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A Method of Yield Estimation for Analog Integrated Circuits

Yoichi JYO*, Masahito NIKAWA **_ Shinji NAKAMURA **#*,
Suemitsu MINAMOTO * and Yoshiaki KOJIMA *

(Received November 15, 1986)

This paper presents a new method of yield estimation, which is a very useful
criterion for a design of electrical circuits, particularry of semiconductor integrated
circuits. It is assumed that the output responses of the circuit are statistically varying
with a probability density function.

The region determined by the upper and lower limits of specifications is divided
into equal cells. The yield of the circuit is given by the sum total of integration value of
the probability density function upon each cell.

Finally the efficiency of the presented algorithm will be demonstrated on a
switched capacitor filter.

1. Introduction

For a design of semiconductor integrated circuits, the statistical variations of the
circuit parameter values must be considered. The manufacturing yield — which is the
proportion of manufactured circuits fulfilling the desired performance specifications —
is a very useful design criterion.

During the last years, several proposals for manufacturing yield have been pub-
lished?). Monte Carlo methods may be used to simulate parameter variation in order to
estimate the yield?), but can be rather expensive in terms of computing time for a large
number of circuit parameters.

There are also other approaches applicable for practical examples>®). In 3), the
method of yield estimation by using the Fourier transform of the probability distribu-
tion function of circuit responses is derived. In 4), the tolerance region of possible
outcomes is discretized into a set of orthotopic cells, then the yield is defined by the
ratio of the number of outcomes which satisfy the specifications to the total number
of outcomes. These methods are difficult to deal with a large number of circuit para-
meters. Furthermore, the accuracy is not satisfactory.

This paper proposes a new approach to yield estimation. It is assumed that the N
circuit parameters can be varied according to the joint probability density function
(pdf) of normal distribution. Suppose that we obtain the Taylor expansion for the
circuit responses about the points of the mean values of circuit parameters. Neglecting
the second and higher order terms of Taylor expansion, the circuit responses are con-
sidered to be M normal random variables. By linear mapping we transform the normal
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random variables into the standardised normal random variables.

After dividing the space determined by the upper and lower specification limits into
a set of equal cells, we obtain the yield by the sum of integration of pdf over each cell.
The factor determines the computing time of this method is the division numbers of
specification’s space. This is the function of the number of circuit responses M and the
width between the lower and upper limits of specifications. Since the computing time
increases according to the increasing of M, as one of the counter-measures, we propose a
method improving the efficiency of the yield estimation by reducing the integration
region.

There is no effect of the numbers of circuit parameters.

This method is useful for yield estimation of amplifiers or the like when the fre-
quency domain specifications are given at frequencies of the order of 5.

2. Definition of Manufacturing Yield

Consider a circuit in which there are N variable components P = [p,, p,, -, pnl.
A set of circuit responses u is expressed as

u=u(p,q) )

where ¢ = [q;, g2, -, qp] is a vector of physical quantities as temperature or fre-
quency etc..

Let
u;=u(p,q) | q=q; 2
then

u=[ul9u2,'"3uM]T (3)

The circuit responses u are statistically varying with a pdf of f,, (u). Thus the manu-
facturing yield Y of a circuit can be formulated by

Y=, fu @du @

where 2, is the region of acceptable performance specifications. The region £2,, can be
descriebd as

9u={“lu1L Suy Sugy, Uy Suy <uMH} )

where uy; and uy (i = 1, 2, -+, M) are the upper and lower specification limits on the
ith of the circuit responses of interest.

In this paper, we assume that g indicates the angular frequency w and we call the
point w = w; the “frequency point”.

3. Yield Estimation
We now assume multinormal distributions for the pdf f,(p) of p. With regard to
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practical requirements as well as to an especially clear illustration of the new approach
this assumption is very useful. Under this assumption we obtain

|G~

@)= o [ @) G o) ©

where p , is the mean value vector of p and C,, is the covariance matrix.

The circuit response u is considered to be a function of only p when q; is fixed.
Using a Taylor series expansion we get

u(p)=u(llp)+Fp(p _#p) @)

thereby, the second and higher order terms are neglected. The sensitivity matrix F), is
shown as

aul aul

ap, opy
auM auM
op; N

By the linear transformation of Eq. (7), u obeys a M-dimensional normal distribu-
tion, too.

