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This paper proposes a new method for searching the best linearization point
in the Advanced First-Order-Second-Moment method. It is compared with the methods
by Rackwits-Fiessler and Chen-Lind, and demonstrated to be efficient. The proposed
method is applied to reliability analysis of a column subjected to a combined load
effect to examine the effect of the linear and nonlinear failure criteria on the resulting
reliability.

1. Introduction

Many studies!) have been made on the methods of reliability analysis of a structural
system where the statistical variations of member strengths and loads are taken into
account to evaluate the reliability. Reliability analysis requires the numerical evaluation
of the probability of failure events. When non-normal basic random variables are
introduced or when a limit state function is non-inear, the evaluation of the convolu-
tion integral of the failure probability is a troublesome work. It may be impractical to
exactly evaluate the failure probability in case -of the statistical data insufficiently
provided. ' Linearizing the limit state function and approximating the non-normal
random variables by the normal ones lead to a very simple and efficient method of
evaluating the reliability. The validity of such an algorithm depends mainly on the
choice of the linearization point and on the approximation of the random variables.

This paper is concerned with a so-called Advanced First-Order-Second-Moment
(AFOSM) methodZ), in which the best linearization point is selected on the limit
state surface, i.e., a surface dividing the transformed basic random variable space into
a failure region and a safe region. A new method is developed to search the best line-
arization point by applying an optimization technique. The proposed method is com-
pared with the methods by Rackwitz-Fiessler?) and Chen-Lind® through numerical
examples. Finally, the reliability analysis of a column subjected to a combined load
effect of a bending moment and an axial force is carried out with the proposed method
and the effect of the linear and nonlinear failure criteria is discussed on the reliability.
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2. Concept of First-Order-Second-Moment (FOSM) Method

At first, a failure criterion or a limit state function is defined in order to evaluate
the reliability of a structural system. The limit state function of a structure under
operating, accidental and environmental loading conditions can be generally described
in the form:

Z = Q(Xl,Xz,---,Xn) (1)

where Xj’s are basic random variables of member strengths and loads applied to the
structure. The structure is in the failure state when Z<0 while it is in the safe state
when Z>0. g(X,, X,, ..., Xp) = 0 yields a surface to divide the failure and safe regions
and it is called the limit state surface. The probability of failure Py is given by

P = f’/:“ffx,-xz---x;z(xl,...,xn)a’xl...dxn 3]
D

where Fxroxoxa(X1se  Xn) is the joint probability density function of x;
(i=12,..,n) andD is the failure domain in the n-dimensional space in which Z<0
is satisfied. The multi-dimensional integration over the irregular domain D is impossible
to carry out analytically and quite costly to perform numerically. Therefore, a simpli-
fied method has been proposed for reliability analysis, using the first order approxima-
tion and the statistical moments up to the second order.

2.1 Simple method

_ A linear approximation of the limit state surface Z=g(X, X;,..., X)=0_is
obtained by expanding it into the Taylor series around the mean value point X =
(1, t2y oo s M2n) and by neglecting the second order and higher terms. Then, the re-
liability index g is defined by using the mean value u, and standard deviation o; of
the linearized limit state function:

g = 3)

(04

where

vz = g(ur, L2, ..., tn)
of = E[(Z—p)?] = 33 A, A;,COV[ X, X

A; = [39/ x5

COV[ X, X;]1 = E[(X:— ) (X;— p5)]
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2.2 Advanced method

The FOSM method mentioned above is easy to calculate, but it has some drawbacks;
1) The linearization error will increase in the region far from the linearizing point

especially when the limit state function is highly nonlinear.

2) The FOSM method does not give invariant reliability index for the failure criteria
which are equivalent but expressed in the different forms.

These drawbacks are eliminated? by choosing the linearizing point on the limit
state surface g(Xi, Xz, ..., Xn)=0. This method is refered to as Advanced First-
Order-Second-Moment (AFOSM) method, which is briefly explained in the following.

