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     The correlation dimension, which is one of the fractal dimensions, in coupled
   chaotic systems cannot be calculated with Takens' phase space in some situa-
   tions. In this paper we investigate the correlation and the Lyapunov dimensions
    of coupled R6ssler systems and coupled R6ssler-Lorenz systems in various situa-
    tions, and clear that the situations depend on the degree of unsymmetry and the
    coupling strength in coupled chaotic systems.

                              1. Introduction

                                                      '
  Chaotic phenomena had been studied with academic interest since the beginning of

1980. Most studies were achieved to understand roots to chaos or characterize ehaotic

attractors (e.g., fractal dimensions, Lyapunow exponents, entropy, and so on) in the

only one nonlinear systemi"a).

  Chaotic motions in nature, however, are influeneed by other chaotic systems. Re-

cently, Kaneko proposed a chaotic system which consists of sub-chaotic systems cou-

pled each other for the purpose of understanding turbulence in fluid9). The chaotic sys-

tem is called Campled Map Lattice (CML), and now it is used to investigate the hy-

per chaos. Very recently Pecora and Carroll reported on the synchronization of a cou-

pled chaotic system. The system consisted of the two subsystems. The behavior of

the second subsystem was dependent on the first, but the first was not dependent on

the secondiO-i3). Endo and Chua suggested that the synchronization of the chaotic phase-

locked loops was able to be used for secure communicationsi`･'5).

  However, the measure of chaotic attraetors in coupled chaotic systems has not been

established. Lorenz has shown that if we ealculate the correlation dirnension with the

Taken's phase space, we may get erroneous results'6). He proposed a set of seven weak

coupled identical systems, and estimated the correlation dimension from one time se-

ries data. Moreover he calculated the Lyapunov dimension (i.e., the Kaplan-Yorke

dimension) using the equations of the whole system. The correlation dimension had

to be close to the Lyapunov dimension, but they were significant difference. The cor-

relation dimension estimated from combined several time series data was close to the
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Lyapunov dimension. He argued that this difference was due to the weak coupling

among the subsystems. On the contrary, Stewart pointed out that this difference was

due to the symmetry in the systemi7). Landa and Rosenblum argued that Stewart's

opinion is not true since the set proposed by Lorenz is not completely symmetric sys-

tem'8). They calculated the difference on weak coupled two identical systems and cou-

pled two different systems, and showed that the use of combined several time series

data is effective in coupled different systems, but not effective in weak coupled identi-

cal systems.

  We think that these erroneous results are due to not only the weak coupling but

also the degree of the unsymmetry in the whole system. In this paper we discuss the

mechanism of these erroneous results with the coupling strength and the degree of the

unsymmetrY.

2. Coupled Chaotic Systems

 The coupled ROssler systems are shown in Fig.1. The equations can

follows:

   xl ==-dl . 21-yl+h . x2

   yl=xl+a . yl
   21=b+zl . (xl-c)

   X2=-ch . 22-or2+h . xl

   y2 == x2+a ' y2

   22=b+22 . (x2-c)

be described as

(1)
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Fig. 1 Coupled R6ssler systems.
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  where a, b, c are fixed as a=O.15, b==O.2, c==10.0. h is the coupling coefficient and

di, d2 are parameters for each subsystem. If di=:d2, the first subsystem (R6ssler sys-

tem1) is equal to the second (R6ssler systern2) and the whole system is symmetry.

When di is not equal to d2, the whole system is unsymmetry. We think that one of

the causes of the erroneous results is due to the degree of the unsymmetry in the

whole system. Unsymmetry parameter a, which is equivalent to the defference be-

tween the first and second subsystems, is introduced as follows.

         d,-d2
                                                                         (2)    cr =         d,+d2

We think that the erroneous results must be influenced by the synchronization effect

in coupled chaotic systems. To quantify the synchronization effect, we introduce the

value dis which is obtained by averaging 1xi(t)-x2(t)1for a long time.

    dis==linz 1 i{ilsci(iAt)+x2(iAt)I (3)
       Nd-coNd i==1

where eqi(iAt) is the variable of subsystem i at timeixAt(At:time step). If dis is

close to O, the coupled chaotic systems synchronize (we use NLi=100). In order to

make clear the causes of the erroneous results, we investigate the relations among the

degree of the unsymmetry, coupling strength of the whole system and the erroneous re-

sults.

  Furthermore, we examine coupled R6ssler-Lorenz systems shown in Fig.2,
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 Coupled R6ssler-Lorenz systems.
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   .   x== -d.2-y+h.X
   .   y=x+a.y
   2=b+2 . (x-c)

   X={-e' (x- y)}/n+h･x (4)
    .   Y={f . X- Y-X. Y}/n
   .   Z={X.Y'g.Z}ln

where (a, b, c, d, e, f, g) are fixed as (O.15, O.2, 10.0, 1.0, 10.0, 28.0, 813), and k is

the coupling coefficient. In order to make the R6ssler and Lorenz systems have al-

most the same oscillations, the pararneter n is introduced (n=:10.0).