The mean value vector and the covariance matrix of # can be expressed as g, and
C,, respectively. Then the pdf f,, (u) of u is as follows.

|C51|1/2

1 -
fu(u)=(2—ﬂ)M/2—exP (——2— AuTC;t Au) )

where
Au=u—u(pp) (10)
The M X M matrix C,, is obtained from the next equation®).
Cu =FpCpFy” (11)
From the following relation
c,=DTD (12)
we obtain the upper triangular matrix D. Define a new variable z by

2= (7Y {u—ulpp)} (13)
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The resulting vector z has the fo]lowmg pdf f.(z) of the standardised normal
distribution®.

1 1
fz(z)=T2”)Tp,exp (—7 |z |?) | (14)

Simultaneously, the region {2, is converted to 2, using the mapping of Eq. (12).
Hence, Eq. (4) can be written in the form

Y={, f: (e (15)

The region of acceptable performance specifications £2,, is a M-dimensional rectan-
gular prism, thus an arbitrary inner point of 2, is expressed as follows

Uy, Uyg — Uy
. o + -ty

0
UpmL Uy — UpmL
(0 < Ay 5,0 aM <1

The inner point of 2, corresponding to that of £2,, is expressed as

oty &y t---toayly

where
‘ s | v
go=(0N)! { [ : ] —u(ﬂp)} (16)
Upmr
' 0
& =" { [uiH_uiL] } a7
0

The region 2, is a M-dimensional parallel polyhedron whose edges are &, &,,
-, &y. Figure 1 (a) shows the relation between £, and u(z,) for the case of M = 2.
Figure 1 (b) shows the region of 2, for M = 2.

By dividing &; (i = 1, 2, -, M) into m; equal length portions, the region Q, is
partitioned into m; X m, X - X myy cells, such as , (1, 1, -, 1), 2, (1, 1, -, 2),
Sy (Mmy, my, -, Myy).

The yield Y can now be expressed as

m, my
Y= .
d,zi'l af}—l fﬂz(d,,d,, ",

,f2(2)dz (18)

If m; is sufficiently large, the value of f;(z) over each cell is considered to be constant.
Therefore, the integration of Eq. (18) can be obtained by applying Newton-Cotes rule.
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Fig. 1 (a) The region of £, and u (up) for the case of M=2,
(b) The region of Q, and &; (i = 0, 1, 2) for the case of M = 2.

The volume V of £, is given by

V= (8 & - -&m ‘|
£ - &G
= | | (19)
Evic o Emm
where I‘- \l denotes the absolute of determinant. From Eq. (19), the volume AV of
QZ (dl ’ d21 B dM) is giVen as
. £n o Em
AV="n ‘ : : ’ (20)
I om |80 - Sum

i=1

The mean value of f;(z) over ,(d,, d,, -, dys) is obtained by Newton-Cotes rule
as

d,+1 dpytl k k
fz(Z)AV=—21M{ klgdl "'kM]é:M fz(éo'*“ml—1 € +"'+'r;nj E‘M)}
(21)

Substituting Eq. (14) into Eq. (21), we obtain

d,+1 dprtl

1
fZ(Z)AV=EM{k1=d1 kMz;dM W

M
o0 (-4 & o

k, ks ,
+7n—l Ept..-t g E;M) }}
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1 d,+1 dyrtl 1 M
B 23]‘4,211'1‘4/l2 I:kx=d1 o kMng oXp { -T]';l (E]O

+ 3 -,-’;7 sﬁ)z}] 22)

i=1

After all, the yield Y defined by Eq. (18) can be expressed as

AV mi my [dH yrt
Y= 23M/277M/2d12=1 o .dA?:l [‘k,gd. N .kMg‘:M

o (4 e £ )]

m;
From Eq. (23), it is evident that the manufacturing yield ¥ can be obtained as the sum

of a finite series.