All the basic random variables X.(¢i=1,2,..., %) are treated as the uncorrelated
ones. They are transformed into their standardized form:

U= (Xi—p)/o: (i=1,2,...,n) 4

Where & and o; are the mean value and standard deviation of Xj, respectively. The
limit state surface can be correspondingly rewritten in terms of the standardized vari-
ables as follows:

Z = h(u)=n(u,usz,..., tn) &)

where U4 = (uy, uz, ..., Un)

Consider a point u®= (. u?,...,u.°) on the limit state surface in the standardiz-
ed space (U-space) and linearized the transformed limit state function A (u) by ex-
panding it into the Taylor series around u°. The mean value u; and standard deviation
g;’ are calculated with the linearized failure surface, and an index , is defined by:

#ZO

Boz—o

n (6)
— 2 wf[on(u)/du:] o
=1

{ & 1onu)/oulze |

o,

The value of 8, obviously depends on the point &° around which the limit state func-
tion is expanded. The minimum value 8 of B is called the reliability index, and the
corresponding point & is called either a g point or a design point. 8 is also shown to
be equivalent to the shortest distance from the origin to the limit state surface # (&) =0
in the U-space.

Reliability indices Egs. (3) and (6) are expressed in terms of the first and second
statistical moments of the basic random variables and the gradients of the limit state
function. No account is taken into the shapes of the probability distributions although
the basic random variables, i.e., strengths and loads, generally follow the various non-
normal probability distributions. To overcome the problem, a normalizing mapping is
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introduced in the following section to transform a non-normal random variable into a
standardized normal one,

3. Methods for Searching §-point

The problem here is how efficiently to find the 8- point. In the following, three
conventional methods are summarized and a new method is proposed by using an
optimization technique.

3.1 Conventional methods

A transformation of a non-normal random variable X into a standard normal one
Uj; is realized by a mapping:

U; = 07'[Fi(X),)] )

where  Fj(X;) : probability distribution function of X;
&(U;) : standard normal probability distribution function
Let U; be the standardized variable of Xj, je., U;=(Xi—uxi)/ 0xi where ux;
and ox; are the approximating mean and standard deviation of x;, respectively. Then,
ux; and ox; are given by

ux; = X;— ox; 0 Fi(X;) ]
®

ox; = p{O [ F:(X)]}/ F(Xs)

Where ¢ () : standard normal probability density function
5i(Q) : probability density function of Xj

The algorithm by Rackwitz and Fiessler® (abridged as R—F method) iteratively
finds the f-point with the following procedure.

The searching is performed in the U-space. Let 8* be a unit normal vector at
a point uk of the limit state surface & (u) = 0, as shown in Fig. 1. Then, a one-dimen-
sional search in the direction 8* is performed from the origin to find the distance
bk to the limit state surface, i.e.,

h(b* 8*) =0 ©)
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\Uz

Figl Rackwitz —Fiessler method

at the point u **! = p*8*, calculate the unit normal vector §%+! of the limit state
surface and repeat the one-dimensional search. These procedures are iterated m times
when a convergence condition is satisfied. The distance p” from the origin to the
point 4 ™' corresponds to the reliability index 8. The failure probability Pr is then
estimated by '

Pr= 0(—8) (10)

When the probability distribution of a basic random variable is very skew, the R—F
algorithm tends to give a considerable discrepancy and it is said that a serious numerical
error may occur unless double precision is used in the computer calculations®).

