite. They are
defined as tracks that do not intersect the polished internal surface of
crystals but have been affected by etchant that has infiltrated the crystals
via other tracks or fractures. In this way, the entire length of each track is
securely etched. They are then measured using a digitizing tablet
connected to a computer and superimposed on the field of view of a
microscope via a projection tube. This system enables individual tracks to
be measured with a precision of +0.2 pm. Because of the anisotropic
annealing efficiency of FTs in apatite, tracks were measured only in
prismatic grains, which show sharp polishing scratches with well-etched
tracks having omnidirectional narrow cone angles. According to a
recommendation by Laslett et al. (1982), only horizontal tracks were
measured. When possible, 100 tracks were measured per sample. For
samples with a low track density and/or those in which only a limited
number of apatites are obtained, it was often the case that fewer than 100
confined tracks were available. In such cases, the entire mount was
scanned to detect as many confined tracks as possible.

To make realistic predictions of apatite FT parameters within geologic
time scales, it is key to convert the isothermal annealing models to variable
temperature models based on the natural settings (Duddy et al., 1988). The
principle of equivalent time states that the annealing rate of an FT at any
given time depends only on the length to which the track has already been
reduced and the prevailing temperature, and not on the history of how the
track reached the present length. On this basis, Green et al. (1989)
developed methods for the quantitative modeling of the response of apatite
FTs under various types of thermal history. Another crucial finding is that
the chlorine content has a systematic influence on the annealing rate (e.g.,
Green et al., 1986). In practice, variation in the FT age and track length
with the Cl weight content allows the identification of any anomalous
grains that represent exceptional annealing properties (e.g., Crowhurst et
al., 2002). Such anomalies can be eliminated from the dataset prior to the
extraction of thermal history solutions.
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3.2. Electron Microprobe Analysis

Apatites manually selected under a binocular microscope were
mounted on small acrylate resin plates with nonsticky epoxy adhesive and
then carefully polished. Because the X-ray intensity of chlorine has
considerable levels of crystalline anisotropy during the microprobe
analysis of apatite (Stormer et al., 1993), all the apatite grains were
oriented parallel to the c-axis.

Twenty apatite phenocrysts from each site were analyzed in terms of
their major and minor elements at the Institute for Materials Research,
Tohoku University, using a JEOL 8530F wavelength dispersive electron
probe microanalyzer. The analytical procedure by Gross et al. (2013) was
applied with an acceleration voltage of 15 kV and a 20-nA beam current.
All analysis was executed using a defocused electron beam of 10 um in
size, and the peak and background counting times per element were set to
30 and 15 s, respectively. Wavelength dispersive spectrometer calibrations
for CI, Ca, F, Mn, Y, Mg, Ce, and P were based on the JEOL standards for
the determination of NaCl, CaF», MnTiOs, ZrYO,, MgSiOs, and CePsO4,
respectively.

4. RESULTS

4.1. Thermal History Deduced from Fission Track Data

As mentioned above, apatite and zircon grains were obtained from two
and five sites, respectively. Detailed information on the dating results is
given in Tables 1-7. Regarding the thermochronological analysis of
apatites from two sites, summaries of the track length measurements and a
comparison of the basic analytical parameters of the two samples are
presented in Tables 8 and 9, respectively.
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The apatite FT analytical data for the two samples collectively define
three episodes of cooling from elevated paleotemperatures that began in
the following intervals: 117-71 Ma (Aptian to early Maastrichtian), 81-36
Ma (Campanian to Eocene) and 38—18 Ma (late Eocene to early Miocene).
Additionally, Sp. 160701-2 contains a distinct population of apatite grains
yielding older measured FT ages; these define two further cooling episodes
that began in the following intervals: 193—-108 Ma (early Jurassic to
Albian) and 37-0 Ma (late Eocene to recent). The basic results for apatites
separated from Sps. 160701-1 and 160701-2 are graphically depicted in
Figures 2 and 3, respectively. On the other hand, the central age of the
zircon FTs and its 20 error suggest that they were cooled below
approximately 300°C between 78 and 64 Ma, which overlaps with the
Campanian depositional age range (83.6-72.1 Ma) for the sampled
horizons, implying a rapidly cooled provenance contemporaneous with
deposition. The tectonic context of these analytical results is fully
discussed in the following section.