4. Discussion for the Number of Divisions m;

At first we consider the following simple integration

&= f:f £ (@) dz 24)

where [ (z) is the pdf of one dimensional standardised normal distribution. Dividing the
interval {z;, zy] into m equallength portions, Eq. (24) can be calculated by applying
the Newton-Cotes rule. The truncation error R,, of Newton-Cotes rule is given by”)

_ L™

= mnr TR, - R (25)

n;odd
where v is an arbitrary point during [z;,, z4] and
h=(zg — 2. )/m (26)

Substituting the following equation into Eq. (25)

@)= = e @7

V2
we get the truncation error R, forn=1 as

(P-De TP

12+/2n

IR,| = B 28)




A Method of Yield Estimation for Analog Integrated Circuits 139

Since | R; | has a maximum value at y = 0, it is sufficient that the error € is de-
fined such as

€= IR,’ }7=0

- e () 9)

In order that the error e is less than an arbitrary positive number €4, the division
number m is required to satisfy the following relation

m=(12v271 €)' (g — z1) (30)

For the general case when M > 1, minor modifications of the above derivation are
required. Consider the rectangular prism €2, which contains Q,. Q, has M edges of
&/, &), -, &y. Since f, (z) > 0, the next relation holds.

o 1o @dz> f, 1.(@)dz GD)

Let the left hand side of Eq. (31) be replaced by @',

' ' M 2
"= (]1H ... (*MH -zif2 ce
o} fz,lL IZML i-£ll ’_27'[ e 1 le dZM
M z;-H 1 _z3
“H 71 g,
i£11 f=iL V2 ¢ az
M !
=1 @ (32)

=1

-~

If the error of ®; is taken as ¢;, then the error € of ®'is
€=e tet---tey (33)

The next relation should be held to keep that e is less than e,

M 1 Zher — Zir \3
e~ 3 (zH ZzL)

=1 12427 k;
1\ 3
M 1 |5i|
=2 M
=1 12421 | 3 .
A1
< €g (34)

where k; is the number of divisions of & .
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If '
my> (1227 €0) P M | & | (35)

then
l&| u
R ARPY 1/324-1
2 m, i=zl (12427 €0)'°M
=(12V21 €)' (36)
The next relation is also true
M
lEi | [ & mi< |ei ‘ [m; (37
From Egs. (36) and (37), we have taken

M M
Z (&1 2 my <12v2r e 38)

Hence, we can make the following statement that m; satisfying Eq. (35) should be
chosen for the number of divisions.
Figure 2 illustrates the relation among ,, ., §;and &; for M = 2.

¥4
2 L3
£,
Zou
1
£ €
1 Q
z
11 21w
Z
&
Q T
z
13
Zo1

Fig. 2 Relation among Q,, 2/, £;and & (for M = 2).

5. Improvement of the Efficiency of Yield Estimation by
Reduction of Integration Region

As shown in Chapter 3, the yield Y can be obtained as the sum of the volumes of
my; X my X -+ X myy cells. Therefore, the amount of calculations increases terribly
according to the increasing of M. To avoid the difficulty we propose a method to
improve the efficiency of yield estimation by reduction of integration region. The
circuit response u; is a normal random variable. Hence, the probability that u; satisfies
the next condition should be equal to 1.
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My — 40y, SU; S Uy, T 40y, (39)

In Eq. (39) wy, is the mean value of 4; and g,,, is the standard deviation of u;. Therefore,
the given specifications can be reduced such as

max {uiL,,uui——4aui} < y; < min {uiH, ““i,+ 4oui} (40)

From the consideration above, £2, is compressed to the interior of M dimensional
sphere with radius 4, and I &; l < 8 holds.

Figure 3 (a) shows the relation between the region §2,, and the region recognized the
existence of f, (4) (inside of the ellipse) for M = 2. Note that the region of specifications
outside of the ellipse can be ignored for the yield calculations. Figure 3 (b) shows the
relation between the region £2, and the existence region of f, (z) for M = 2. The value of
fz(z) is considered to be zero outside of the circle with its center at the origin and with
a radius of 4. Hence, for the yield calculation of Eq. (35), it is sufficient to consider
only the shadowed portions. Furthermore, if we begin calculating from the neighbour-
hood of the origin and stop calculating at the point crossing the circle, the efficiency of
the yield estimation is improved. In this paper we use the method of calculating the
yield in numerical order shown in Fig. 3 (b). The judgement that the cell position of
interest is in or out of the circle is done such that the distance between the cell and the
origin is smaller than 4 or not.

