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(Received June 15, 1985)

This is a study of periodic solutions of the systems with unsymmetrical restozing
force i.e. (i) the piecewise linear restoring force, (ii) the curvilinear restoring force. This
report shows that the phenomena represented by the piecewise linear system differ
slightly from the curvilinear system since it represents the performance by means of
two straight lines disregarding the curvilinear part between them,

But as a result of extensive numerical analysis it has been established that for the
qualitative behavior of the periodic solutions, the piecewise linear representation is,
generally, sufficient and slight quantitative difference between the two modes of re-
presentation is justified by the gain in simplicity inherent in the idealized piecewise
linear representation.

1. Introduction

The theory of oscillation has gradually become generalized and assumed definite
form. However, new problems have raised new questions and on these the subject is still
in a state of evolution. Considerable interest of mathematicians in the problems of non-
iinear oscillations has resulted in important advances in the theory of nonlinear dif-
ferential equations but, as is to be expected, some of these advances have exceeded the
immediate needs of the theory of oscillations and belong rather to the theory of dif-
ferential equations per se.

On the other hand, physicists and engineers continue to supply experimental
material, the analysis of which requires special mathematical tools, some of which are
not yet available. In view of this it is sometimes difficult to draw a line between what is
known definitely and what is known only provisionally and subject to later revisions.

It is well known that the oscillation of order 1/2 is apt to occur when the non-
linearity is unsymmetricall). Our several papers have described 2),3)4) periodicity con-
ditions, stability conditions and branching phenomena, in the case of the piecewise
linear system with the unsymmetrical restoring force. The present paper deals with the
qualitative behavior of the periodic solutions of certain second order nonlinear equa-
tions with unsymmetrical restoring forces; (i) the piecewise linear (ii) the curvilinear.
By comparison of the results of these cases it is shown that the phenomena represented
by the piecewise linear system differ slightly from the curvilinear system since it re-
presents the performance by means of two straight lines disregarding the curvilinear part
between them. But, by numerical analysis, for the qualitative behavior of the periodic
solutions, the piecewise linear representation is, generally, sufficient and slight quanti-
tative difference between the two modes of representation is justified by the gain in
simplicity inherent in the idealized piecewise linear representation.
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2. Periodicity Conditions

This section presents the conditions of periodicity of the differential equations (1)
and (3).

g
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Fig. 1 Piecewise linear restoring force Fig. 2 Curvilinear restoring force
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X+g(x)= El Ejcosicwt 3)
, where
glx)=ax +yx* + gx° C))

In these‘second order differential equations, the conditioris that the solutions will be
periodic of period T'(=p %, p: positive integer) under the initial conditions (5)

x(0)=M,x(0)=0 ®)
can be written in the next form

x(I)=x(0)=M }

#(T)=%(0)=0 ©

In the piecewise linear system, conditions (6) as to the periodic solutions type ;4
(shown in Fig. 3) are equivalent to next conditions (7) and (8)%)3

m FE; K? m E. . k2
M "El’lz—_(l{(;?—?xo) cos lt; +i§112——(liw)5 cos iwty =77 Xo

(M
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, where f, represents the time when the solution reaches the corner point x4 for the
first time.
In the curvilinear system, the periodicity conditions are conditions (6) themselves.

3. Stability

Let x°(¢) be the periodic solution of the equation (1) or the equation (3) with the
period T = 2pmw/w under the initial conditions (5), then the discussion®) of the stability
of the periodic solution of the equation (1) or the equation (3) depends on the varia-
tional equation associated with the periodic solution x°(¢). For the variation y(f), that
is given by following equation.

y+aty=0 ©)
where
_of
)= x| x=x°®) for the equation (1)
or (10)
=08
a(r) = ox | x=x°0) for the equation (3)
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is an even and T-periodic function. Therefore the equation (9) means a Hill’s equation.
Let p; and p, be the characteristic multipliers of the equation (9), then

pip2 =1
p1+pr =T+ W(T) \ (1)

where ¢(¢) and ¥ (¢) are independent solutions of the equation (9) under the initial
conditions ¢(0) = ¥(0)=1,9(0)=¥(0)=0

Furthermore the periodic solutions are stable when | p1 + p2| < 2 and unstable for
|p1 + p, | > 2. The condition|p; + pzl = 2 means the border line of stable and unstable
regions and has a connection with branching phenomena.

4. Bifurcation

The essential aim of this section is the identification of the branching behavior near
bifurcation point of equations (1) and (3).

For simplicity the application of the general solutions derived above is restricted to
the case of subharmonic oscillations of order 1/2. As to the case of the piesewise linear
restoring force, the bifurcation condition?»% becomes

+1
k 2 <—i (n=0,1,2,..) (12)

w 2

and the branching behavior of the equation (1) in M-E plane may be written as
M — M, = Cy(E —Eo)? (13)

where (My, E,) is the bifurcation point and C; is a constant. On the other hand, as to
the equation (3), the branching condition is too complicated to be represented exactly.
But, with regard to the branching behavior in M—E plane, we have the result

M — My = C(E - Eo)? (C; : constant) (14)

assuming the existence of the solutions of period T of the equation (3) with its multi-
plier of the first variational equation equal to —1.