Al B: Fraction
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= 139 075
+2
0—«%:" 050
2| o
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= 00 05 10 15 20 25 3.0
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A 5 N
C:  Fission track age (Ma) D: ®
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0 L ) 1
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Sp. 160701-1

Mean track length 12.88 £ 0.23 pm Std. Dev, 2.36 um 107 tracks

Figure 2. Fission track age data for Sp. 160701-1. A: Radial plot of single grain ages.
B: Distribution of Cl content in apatite grains. C: Single-grain age versus CI weight
fraction for individual apatite grains. D: Distribution of confined track lengths.
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Figure 3. Fission track age data for Sp. 160701-2. A: Radial plot of single grain ages.
B: Distribution of Cl content in apatite grains. C: Single-grain age versus Cl weight
fraction for individual apatite grains. D: Distribution of confined track lengths.

4.2. Discrimination of Ashes Based on Apatite Trace Elements

The crystal structure of apatite is highly tolerant of structural distortion
and chemical substitutions, and its trace element composition varies a great
deal, reflecting the nature of the magma in which it crystallizes. Thus, the
accessory mineral may be utilized to discriminate among different ashes,
as much as volcanic glasses are compared based on their chemical
compositions. Figure 4 shows binary plots of Cl vs. Mg, Mn vs. Fe, and Ce
vs. Y for apatites from the Izumi Group. The present results strongly
suggest that these simple plots are sufficient to discriminate among
different volcanic ashes.

40PN 0| %0101
X W72 - X160 3 » x ¥70*- )

Mg twt %) o Foim%) | v ¥ (wi%)

m » ) M 0
Clwt%) Mn (w1.%) Ce (wt.%)

Figure 4. Binary plots of Cl vs. Mg, Mn vs. Fe, and Ce vs. Y for apatites separated
from two types of volcanic ash intercalated in the Izumi Group.
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5. DISCUSSION

The results of the present tephrochronological study indicate that two
ashes from which affluent apatite grains were obtained originated from
different host magmas. Therefore, the FT analysis results for these apatites
represent independent thermal histories. Figures 5 and 6 show the burial
and exhumation processes reconstructed for apatites separated from Sps.
160701-1 and 160701-2, respectively. To obtain these graphical
representations, simulations were conducted using an in-house numerical
Geotrack model for the analytical system, and a range of conditions was
defined to provide predictions consistent with the actual data with a 95%
confidence interval, as depicted by Green and Duddy (2010). The present
analysis results indicate that the evidence of higher temperatures in the past
was not obtained from the FT age but instead from the track length
distribution (see Tables 8 and 9, and Figures 2 and 3), which means that
heating associated with basin subsidence and burial was not sufficiently
severe to reduce the FT age below the depositional age.

The high-quality apatite FT data (21 grain ages and 107 track lengths)
of Sp. 160701-1 point to an interpretation that can be regarded as highly
reliable. Though the single-grain FT ages in Sp. 160701-2 appear to follow
a unimodal distribution, a detailed inspection of the data revealed that the
sample consists of grains from two distinct sources. Namely, three apatite
grains containing between 0.0 and 0.1 wt% Cl and with notably higher
uranium contents than most of the grains define a pooled age of 105 + 11
Ma, whereas the majority, containing between 0.1 and 0.3 wt% CI, defines
a pooled age of 70 = 8 Ma, which is significantly younger. The low-Cl
grains, as well as one grain that contains a much higher CI content (0.93
wt%), are therefore interpreted to represent a distinct population of apatites
likely derived from a basement terrane, whereas those grains containing
between 0.1 and 0.3 wt% CIl are likely to represent the primary volcanic
provenance. In combination, the data obtained from the four grains with
anomalous Cl concentrations define a single population with a pooled FT
age of 116 £+ 13 Ma and a mean track length of 12.0 £ 0.4 um (based on 15
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track length measurements). These two populations were treated separately
during the advanced interpretation of the present results.

0 Cretaceous | Pal. | Eocene | Oligo. | Miocene |PIi.
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1 L 1
100 80 60 40 20 0
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Figure 5. Thermal history interpretation of apatite FT analytical data for Sp. 160701-1.
Hatched polygons represent the 95% confidence limits of the time—temperature
estimates of significant events.
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Figure 6. Thermal history interpretation of apatite FT analytical data for Sp. 160701-2.
Hatched polygons represent the 95% confidence limits of the time—temperature
estimates of significant events.
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Figure 7 illustrates the integrated thermal history reconstruction for the
volcanic ash samples based on the apatite and zircon FT analytical data
presented above. The zircon analysis and most aspects of the apatite
analysis in the five samples are highly consistent with a common thermal
history interpretation. The zircon data indicate cooling from above 300°C
around the interval 78-64 Ma, suggesting the origin of the accessory
mineral from contemporaneous volcanism. All of the apatite data from Sp.
160701-1 and most such data from Sp. 160701-2 define cooling from
above 115°C in the interval 11771 Ma, which overlaps with both the time
of cooling obtained from the zircon data and the depositional age of the
host sediments. It was also interpreted in terms of the derivation of the
apatites from contemporaneous volcanic activity excluding a minor group
derived from an older provenance (not presented in Figure 7). With the
older group omitted, the timing constraints obtained by the apatite and
zircon analyses overlap in the range of 78-71 Ma, which provides an
excellent match to the Campanian depositional age (83.6-72.1 Ma)
assigned to the Izumi Group. Thus, the data support a contemporaneous
volcanic origin for the majority of analyzed apatites and zircons from these
samples.