Since the term of Eq. (23)

k;
m;

&)

1 M M
~5 2 ot 2,

represents a square of the distance between the cell position and the origin, we may
form the judgement mentioned above after this calculation.

Fig. 3 (a) Relation between the region recognized the existence of f,, () and
§,, (forM =2).

(b) Relation between the region recognized the existence of f,(z) and
Qg (for M =2).
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6. Example

This yield estimation method was applied to the switched capacitor (SC) second
order low pass filter shown in Fig. 4. The transfer function T'(z) in z domain can be
described with Eq. (41)

T(Z) Vo/Vi
C G
_ CyCs
‘ C, Cl Cs C, (41)
N
C, CaCs Cs

With z =1 + T,s (T,: clock period) we obtain the frequency domain transfer function
T(s);

CiCs
T(s) = Cals (42)
Tag 4 o154 C1Co
Cys ¢ C4Cs

From Eq. (42), the cutoff angular frequency w, and Q are given by

_ Cxca _ CiCs
We /—-—-QCS / T., Q /_0402 43)

Figure 5 shows the frequency characteristics of this filter. As shown in Fig. 5 we
set the upper and lower limits of specifications at the two frequency points.

We assume that the operational amplifiers and switches are ideal.

Although the circuit of Fig. 4 has five circuit parameters C; ~ Cs, in Eq. (41) only

£:r€o—u-ozhs—’,r

Cs

Fig. 4 SC second order low pass filter.
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two combinations such as C,/Cy, C,C3/C4Cs are appeared. Therefore, we can apply
the parameter transformation method proposed in 8).
Consider a ratio C,, to C,,. We now assume a normal distribution N (i, , iy, Om®,
0,2, Pmn) for the joint pdf of C,, and C,, where u,, and u, are the mean values, 0y,
and o,, are the standard deviations and p,,, is the coefficient of correlation.
Under the conditions that 6,, = Siy,, 0, = Su, (S < 1) and p,,,, = 1, the ratio
C,/Cy, is statistically varying with a pdf of the logarithmic normal distribution. Hence,
1n (C,/Cp,) becomes to obey the normal distribution. (see Appendix)
In this paper, for a set of parameters p; = 1n(C,/C,) and p, = 1n(C,C3/C4Cs)

are chosen.

Table 1 shows the results of the division numbers, the yield and CPU time of the

computer for the three specifications (D) ~ (3) when the parameter values are as follows;
T,=10"%[sec],S= 0.1, py,=0.8, C2/Cs =0.12, C,C3/C4Cs = 0.008 and ¢, = 0.0001.

The algorithms for yield estimation have been implemented in Fortran on a ACOS
850 computer. In Table 1, “Reduction” is the case that the effective method mentioned

Table 1 Calculation results
Frequency Division numbers
points w, = 5,000 w, =15,000 Yield (%)
[rad/sec] CPU time (sec)
u (;up) u, =0.983 u, =0.346 Non-reduction Reduction
160 X 133 160 X 133
O '_3‘91;?) 2L __g‘iz‘; 438 438
2 “1H= 1 YaH = 5 3.14 2.57
5
b= 855 X 728 855 X 728
é @ u1L=0.700 u2L=0.220 99.9 99.9
s} =1. =0.420 ’ )
g Uy =1.500 Juzpy=0 92.0 13.3
w2
10 X 16 10 X 16
@ uyy = 0.980 Uuyy = 0.340 2.9 2.9
=0. =0.3 ) )
Uiy 0.990 Urrr 0.350 0.07 0.07
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in Chapter 5 is applied. In comparison with the case of “Nonreduction” the CPU time is
reduced but the accuracy of yield estimation is kept unchanged. Particularly the effect
is remarkable for the case that the specifications are fairly broad as 2).

7. Conclusions

In this paper we proposed a new method of yield estimation which is a very useful
criterion for a design of integrated circuits.