Then a new algorithm for the calculation of reliability index is proposed by Chen
and Lind®"5). The method abridged as C—L method is similar to the R—F algorithm,
but it uses the following transformation of a non-linear random variable:

Xi— px; :
Fi(X;) = a’iq){ s } (11)
where @;: constant

The three parameter Vx;, 0 x; and @; are determined such that the values of Fj(Xj),
fi(Xi), and its derivative f;(X;j) are identical at the approximation point Xx* to the
corresponding values of the approximating function a; @ { (X =) ox; | . The re-
liability index and the probability of failure are approximated as follows:

n
Z; a pxi—x¥)
£

(3 oo ]

g* = (12)
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whete n — dg(x)
. z axi x*
n
Prz=o(-p- 11w (13)

The reliability index B, i. e., the minimum value of 8,, Eq. (6), can also be obtained
by solving the following optimization problem®:

minimize : 7y, = (47 u)l/2
subject to the constraint : (14)

h(u)=0

To solve this problem, a Lagrange’s undetermined multiplier is introduced to
construct a Lagrangean function L,

L= (uT-u)'?+in(u) (15)
Optimality conditions are given by

oL _ oL _ .

Fiaiy i 0 (:=1,2,...,m) . (16)

By solving the set of algebraic equations Eq. (16), the optimum values&* and X * are
obtained and @ is given by

8= min(uT-u)1/2=(u*T-u*)1/2 a7

The probability of failure Py is calculated approximately by
P, = 0(—4) (18)

It should be noted here that Eq. (16) is not, in general, solved easily either analytically
or numerically.

3.2 Proposed method

An extended Lagrangean function is introduced to solve the optimization problem
Eq.(14):

L(u;2) = (uT-u)?+ ph(u)+057{h(u)}? (19)

where g, r are constants (¢, ¥>0).

Eq. (19) can be solved easily by making use of an unconstrained optimization tech-

nique. An algorithmic procedure” is as follows:

Step 1 : Specify the initial values of 7 and u, (for example, r® =5, u° =0) and set
k=0, r*= 7% and p* = ° .
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Step2 : Input the initial value of u, i.c,uw*=u’=(u?, us’, ..., ux")  (for example,
u} =0,i=1,2,...,n).

Step3 : Solve the unconstrained optimization problem of minimizing L, (&.4)
by a conjugate gradient method. Then, obtain the solution u k+1.

Step4 : If the convergence condition | A(u) | < € is satisfied for a sufficiently small
value of € (>>0), stop the calculation. Otherwise, go to step 5.

Step 5 :Set prtl=gyerk, pitl=pkt reilu)
‘where w is a constant (w > 1) (for example, w = 5).

Step 6 : Set k=Fk+1, then go to Step 3.

By substituting the optimum solution &* thus obtained into Eq. (17), the probabili-
ty of failure is estimated as

Pr=0(—8) (20)

4. Comparison of Searching Methods

The proposed method is compared with the methods by Rackwitz-Fiessler and
Chen-Lind through numerical examples.

The strengths of members and applied loads are assumed to be mutually inde-
pendent random variables whose types of distributions, mean values and coefficients
of variation are specified for the calculations. The combination of the coefficients
of variation of the member strengths and the loads are denoted by CV(0.05, 0.3),
etc. The types of distribution are designated by IPD(3, 4), IPD(1, 4), etc., where the
first number in the parentheses indicates that of the strengths, and the second one does
that of the loads. Further, the numbers correspond to the following distributions : 1-
normal, 3-Weibul, 4-Gumbel.

4.1 One-member-one-load structure

Consider a simple structure with one-member-one-load as shown in Fig. 2. The
limit state function is given by

Fig.2 One-member-one-load structure

Z=R-S 21
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where R is the member strength, and § the applied load. The failure probabilities
are calculated for the specified central safety factors SF=R S and shown in Fig. 3.

(a), (b), and (c).
SF
112 3 4 5 6 7 8 9
IPD(4,3), Cv(0.3,0.3)
\ = Numerical
10_1 X FOSM method
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(c) IPD(3,4), CV(0.15,0.3)

Fig. 3

for the one-member-one-load structure

Failure probability Prversus central safety factor SF
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The exact solutions are evaluated by a numerical integration and they are also
plotted in the figures. The failure probabilities estimated by the simple FOSM method
show great discrepancies as SF becomes large, while all the other methods, ie., the
proposed method, R—F method, and C—L method give the values which are in fairly
good agreement with the exact values.