The apatite FT data indicate two post-depositional episodes: 81-36 and
38-18 Ma. These are interpreted periods of heating due to a greater depth
of burial and cooling due to exhumation (uplift and erosion), respectively.
The older episode from the Campanian to the Eocene may be related with a
regional unconformity around the K/T gap (e.g., Ando, 2003), whereas the
younger one from the late Eocene to the early Miocene is synchronous
with the backarc rifting event of the Japan Sea, which inevitably provoked
a prevailing uplift (e.g., Itoh et al., 2006). It is noteworthy that an extensive
inversion occurred around the late Miocene, which was identified in an
earlier FT thermochronological study of the easternmost portion of the
Izumi Group (Itoh et al., 2017b). Although the regional contraction event is
probably linked to the resumed subduction of the Philippine Sea Plate, the
spatiotemporal diversity of compressive stress around the southwestern
Japan arc has been detected in previous studies (Itoh et al., 2014; Itoh,
2015). The paleothermal reconstruction of the present study may reflect the
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delayed prevalence of the latest compressive regime around the western
part of southwest Japan.

0 Cretaceous | Pal. |  Eocene | Oug. | Miocene F
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40 Combined apatite and
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Apatite FT data define
cooling from > 115°C
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Figure 7. Integrated thermal history reconstruction of apatite and zircon data for five
outcrop volcanic ash layers of the [zumi Group in southwestern Japan. In the apatite
analysis, thermal events were interpreted not from the FT ages but from the track
length distribution. In the zircon analysis, the cooling interval (78—64 Ma) was
obtained from the 2 o uncertainty of the weighted mean age.

CONCLUSION

A well-organized tephro-/thermochronological investigation of a
Cretaceous event sedimentary sequence adjacent to an arc-bisecting fault
on the East Asian convergent margin was conducted. The main points of
this study are summarized as follows.

1) Excellent yields of apatite and zircon were obtained from two
volcanic ash samples of the Izumi Group along the MTL fault
system, resulting in high-quality analytical data; thus, the
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2)

3)

4)

5)

6)

interpretations made in this study are regarded as highly reliable.
Zircon grains were also extracted from three other auxiliary ashes
and used to obtain FT dating results.

On the basis of binary plots of the trace elements (Cl vs. Mg, Mn
vs. Fe, Ce vs. Y) in the apatites, it was concluded that the two
ashes intercalated in the Izumi Group originated from different
host magmas, which suggests that the apatite FT analysis results of
the two samples represent independent thermal histories.

A detailed inspection of the chlorine content of apatite grains in an
ash sample revealed that they were derived from two distinct
sources. The minor group with greater FT ages, which likely has a
basement terrane provenance, showed two cooling episodes that
began in the following intervals: 193—-108 Ma (early Jurassic to
Albian) and 37-0 Ma (late Eocene to recent).

The apatite FT analysis of the major group from the two samples
indicated three episodes of cooling from elevated
paleotemperatures. The cooling was found to begin in the
following intervals.

117-71 Ma: Aptian to early Maastrichtian, from greater than
115°C

81-36 Ma: Campanian to Eocene, from approximately 100°C
38-18 Ma: late Eocene to early Miocene, from approximately
70°C

Zircon FT data from five sites suggest that the grains were cooled
below approximately 300°C between 78 and 64 Ma, which
overlaps the Campanian depositional age range for the sampled
horizons, implying a rapidly cooled provenance contemporaneous
with deposition.

In summary, two volcanic ash samples were analyzed and found to
show a record of two post-depositional episodes: 81-36 and 3818
Ma. The older episode from the Campanian to the Eocene may be
related to a regional unconformity around the K/T gap, whereas the
younger one from the late Eocene to the early Miocene is
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synchronous with the backarc rifting of the Japan Sea, which
provoked a prevailing uplift.
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