The calculation time of this method is mainly determined by the number of specifi-
cations and it can be considered that there is no effect of the number of circuit para-
meters. Hence, this method is useful for the yield estimation of a large scale integrated
circuits, such as amplifiers, for which the frequency point numbers are not so much in
general.
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Appendix
We now assume the normal distribution N(uy,,, , Hy,,, axm2 > Ox n2 » Pmn) for the cir-
cuit parameters x,, and x,,. For semiconductor integrated circuits it seems to be quite
all right to consider that the standard deviation g, is proportional to the mean value
and the correlation between circuit parameters is strong. These can be expressed as
follows.

0, =Sy (S<1) (A-1)
Pmn =1 (A-2)
The joint pdf is given as
1 Xm —HMx 2
XpmsXn) = k-ex [ - ( '")
fx( m n) P 2(1 _png) { Oxp

— 20mn (xmo_‘ Hx,, )( xna_ “xn)
- Ox,, Xn

+( xn0: Hx,y )2} ] (A3)

n
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where

k=1/@2mn0y,, 0x, V1—Pmn*) (A-4)

To obtain the pdf for x(= x,/x,,), we express fy (X, , X, ) in the polar coordinates,
Using Eq. (A-1) and the following equations

Xm =rcosf, x,=rsing (A-5)

we obtain from Eq. (A-3)

f(r, 0) =k exp (—ar® + br — ¢) (A-6)
where
1 cos28 cos@ sinf  sin’8
a= 21¢2 ( 5 — “Pmn* ° + ) ) (A-7)
2(0=pmn’)S* \ Ky, Bxyy  Mx, M,
b= 1 _ (cos() + sinf ) (A-8)
(+pmn)S Mx,, Mx,,
1 (A-9)

[
( +pmn)S2

Considering f(r, 6) as a function of only 6, we replace f (r, 6) by g(8). The pro-
bability g (8) df of 8 being in the interval [0, 6 + d0] is equal to the volume of cubic as
shadowed in Fig. A-1 (a). The section dS produced by cutting this cubic with a plane of
r = constant becomes a trapezoid. From Fig. A-1 (b), when df — 0, dS is given as

dsS=f(@r,0)rdb (A-10)
Then
g(0)do = [, dSdr
= 2 f (7, 0) rdrd6 (A-11)
y b
Xn
g(0)de
do
0 \e x

(a) (b}
Fig. A-1 (a) Probability g(9)dé that @ is included in the interval
(6,6 +do].
(b) Differential area dS.
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From Egs. (A-6) and (A-11)
g(0)=J5 £, 0) rar

b2
=k-exp [74; —c] e e (=b/20) 1, , (A-12)

By applying the condition v/b?/22 << 1 (correspond to S < 1) in the calculation
process of Eq. (A-12), the pdf g(8) becomes

—C b2
gy =V ke [ el (A-13)
a

On the other hand, the probability of x being in the interval [x, x + dx] is

h (x)dx =g(6)do : (A-14)
With the relation of x = tan 6 we obtain

dofdx =1/1+x? (A-15)
Thus

h®)=1,57 €0 (A-16)

Substituting Eq. (A-12) into Eq. (A:16) A (x) is obtained as

/B2 b jaa
e € /1 —pmn 4a

N T T 2emeG * Gy i
where

V=”xn/”xm . ‘ (AIS)

B lppn 1420+ () (a19)

42 2(1+ pmn)S? 1 — 20mu(x/¥) + (x/v)

From Egs. (A-17) and (A-19) we can make the following statement. Let A (x)be
h, (x) for v = vy. We can obtain the next relation

hy, &) = Tlo hy (x/vo) (A-20)

where h (x) for vy =1 is denoted by £, (x). Equation (A -20) means that A, (x) is in the
same form as 4, (x) when the magnitude increases by a faétor'l/v and x increases by a
factor »- '

Let the mean value and the standard deviation of A, (x) be Uy, and oy, respec-
tively, then
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Hp, = Vip, : (A-21)
Op 2 =V20h12 (A22)

v

The pdf A (x) of logarithmic normal distribution is as

1 1

where u; is the mean value of Inx and oy is the standard deviation.
Using the next relation

yy = 1w
=1npy, — Invy, (A-24)
we get

a1 1 2
Ax)= N exp {— 207 (In x/v) } (A-25)

In the same manner as Eq. (A-20), we denote A (x) for » = v, as A, (x), especially
for vp = 1 as A; (x). Thus the next relation holds.

