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 the Unsymmetrical Curvilinear Restoring Force and the fiecewise

      Linear system with the Unsymmetrical Restoring Force

                         1.
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       Toshikuni NAGAHARA*, and Masao KIDO*

(Received June 15, 1985)

   This is a study of periodic solutions of the systems with unsymmetrical restoring

force i.e. (i) the piecewise linear restoring force, (li) the curvilinear restoring force. This

report shows that the phenomena represented by the piecewise linear system differ

slightly from the curvilinear system since it represents the performance by means of

two straight 1ines disre.garding the curvilinear part between them.

   But as a result of extensive numerical analysis it has been established that for the

qualitative behavior of the peyiodic solutions, the piecewise linear representation is,

generally, sufficient and slight quantitative difference between the two modes of re-

presentation is justified by the gain in sirnplicity inherent in the idealized piecewise

linear representation.

                           1. Introduction

   The theory of oscillation has gradually become generalized and assumed definite

form. However, new problems have raised new questions and on these the subject is stil1

in a state of evolution. Considerable interest of mathematicians in the problems of non-

1inear oscMations has resulted in important advances in the theory of nonlinear dif

ferential equations but, as is to be expected, some of these advances have exceeded the

immediate needs of the theory of oscillations and belong rather to the theory of dig

ferential equations per se.

   0n the other hand, physicists and engineers continue to supply experlmental

material, the analysis of which requires special mathematical tools, some of which are

not yet available. In view of this it is sometimes difficult to draw a line between what is

known definitely and what is known only provisionally and subject to later revisions.

   It is well known that the oscillation of order 1/2 is apt to occur when the non-
linearity is unsymmetricali). Our several papers have described 2)'3)'4) periodicity con-

ditions, stability conditions and branching phenomena, in the case of the piecewise

1inear system with the unsymmetrical restoring force. The present paper deals with the

qualitative behavior of the periodic solutions of certain second order nonlinear equa-

tions with unsymmetrical restoring forces; (i) the piecewise linear (ii) the curvilinear.

By comparison of the results of these cases it is shown that the phenomena represented

by the piecewise linear system diflfer slightly from the curvilinear system since it re-

presents the performance by means of two straight lines disregarding the curvilinear part

between them. But, by numericai analysis, for the qualitative behavior of the periodic

solutions, the piecewise linear representation is, generally, sufficient and slight quanti-

tative difference between the two modes of representation is jUstified by the gain in

simplicity inherent in the idealized piecewise linear representation.
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                      2. PeriodicityConditions

   This section presents the conditions of periodicity of the differential equations (1)

and (3).
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               m       X + f(X) = ,Z.,Ei cos icot (1)
 where
'

      9-=,,(,:itx,-K2Xo[::l:gll ,,,

       ,
               m      X +g(x)= iZ.,Eicgs iwt (3)
 where
'

      g(x)=ax +7x2 +6x3 (4)
In these' second order differential equations, the conditioris that the solutions wil1 be

periodic ofperiod T(=p Zn , p: positive integer) under the initial conditions (5)

      x(O)=M,･X(O)-O (5)
can be written in the next form

      :.ET.l;'-l.[.Oll'g] - (6)

In the piecewise linear system, conditions (6) as to the periodic solutions type !A

(shown in Fig. 3) are equivalent to next conditions (7) and (8)2),3)

      (M -izrl l2 -{;w)2 - tll22 x,) cos ltl +izrl l2 -Eico)2 cos icotl =ft2 xo

                                                         (7)
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, where ti represents the time when the solution reaches the corner point xo for the

first time.

   In the curvilinear system, the periodicity conditions are conditions (6) themselves.

                             3. Stabmaty

   Let xO(t) be the periodic solution of the equation (1) or the equation (3) with the

period T= 2pT/w under the initial conditions (5), then the discussion5) of the stability

of the periodic solution of the equation (1) or the equation (3) depends on the varia-

tional equation associated with the periodic solution xO(t). For the variationy(t), that

is given by following equation.

y +. a(t]", = o (9)

where

or

.(t)ioatf

     Og
a(t) E
     ox

x = xO (t)

x = xO (t)

for the equation (1)

for the equation (3)

(10)
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is an even and T-periodic function. Therefore the equation (9) means a Hil1's equation.

   Let pi and p2 be the characteristic multipliers of the equation (9), then

       Plp2 =1

       pi+p2=g(D+ di(T) ' (11)
where g(t) and W(t) are independent solutions of the equation (9) under the initial

               .conditions g(O) = ilf (O) -- 1 , ip(O) = ,lr (O) = O

Furthermore the periodic solutions are stable when1pi + p21< 2 and unstable for

lpi + p2 I > 2. Ehe conditionlpi +p2l = 2 means the border line of stable and unstable

regions and has a connection with branching phenomena.

                            4. Bifurcation

   The essential aim of this section is the identification of the branching behavior near

bifurcation point of equations (1) and (3).

   For simplicity the applic.ation of the general solutions derived above is restricted to

the case of subharmonic oscillations of order 1/2. As to the case of the piesewise linear

restoring force, the bifurcation condition2)'3) becomes

l< 2n+1 < l
(n=O, 1, 2, .") (12)

and the branching behavior of the equation (1) in M-E plane may be written as

M-Mo : Ci¢.Eo)2 (13)

where (Mo,Eo) is the bifurcation point and Ci is a constant. On the other hand, as to

the equation (3), the branching condition is too complicated to be represented exactly.