  In this paper the fractal dimensions (the correlation and the Lyapunov dimensions)

in the coupled Rbssler systems and the coupled Rbssler-Lorenz systems are examined

to clear the mechanism of the erroneous results.

                           3. Fractal Dimensions

  This section deals with the two procedures for estimation of fractal dimensions.

One of them is the Lyapunov dimension and another is the correlation dimension with

Takens' phase space.

  The Lyapunov exponents (Ri, R2, ''', Zn) are obtained using the Shimada and

Nagashima method'9). The Lyapunov dimension DL can be calculated with several ex-

ponents as follows3･').

           z/r..,, R ,
   DL =J'+                                                                     (5)
           l R,.,l

where following conditions are satisfied.

    i J'+1
   i=1           i=1

  The Lyapunov dimension is the only measure to accurately quantify high dimension-

al chaos.

  The correlation dimension with the Takens' phase space proposed by Grassberger and

Procaccia is very powerful tool to quantify chaotic rnotion in the unknown systemM･ut).

We consider a time series x(t) sampled at times (t+iAt), i integer, and build a vec-

torial temporal sequence X(iAt)=X(i)ERP. The components of vector X(i) are (x(i),

x(i-T), ･･', x(im(p-1)r)), in which a discrete tirne i is meant for a time iAt. i

and T are the discrete time and the discrete time delay, respectively. We define a lo-

cal correlation Ci( e) at point X(i) by the relation
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           IN   Q( e)= ZH( e- IX( i)-X(j) 1) (7)           N i--1

in which N is the size of the temporal sequence. Spatially averaging local correlation

moments, m central vectors are chosen at random.

           1 rn

           M i=1

The correlation dimension Dcor can be estimated by calculating the slope.

            Iog C( e)
                                                                         (9)   Dcor==lim
             log e        e.O

In practice, size AI of the temporal sequence and nurnber m of central vectors are fi-

nite preventing the reaching of the limit 6.0 in Eq.(9). This scaling relation is

only observed in a finite domain(errim, Emax) as shown in Fig.3. In theory, correlation

dimension Dcor must be close to the Lyapunov dimension DL in all situations. In the

numerical experiment in some situations (coupied chaotic systems), however, this

equivalent relation is not satisfiedi6-'8).
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  (coupled R6ssler systems h=O.2, cr=O.1).



                        Keiji KONISHI, Yoshiaki SHIRAO,
32
             Hiroaki KAWABATA, Yoshio INAGAKI and Yoji TAKEDA

                             4. Numerical Results

  The fourth-order Runge-Kutta procedure with a time step O.05 units is used in all

numerical integration. For the correlation dimension with the Taken's phase space, a

step of time series data At, a time lag T, the size of the time series data N, central

vectors nz and the embedding dimension p are chosen At==20XO.05, T =1, N==20000,

nz==200, p=10, respectively. A finite domain (emin, enxax) in which the scaling rela-

tion can be observed is determined with log6 -logC( e ) plots (Fig.3).

  We investigate the relations between coupling strength and the erroneous results for

each of values of the unsymmetry parameter a.

             Table1. The measures for coupled Rossler systems (a=O)

l
e
dis 2,2,2,R, D. Dcr(x,) Dor(Xi+2)

O.05 3.09 +,+,o,- 4.01 2.36 2.55

O.10 5.61 +,+,o,- 4.01 2.80 3.18

O.15 O.07 +,+,o,- 4.00 2.34 2.63

O.20 o.oo +,+,o,- 3.86 2.04 2.10

O.25 o.oo +,o,-,- 3.66 2.00 2.03

  (1) a =O.O(di=ale==1.0): Values of the synchronization effect dis, four largest Lyapti-

now exponents Ri-v R4, the Lyapunov dimension DL, the correlation dimension from

one time series data and combined two time series data Dcor(xi), Dcor(xi+y2) for cou-

pled two identical Rossler systems are shown in Table 1. For weak coupling coeffi-

cient (le==O.05'vO.15), two identical systems aren't synchronized, as values of the syn-

chronization effect aren't close to O. Since two identical systems behave independently,

the whole system has two stretching derections and the Lyapunov dimension (DL tr4)

which is equal to the sum of two dimensions of sub-Rdssler systems (DL= 2). On

the contrary, for le=O.20, O.25, two identical systems are synchronized. The correla-

tion dimension from one time series Dcor(xi) is much smaller than the Lyapunov di-

