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A Study on FirstDrder-Second-Moment Method
           in Structural Reliability
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    Satoshi MATSuzAKI"""" and Toshiki MATSuMoTo****

                 (Received June 15, 1984)

   This paper prop6ses'a new method for searching the best 1inearization point

in the Advanced FirstOrder-Second-Moment method. It is compared with the methods

by Rackwits-Fiessler and Chen-Lind, and demonstrated to be efficient. The proposed

method is applied to reliabmaty analysis of a column subjected to 'a combined load

effect to exarnine the effect of the linear and nonlinear failure criteria on the resulting

reliability.

                           1. Introduction

   Many studiesi) have been made on the methods of reliability analysis of a structural

system where the statistical variations of member strengths and loads are taken into

account to evaluate the reliability. Reliability analysis requires the numerical evaluation

of the probability of failure events. When non-normal basic random variables are

introduced or when a limit state function is non-linear, the evaluation of the convolu-

tion integral of the failure probability is a troublesome work. It may be impractical to

exactly evaluate the failure probability in case of the statistical data insufficiently

provided. Linearizing the limit state function and approximating the non-normal

random variables by the normal ones lead to a very simple and efficient method of

evaluating the reliability. The validity of such an algorithm depends mainly on the

choice of the linearization point and on the approximation of the random variables.

   This paper is concerned with a socalled Advanced First-Order-Second-Moment
(AFOSM) method2), in which the best linearization point is selected on the limit

state surface, i.e., a surface dividing the transformed basic random variable space into

a failure region and a safe region. A new method is developed to search the best line-

arization point by applying an optimization technique. The proposed method is com-
pared with the methods by Rackwitz-Fiessler3) and Chen-Lind4) through numerical

examples. Finally, the reliability analysis of a column subjected to a combined load

effect of a bending moment and an axial fbrce is carried out with the proposed method

and the effect, of the linear and nonlinear failure criteria is discussed on the reliability.
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       2. ConceptofFirstOrder-Second-Moment(FOSM)Method

   At first, a failure criterion or a limit state function is defined in order to evaluate

the reliability of a structural system. 'Ihe 1imit state function of a structure under

operating, accidental and environmental loading conditions can be generally described

in the form:

Z == g(Xi,X2,...,Xn) (1)

where Xi's are basic random variables of member strengths and loads applied to the

structure. ･'Ihe structure is in the failure state when ZSgO while it is in the safe state

whenZ>O. g(Xi, X2,...,Xh)=Oyieldsasurface to divide the failure and safe regions

and it is called the limit state surface. The probability of failure Ilf is given by

       R=ff..frki･x2 xn(Xi,･･･,Xn)dui･･･Cixn (2)

             D
where rk,.x."x.(xi,...,xn) is the joint probability density function ofxi

( i =1, 2, ... , n) andD is the failure domain in the n-dimensional space in whichZf{O

is satisfied. IThe multi-dimensional integration over the irregular domain D is impossible

to carry out analytically and quite costly to perform numericady. Therefore, a simpli-

fied method has been proposed for reliability analysis, using the first order approxima-

tion and the statistical moments up to the second order.

2.1 Simplemethod

   A linear approximation of the limit state surface Z=g(Xl,.Xh,...,Xn)--O iS
obtained by expanding it into the Taylor series around the mean value point je =

(pti,"2,...,ptn) and by neglecting the second order and higher terms. Then, the re-

liability index B is defined by using the mean value "z･ and standard deviation az of

the linearized limit state function:

B -: !IL.

    op
(3)

where

ptz = g("1,#2,". ,ptn)

of == E[(Z-ptz)2]   nn!2ZA,A,
  i J'

cov[&, x)]

A, - [dn/0LX)]x

cov[&, x)] - E[(Xl- pi) (JLr- ptJ')]
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2.2 Advancedmethod

   The FOSM method mentioned above is easy to calculate, but it has some drawbacks;

1) The linearization error wil1 increase in the region far from the linearizing point

   especially when the limit state function is highly nonlinear.

2) The FOSM method does not give invariant reliability index for the failure criteria

   which are equivalent but expressed in the different forms.

   These drawbacks are eliminated2) by choosing the linearizing point on the limit

state surface g(Xi,k,...,Xn)==O･ This method is refered to as Advanced First-

Order-Second-Moment (AFOSM) method, which is briefly explained in the fbllowing.