4.2 Three bay frame structure

Failure probabilities are evaluated for the typical collapse modes of a three bay
frame structure shown in Fig. 4. The results are listed in Table 1. The proposed method
gives almost the same results as R—F method. However, C—L method yields a value
different from the others. Further, the numerical experiments shows that C—L method
fails to converge depending on the initial values or the types of distribution while
the proposed method is versatile to apply to any types of limit state functions.

Lo Ls L4 h=5m, /=10m
L le M, l M,

M M Mg L,=50kN-m
I ! — — —
Ml Ml M) JIL 3= Ls=L,=40kN

M;=101kN-m (=12, ...,1I)
M ’

(a) Beam mechanism

[\

L ‘Ab

M, M, Mo
e

(b) Side swéy mechanism

L

L2 M, My Mo
M;
M, Ms Ms My

(¢) Combined mechanism

Fig.4 Collapse modes of a three bay frame structure

5. Reliability Analysis of Column Subjected to Combined Loads

By using the proposed method, reliability analysis is carried out for a column
subjected to a combined load effect of a bending moment and an axial force as shown
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in Fig. 5. The critical section to fail is assumed to be the root of the column. The basic
random variables are the horizontal load P;, the vertical load P,, and the yield stress
Cy of the column. The form of the cross section is rectangular. Then the fully plastic
bending moment capacity Mp and the fully plastic axial force capacity Np are given by

e

1%
v
¥

p [

!
1

Fig. 5 A column subjected to combined loads

Mp= Zp Cy, Np= Ap Cy (22)

where Zp =1/4. VH?, and Ap=VH
The applied bending moment M and the axial force N are M =P;- [ and N =P,, res-
pectively. The failure criterion under the combined load effect is often taken as

()

__|M|_(N
z=1 ’Mp No

A linearized criterion is also proposed®:

M N
Mp NP

The effect of the failure criteria are examined on the resulting probabilities of fail-
ure. The mean and coefficient of variation of the yield stress are fixed to be Cy =245
MPa and CV ¢, = 0.1 while the mean of the horizontal and vertical forces are changed as
explained below with their coefficients of variation fixed to be 0.1. The central safety

factor is defined here by

Z=1- (24)

_ 1

| M/ M| + | N/ Ny
The relative contribution of the bending moment and the axial force to the failure is
evaluated by the ratio:

SF (2%

R =|M/Ms|/|N/ Ny (26)
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Table 1 Failure probabilities for the collapse modes
of a three bay frame structure

IPD (3,4) ,CV (0.3,0.3)

33

Limit state function Method Pr
(a) Beam mechanism Proposed method 2.0718 x 1072
R—F method 2.0718 x 1072
Z=My+2M3+Mq—( 1/2) L2 C—Lmethod | 2.0828x10"2
(b) Side sway mechanism Proposed method 1.1440 x 107*
Z=M+My+Mg+Ms+M7+Mg+M;g+M; 7 | R—F method 1.1440 x 107*
—hL; C—L method fail to converge
(c) Combined mechanism Proposed method | 1.6565 x 10™*
Z=M]+2M3+2My4 +Ms+M7+Mg+Mj o+M] ;1 R—F method 3.6607 x 1074
~hL1~(/2)L2 [ C_L method fail to converge