One of the most different point of these two systems is whether we clarify the
branching condition or not.

5. Numerical Analysis and Discussion

When dealing with nonlinear differential equations it is usual to resort either to a
digital (or analog) computer or to approximate methods. It is often inevitable that one
should use a computer to produce the final answers, although it may be difficult to
obtain physical insights by using a computer.

The oscillations may be calculated in the following steps:

(1) A computer is made use of to understand the behavior of solutions of nonlinear

differential equations (1) and (3).
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In order to comfirm the same nonlinearity of restoring forces f(x) and g(x) it will
be convenient to introduce the notation

37

I= [ {f() ~g(x)}* ax ©)

and use the method of minimizing the cost function I.

For study of the periodic solutions of the equation (1), the periodicity conditions
(7) and (8) are applied. The numerical calculations have been made by the Rosen-
brock’s method®, But, in the case of the equation (3) the numerical calculation is
made by two methods; (i) Regula falsi method (two-side-attack method) (ii)
Harmonic Balance method.

In case m = 2 let’s rewrite the equation (3)

¥ +g(x)=E coswt+E,cos2wt )

and assume a periodic solution of the form

x(t) =ap +a coswt +aycos2wt +azcos3wt (16)

Substitution of (16) in (3)' leads to the relations by means of harmonic balance.

aao + 'y{a% +%(a§ +a} +a§)} + a3 +%aoa% + 3{%a§a2
1
+%aoa3 +%aoa§ +—2-a1a2a3}] =0 an

3
+Ta? +3 {aoa1a2

1 3
7014’5’}"'_4‘11%‘13] =E, (18)

(@ — w?)ay +v(2a0a; +a1a; +azas3) + P[3ada;

1
— aya3 +

1
2
+-——aiaz + apga,a; t+
413 243 )

(@ —4w?)a, + ’)’(L aj + 2a0a, +ala3)+6[%a0a% +3 {a(z)az tapaa;
1

+%a%a2 +t5 010203}"' a3 +%—a2a3] =E, (19)

(@ —9w)as +v(2apas + aya,) + 6[—‘11- a3+ 3{a%a3 +apa,a;

1
+Td%a3 + = 4 ala2}+ azﬂg +%a§ = (20)

Fig. 4 shows the two restoring forces in case / 2 =3,k =1, x, =1 for the piece-

wise linear system, corresponding to a = 1.344, § = 0.03, v = 0.209 for 2 = 4 in the
curvilinear system. In Fig. 5 the results of w-M plane in case £, = —7.5 and m =1 are
plotted as to the bifurcation of subharmonic solutions from harmonic solutions. In both
cases the branching behavior is similar: at the boundary of the stable and unstable
harmonic solutions the subharmonic solutions of order 1/2 will appear and exist only
one side of the unstable harmonic solutions. In Fig. 6 (E; = —7.5) are shown the Fourier
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Fig. 5 Branching phenomena of solutions
of order 1/2 from harmonic solu- Fig.6 Initial value responses of sub-
tions in M-w plane in case E, harmonic solutions of order 1/2 in
==75,m=1,andx, =1 case B, = —-75andm=1

components of subharmonic oscillations of order 1/2. From this figure it is evident that
the Fourier component a,;, (whose frequency is a fraction 1/2 of the driving frequency
w) in the piecewise linear system agrees very well with the result in the curvilinear
system. Other components differ slightly in the neighborhood of the branching point.
As to harmonic solutions in Fig. 5, the Fourier components shown in Fig. 7 (£, = —7.5)
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R.F and H.B mean regula falsi method and
harmonic balance method respectively.
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are of the same shape in both cases. In Figs. (8), (9) and (10) the results of harmonic
solutions in the case of m = 2 are given. In the case of the curvilinear restoring force for
the numerical calculations two methods (i) regula falsi, (i) harmonic balance are used.
The components ao, a;, a, in the case of regula falsi method agree very well with those
of harmonic balance method. The third components a3 differ slightly in two cases.

Finally, branching behavior of subharmonic solutions of order 1/2 from harmonic
solutions in M-E plane in case m = 1 is shown in Figs. (11) and (12). Comparison of
Figs. (11) and (12) tells us that the behavior differs from each other and is no longer of
exactly the same value, but having same tendency.

6. Conclusions

Forgoing analysis is restricted to the behavior of the periodic solutions in the case
where m external forces are applied to unsymmetrical systems in both the piecewise
linear system and the curvilinear system. From this point of view the piecewise linear
idealization appears to be sufficiently general to be able to account for a considerable
number of phenomena encountered in the theory of oscillations. The results are sum-
marized as follows:

(i) The phenomena represented by the piecewise linear system differ slightly from the
curvilinear system since itvrepresents the performance by means of two straight
lines disregarding the curvilinear part between them,

(ii) For the qualitative behavior of the periodic solutions, the piecewise linear repre-
sentation is, generally, sufficient and slight quantitative difference between the two
modes of representation is jusified by the gain in simplicity inherent in the idealized
piecewise linear representation.

The future work includes investigations of chaotic motions from period doubling
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motions in dissipative systems.
Finally, it is noted that numerical calculations were performed by using ACOS-700
at the computer center, University of Osaka Prefecture.
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