   All the basic random variables Xl･(i--1, 2, ..., n) are treated as the uncorrelated

ones. They are transformed into their standardized forrn:

ca = (x- pti)/ oi (i = 1,2,.", n) (4)

Where "i and oi are the mean value and. standard deviation

limit state surface can be correspondingly rewritten in terms

ables as follQws:

of Xi, respectively. The

of the standardized vari-

Z - h( u) == h(ui,u2,.",un) (5)

where U = (u!,u2,...,un)

   Consider a point uO = (uiO,u20,...,unO) on the 1imit state surface in the standardiz-

ed space (ULspace) and linearized the transformed limit state function h (tD by ex-

panding it into the Taylor series around uO . The mean value ptzO and standard deviation

ozO are calculated with the linearized failure surface, and an index 6o is defined by:

     ptzBo =
     oz

o

o

  n-2
  i=1

u,O･ [Oh( u)/Oui].o

[0h(U)/Ou,]&, )"2

(6)

{ nz
i=1

The value of Bo obviously depends on the point uO around which the limit state func-

ti6n is expanded. The minimum value B of Bo is called the reliability index, and the

corresponding point u is called either a B point or a design point. I3 is also shown to

be equivalent to the shortest distance from the origin to the limit state surface h (q) =O

in the ULspace.

   Reliability indices Eqs. (3) and (6) are expressed in terms of the first and second

statistical moments of the basic random variables and the gradients of the limit state

function. No account is taken into the shapes of the probability distributions although

the basic random variables, i,e., strengths and loads, generally follow the various non-

normal probability distributions. To overcome the problem, a nofmalizing mapping is
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introduced in the following section to transform a non-normal random variable into a

standardized normal one.

                3. MethodsforSearching 5-point

   The problem here is how efficiently to find the B- point. In the following, three

conventional methods are summarized and a new method is proposed by using an

optimization technique.

3.1 Conventionalmethods

   A transfbrmation of a non-normal random variable Xif into a standard normal one

Uir is realized by a mapping:

      Ui=¢-i[R(Xlr)] (7)
where Ef(Xir) : probability distribution function ofXlr

       ¢(uif) : standard normal probability distribution function
   Let Uir be the standardized variable of Xi, i.e., Ulr =(Xir " izxi) / ctoci where szxi

and ("ci are the approximating mean and standard deviation of xi, respectively. Then,

p･xi and axi are given by

ptxi -- .Xlg- oxi¢-i[R(.X})]

(8)

ati - ip{¢-i[R(Xl)]}/A(Xli)

Where ¢ (.) : standard normal probability density function
       n (.) : probability density function of Xlr

   The algorithm by Rackwitz and Fiessler3) (abridged as R-F method) iteratively

finds the IY-point with the following procedure.

   The searching is performed in the CLspace. Let 6h be a unit normal vector at
a point uk of the limit state surface h (u) = O, as shown in Fig. 1. Then, aone-dimen-

sional search in the direction Sh is performed from the origin to find the distance
bkto the limit state surface, i.a,

h(bh 6h) = O (9)
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Figl Rackwitz･-Fiessler method

at the pointuk+' = bh6h,. calculate the unit normal vector,6k'i of the limit state

surface and repeat the one-dimensional search. These procedures are iterated m times

when a convergence condition is satisfied. The distance bm from the origin to the

point uM'i corresponds to the reliability index B. The failure probability Itf is then

                    'estimated by ''

Rf ! ¢(-B) (1O)

   When the probability distribution of a basic random variable is very skew, the R-F

algorithm tends to give a considerable discrepancy and it is said that a serious numerical

error may occur unless double precision is used in the computer calculations4).