Table 2 Failure probabilities for the varioué values of SF and R

IPD (1,1) IPD (4,4)
Linear Non-linear Linear Non-linear
SF | R |P;(kN)| Py(kN) Py Pr Pr Pf
0 0.0 |1666.00| 5917x1072 |5917x102 |5.159x1072 |5.159x1072
0.27| 0.885 |1312.22 | 4.697x 102 [9.119x 102 |3.232x107% |6.794x 1073
0.58] 1.525 |1055.46 | 4219x 10 {1.944x 1073 |2248x1072 |8479x10™*
125 1.0 | 2.083 | 833.00 | 4.086x 102 |6.761x10* |1.901x107% |8311x1075
1.73] 2.640 | 610.15 | 4.219x 102 |5.918x 10 |2.248x1072 |1.749x107*
3.73| 3.280 | 354.07| 4697x 107 |2.527x 102 |3.232x107 [2.179x1073
oo | 4.165 0.00] 5917x1072 |5917x102 |5.159x1072 |5.159x1072
0 0.0 [1249.50| 3.018x10™* |3.018x10% |4.705x10™* [4.705x107*
0.27] 0.661 | 984.90| 1.639x10™* |1.671x107° [9.100x10™5 |1.744x107°
0.58| 1.145 | 791.35| 1.249x 10™* [2.080x107° |1.768x10° |5.016x 107’
167110 | 1.562 | 624.75 | 1.156x10™* |5.746x1077 |4.779x10° |6.369x 10~
1.73] 1.978 | 458.15| 1.249x 10 |5.003x 1077 |1.768x10° |6.175x 1078
3.73] 2463 | 26450 | 1.639x 107 {3.217x10° |9.100x 10~ |4.850x 107
o | 3.124 0.00] 3.018x10™* |3.018x10* ]4.705x10* |4.705x 107
0 0.0 833.00 | 1.267x 1078 |1.267x 108 | 4.024x107% | 4.024x1078
0.27| 0443 | 656.01 | 5.848x10° |[5.341x 10710 | 7.522x1071% | 1.384x 10710
0.58| 0.765 | 526.85 | 4.242x10° | 7.015x 107! | 1.065x 107! | 2.619x 10713
250 1.0 | 1.041 | 41650 3.882x 107 |2.175x 107! | 1419x 1073 | 5576 x 107*°
1.73] 1.317 | 306.15 | 4.242x 10 | 1.898x 107! | 1.065x 107! | 1.901 x 1074
373! 1.640 | 176.99 | 5.848x 102 |1.048x1071° | 7.522x 107 | 3.344x 107!
oo | 2.083 0.00] 1.267x107® [1.267x10™ [4.024x107° | 4.024x1078

H=0.10m, V=0.085m,/=10.0m
Cy=245MPa ;CVp; = 0.1,CVp, = 0.1,CV ¢, = 0.1
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Table 2 lists the probabilities of failure for the various combinations of SF and R
when all the basic random variables are distributed either normally or in Gumbel’s
form. As expected, it is seen that the numerical values due to the two criteria are
identical when R is extremely large or small, i.e.,, the bending moment or the axial
force is dominant. In-between, the linear failure criterion yields a conservative estima-
tion of the failure probability. Figs. 6 (a) and (b) plot in the U-space the g-points
corresponding to the various values of R with SF = 1.67, which shows that the best
linearization points are dependent on the probability distribution.

R marks  B-points

0 n 1, 8
0.27 B 2,9
0.58 & 3, 10
1.0 a 4, N
173 ® 5, 12
.73 o 6, 13
® o 7, 14
SF = 1.67
IPD(1,1) 31~ 7

Fig. 6 Bpoints in U-space
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R marks B-points

0 a 1, 8
0.27 O 2,9
0.58 A 3, 10
1.0 A 4, 11
.73 ® 5, 12
.73 O 6, 13
® 0o 7, 14
SF = 1.67

PD(1,1) 51~ 7

(b) Non-Tinear limit state function

Fig. 6 B-points in U-space

6. Conclusion

The new method has been proposed for seaching g-point in the AFOSM method,
by applying the extended Lagrangean function. It is compared with the methods by
Rackwitz-Fiessler and Chen-Lind through numerical examples. It is shown that the
three methods yield the similar results. Finally, the proposed method is successfully
applied to the reliability analysis of a column subjected to a combined load effect of
the bending moment and the axial force to examine the effect of the linear and non-
linear failure criteria on the resulting failure probability. It is shown that the linear
criterion gives a conservative estimate of failure probability particularly when the
relative contributions of the bending moment and the axial force are competitive.
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