N, = Ay (5/30) (A-26)
Vo

When S < 1, A, (x) has a maximum value at the point of x = 2,
Using a Taylor series expansion about the point x = », we get

& 1
m@= 2 o MO | -0 (A-27)
T N k
M@= e MO@ | -9 (A-28)
Let
o= V2(1 _pmn) -8 (A'29)

hence, the first two terms (for n =0, 1) of Eq. (A-27) agree precisely with those of Eq.
(A-28).
The mean value u, and the standard deviation o, are given as follows

e = v exp (0//2)
=y {1+(1—pmn)S?} (A-30)
Oy = My (exp 012 - 1)1/2

~ue V2(1 ~pmn )+ S (A-31)
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Let the probability distribution functions of &, (x) and A, (x) be H, (x) and A, (x),
respectively. Th error E (x) appeared when H), (x) is approximated with A, (x) is ex-
pressed as

(A-32)

E@= | B@)- A

Limiting the domain of x such as u, — 30, <x <pu, + 30,, E (x) can be formu-
lated by

€)= N ©) |

. @ (1) - 2,@ )] ¢ - 1)
Mx—30y 2w?

@ @) 0@ ) | { e+ 30, — 1° — (e — 30, 1))
- 613

E(x)= Mxt+30y
()= 13

dg

< ISJ/—— (1 pmn) s?

From Eq. (A:33), it is obvious that £ (x) can be ignored for the case that p,,,
= 1, § < 1. Therefore, under these conditions, the pdf of x is considered to be approxi-
mated with the pdf A (x) of logarithmic normal distribution, A (x) is given by

Qox/r) } (A-34)

)\(x)_ /17 01X exp {_ 2012

Accordingly, it is apparent that
In (x,/x,;)=Inx, —1Inx,, (A-35)
is varying with a pdf of normal distribution. Now we define the parameter p,,,, as

Pmn =Inx, —Inx,, (A-36)

We introduce the parameters p = [py, pa, -, Py, *+, Py 17 by writing DPmn to replace
Di, then

D1 Inx,
Sl =4 : (A-37)
4% Inxg

where X, X, , -, Xg are the circuit parameters. In general NV is less than K. Every row of
the N X K matrix A has exactly two nonzero elements, a 1 and a —1, with the rest being
zZeros. '

Since p has the pdf of normal distribution, [Inx, Inx,, ---, Inxy ] T also has the pdf
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of normal distribution. Between the covariance matrix C, of p and the covariance
matrix C; of [Inx,, Inx,, -, Inxg] T the next relation holds.

C,=ACAT (A-38)

Using C,,, which is an element of covariance matrix of the circuit parameters, the
element C,i]. of C; is given as

Clﬁ =1n ( Cxﬁ + 1) (A-39)
M, “xj

" Substituting the next relations

Ox. _ Ox; Cy..
=_% =% Py = *y (A-40)
Mx; Hx; Ox; Ox;

into Eq. (A-39), we obtain
Cp,=In(pzS* + 1) (A-41)

Especially CPij is the variance of p,,,, when i =j, thus
Cpﬁ =2(1 = pmn) $* (A-42)

From the above

[ACATY; @)
i (A-43)
2(1 _pm,-mj) s @=)
The mean value vector g, of p is given as
Inp,
#=A : (A-44)
In Mxy

A summary of the resulis is shown below. When the transfer function of the circuit
is considered to be a function of the ratio of circuit parameters, we may choose the
logarithm of the ratio of circuit parameters. In this way the number of parameters are
reduced for yield estimation or optimal design.

The p has the pdf f,(p) of N dimensional normal distribution such as

c:t 1/2
Hh = —I(E—)'m—e Xp {——;— P - )G (p —#p)} (A-45)