mension DL of the whole system. This result agrees with results of Lorenz, Landa

and Rosenblum. The correlation dimensions from combined two time series data
Dcor(xi+y2), however, are slightly greater than D,.,(xi) for h==O.05A-O.15. We find

out that in the unsynchronization regime (le=O.05'vO.15) the use of combined time se-

ries data is effective in coupled two identical systems, but this result doesn't agree

with Landa and Rosenblum's result. Our result can be explained as follows: If we

calculate the correlation dimension with the embedding dimension p= 4'v6, the same re-

sult of Landa and Rosenblum are estimated. However, we can get the different result

with sufficiently large embedding dimension p=10. .
  (2) a =O.1(di ==1.1, d2=O.9), a=O.5(di=1.5, d2=O.5): Systems 1, 2 aren't synchro-

nized for all coupling coefficient k=O.05--O.25 (Table 2, 3). It is cleared that Dcor(xi)

approaches to DL as unsymmetry parameter a increases (Table 1, 2, 3). Of course,
Dcor(xi+y2) approaches to DL as a increases, but it isn't equal to DL for even if
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a =O.5.

  We investigate the fractal dimensions of coupled Rdssler-Lorenz systems, and deal

with the systems as coupled entirely unsymmetric chaotic systems, since structures of

them are quite different. Table 4 indicates the Lyapunow exponents, Lyapunow dimen-

sion and the correlation dimensions for each coupling coefficient h. These systems

aren' t synchronized, as structures of them are quite different. For strong coupling

k=O.2'vO.4, Dcor(x) is almost equal to DL. Dcor(x) is much smaller than DL for weak

coupling h=:O.OIA-O.1, but Dcor(x+Y) is almost equal to DL. We can say that using

combined time series data (x+Y) is very effective for weak coupled entirely unsymme-

tric chaotic systems. However, for strong coupled entirely unsymmetric chaotic sys-

tems, the combining is not need.

            Table2. The measures for coupled R6ssler systems (cr=O.1)

l
e
dis R,,2,,R,,R, D, Dasr(Xi) Dar(Xi+Y2)

O.05 2.37 ++o-tt' 4.01 2.39 2.64

O.10 5.01 ++o-tt' 4.01 2.86 3.30

O.15 5.10 +,+,o,- 4.00 2.45 2.83

O.20 023 +,+,o,- 3.94 2.43 2.63

O.25 O.26 +o--T7t 3.66 2.04 2.15

Table3. The measures for coupled Rdssler systems ( cr =O.5)

h dis R,,2,,R,,R, D, Dffr(Xi) Dmr(Xi+Ye)

O.05 4.10 +,+,o,- 4.01 2.51 2.82

O.10 7.28 +,+,o,- 4.01 2.91 3.24

O.15 4.77 ++o-!lt 4.00 2.72 3.14

O.20 O.98 ++o-tl' 4.00 2.70 3.07

O.25 1.42 +o--tt, 3.76 2.34 2.62

Table4. The measures for coupled R6ssler-Lorenz systems

l
e
R,,2,,R,,2, D. D..(x,) Dtor(X+Y)

O.Ol ++o-le' 4.12 2.03 3.91

O.05 ++o-!t' 4.12 3.18 4.19

O.10 ++o-tt' 4.01 3.l7 3,22

O.20 +,+,o,- 4.01 3.64 3.19

O.30 +,+,o,- 4.00 3.81 3.05

O.40 ++o-7f, 4.00 3.91 3.20
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                                5. Conclusions

  In this paper the fractal dimensions of coupled chaotic systems which have the sarne

structures (coupled R6ssler systems) and coupled different chaotic systems (coupled

Rdssler-Lorenz systems) are investigated, and following characteristics are cleared:

  (1) Contrary to Landa and Rosenblum's result, for coupled identical chaotic systems

(coupled Rossler systems a=O), using combined time series data is slightly effective

with large embedding dimension p at which the synchronization doesn't occur.

  (2) In the case of coupled chaotic systems which have same structures (coupled

Rdssler systems a 7EO), the correlation dimension from one time series data ap-

proaches to the Lyapunov dimension as the degree of unsymmetry increases. The ef-

fect of combined time series data is a little when the degree of unsymmetry is even

large.

  (3) In the case of coupled different chaotic systems (coupled ROssler-Lorenz systems),

the use of combined time series data is very effective for weak coupling, but it isn't

need for strong coupling case.

  Reflections on some of above characteristics will make clear the reason why the

dimension of whole system can't be estimated from one time series data. We think

that there are two cases. In the case of coupled chaotic systems which have the sarne

structures, if the degree of unsymmetry of the whole system is small, the dimension

of whole system can't be estimated from one time series data with no reference to

the strength of coupling. In the case of coupled different chaotic systems, if the

strength of coupling is weak, the dimension of whole system can't be estimated from

one time series data.
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