But, with regard to the branching behavior in M-E plane, we have the result

M- Mo i C2 (E-Eo)2 (C2:constant) (14)

assuming the existence of the solutions of period T of the equation (3) with its multi-

plier of the first variational equation equal to -1 .

   One of the most different point of these two systems is whether we clarify the

branching condition or not.

                   5. NumericalAnalysisandDiscussion

   wnen dealing with nonlinear diflferential equations it is usual to resort either to a

digital (or analog) computer or to approximate methods. It is often inevitable that one

should use a computer to produce the final answers, although it may be difficult to

obtain physical insights by using a computer.

   The oscMations may be calculated in the following steps:

(1) A computer is made use of to understand the behavior of solutions of nonlinear

   differential equations (1) and (3).
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(2) In order to comfirm the same nonline,arity of restoring forcesf(x) and g(x), it wi11

   be convenient to introduce the notation

      I= t:-{f(x)-g(x)}2 du (s)
   and use the method of minimizing the ,cost function I.

(3) For study of the periodic solutions of the equation (1), the periodicity conditions

   (7) and (8) are applied. The numerical calculations have been made by the Rosen-

   brock's method6). But, in the case of the equation (3) the numerical calculation is

   made by two methods; '(i) Regula falsi method (two-side-attack method) (ii)

   Harmonic Balance method.

   in case m = 2 let's rewrite the equation (3)

      X+g<)c)=Ei coscot+ E2 cos2wt (3)'

and assume a periodic solution of the form

      x(t)=ao +ai coswt+ a2 cos 2wt+ a3 cos3wt (1 6)

Substitution of (16) in (3)' leads to the relations by means of harmonic balance.

                    '      aao + 7k8 +S fal +aZ +a23 )} +6[ag +-il- aoa? +3{t ala2

         +taoa32 +taoa23 +taia2a3}] =O (17)

      (a - w2)ai + 7(2aoai +aia2 + a2a3)+5[3a3ai +-il-a? + 3 {aoaia2

      + 2/ aia3 +aoa2a3 +Sa!a'3 +-ll-aiag}+-2-a;a3] =Ei (is)

       (a - 4w2 )a2 + 7(t a? + 2aoa2 + ai a3) + 6 [÷g- ao a? + 3 { a2o a2 + aoai a3

         +t a? a2 +Saia2a3 }+ -il-a32 +-g- a2 a23] = E2 (l g)

       (a - 9w2 )a3 + 7(2aoa3 + aia2)+6[t a? + 3{b3a3 + aoa!a2

         +ta?a3 +iaia22}+ -g- a3a3 +-2-agl =o (2o)

   Fig. 4 shows the two restoring forces in case l2 = 3, k2 = 1, xo = 1 for the piece-

wise linear system, corresponding to a = 1.344, 6 = O.03, 7 = O.209 for a = 4 in the

curvilinear system. In Fig. 5 the results of cJ-M plane in case Ei = -7.5 andm = 1 are

plotted as to the bifurcation of subharmonic solutions from harmonic solutions. In both

cases the branching behavior is similar: at the boundary of the stable and unstable

harmonic solutions the subharmonic solutions of order 1/2 will appear and exist only

one side of the unstable harmonic solutions. In Fig. 6 (Ei = -7.5) are shown the Fourier
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components of subharmonic oscMations of order 1/2. From this figure it is evident that

the Fourier component ai/2 (whose frequency is a fraction 1/2 of the driving frequency

w) in the piecewise linear system agrees very well with the result in the curvilinear

sy$tem. Other components differ slightly in the neighborhood of the branching point.

As to harmonic solutions in Fig. 5, the Fourier components shown in Fig. 7 (Ili = -7.5)
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are of the same shape in both cases. In Figs. (8), (9) and (10)' the results of harmonic

solutions in the case of m = 2 are given. In the case of the curvilinear restori'ng force for

the numerical calculations two methods (i) regula fhlsi, (ii) harmonig balance are used.

The components ao , ai , a2 in the case of regula falsi method agree very well with those

ofharmonic balance method. The third components a3 differ slightly in two cases.

   Finally, branching behavior of subharmonic solutions of order 112 from harmonic

solutions in M-E plane in case m = 1 is shown in Figs. (11) and (12). Comparison of

Figs. (1 1) and (12) tells us that the behavior differs from each other and is no longer of

exactly the sarne value, but having same tendency.

                           6. Conclusions

   Forgoing analysis is restricted to the behavior of the' periodic solutions in the case

where m external forces are applied to unsymmetrical systems in both the piecewise

1inear system and the curvilinear system. From this point of view the piecewise linear

idealization appears to be suffaciently general to be able to account for a considerable

number of phenomena encountered in the theory of oscMations. The results are sum-

marized as follows:

(i) The phenomena represented by the piecewise 1inear system differ slightly from the

   curvilinear system since it'represents the performance by rneans of two straight

   1ines disregarding the curvilinear part between them.

(ii) For the qualitative behavior of the periodic solutions, the piecewise linear repre-

   sentation is, generady, sufficient and slight quantitative difference between the two

   modes of representation is jusified by the gain in simplicity inherent in the idealized

   piecewise linear representation.

   The future work includes investigations of chaotic motions from period doubling
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motions in dissipative systems.

   Finally, it is noted that numerical calculations were perfbrmed by using ACOS-700

at the computer center, University of Osaka Prefecture.
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