   Then a new algorithm for the calculation of reliabdity index is proposed by Chen

and Lind4)'5). The method abridged as C-L method is similar to the R-F algorithm,

but it uses the following transfbrmation of a non-linear random variable:

Ft(x,) = a, ¢( X}i.fXtl (11)

where cti:constant

   The three parameter pxi,oxi and ai are determined such that the values ofJFle(Xif),

rt(Xi), and its derivative fi(Xi) are identical at the approximation point x"to the

corresponding values of the approximating function ai O ( (,)ifl -ptx, )I(ixi i . The re-

liability index and the probability of failure are approximated as follows:

B* -=
     (

n
Z ai(pxi-x,*･ )
i=1

tl.i(ai.oti)2]ii2
(12)
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                                         .t
where og(x)
. ai= oxi x*

                     n

       Rf; ¢(- B")･R ai , (13)                     i--1
                       ttt                                   '
   The reliabihty index B･, i. e., the minimum value of B., Eq. (6), can also be obtained

by solving the fo11owing optimization problem6):

       minimize : 7o =(uT.u)ii2

       subject to the constraint: (14)
                 h(u) =- O

   To solve this problem, a Lagrange's undetermined multiplier is introduced to

construct a Lagrangean function L,

       L= (a'･ u)"2+Ah(u) (15)
Optimakty conditions are given by

       OL OL       bi.i}.=it =O (i -- 1,2,-･･n)･ (16)
By solving the set of algebraic equations Eq. (16), the optimum valuesu" and A * are

obtained and B is given by

       B= min (u'･ u) "2=(u"'･ u")i'2 (1 7)

The probability of failure Itf is calculated approximately by

It should be noted here that Eq. (16) is not, in general, solved easily either analytically

or numerically.

32 Proposedmethod

   An extended Lagrangean function is introduced to solve the optimization problem

      L,(u; Ju) == (u'･u)i'2+tth(u)+O.5r{h(u)}2 (19)

where pt,rare constants (p, r>O).

Eq. (19) can be solved easily by making use of an unconstrained optimization tech-
nique. An algorithmic procedure7) is as fo11ows:

Step1 :Specify the initial values of rand ", (for example, rO =,5,ptO =O) and set

       k= O, rh = rO, and ph = ptO .
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Step2 : Input the initial value ofu, i.e.,uk=uO=(uiO,u20,..,,unO) (for example,

        u? = O, i= 1, 2, ..., n).

Step3 : Solve the unconstrained optimization problem of minimizing Lr (U,pt)

        by a corijugate gradient method. Then, obtain the solution u k+1 ･

Step 4 : If the convergence condition i h(u) I < e is satisfied for a sufficiently small

        value of e (>O), stop the calculation. Otherwise, go to step 5.

Step5 :Set rh"i=w.rh, pth'i==ptk+rh･h(u)
        'where w is a constant (w > 1)(fbr example, cD = 5),

Step6 : Set le== le+1, then go to Step 3.

   By substituting the optimum solution u" thus obtained into Eq. (17), the probabili-

ty of failure is estimated as

                4. ComparisonofSearchingMethods

   The proposed method is compared with the methods by Rackwitz-Fiessler and

Chen-Lind through numerical examples.

   The strengths of members and applied loads' are assumed to be mutually inde-

pendent random variables whose types of distributions, mean values and coefficients

of variation are specified for the calculations. The combination of the coethcients

of variation of the member strengths and the loads are denoted by CV(O.05, O.3),

etc. The types of distribution are designated by PD(3, 4), IPD(1, 4), etc., where the

first number in the parentheses indicates that ofthe strengths, and the second one does

that of the loads. Further, the numbers correspond to the fo11owing distributions : 1-

normal, 3-Weibul , 4-Gumbel.

4.1 One-memberone"oadstructure

   Consider a simple structure with one-member-one-load as shown in Fig. 2. The

limit state function is given by

s

R

Fig.2 One-memberone-load structure

Z=R-S (21)
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where R is the member strength, and

are calculated for the specified central

(a), (b), and (c).

S the

safety

applied

factors

 loadLT-1.-ie fadure probabilities

SF=R S and shown in Fig. 3.
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   The exact solutions are evaluated by a numerical integration and they are also

plotted in the figures. The fadure probabilities estimated by the simple FOSM method

show great discrepancies as SF becomes large, while all the other methods, i.e., the

proposed method, R-F method, and C-L method give the values which are in fairly

good agreement with the exact values.

4.2 'Ihreebayftamestructure

   Failure probabilities are evaluated for the typical collapse modes of a three bay

frame structure shown in Fig. 4. The results are listed in Table 1. The proposed method

gives almost the same results as R-F method. However, C-L method yields a value

different from the others. Further, the numerical experiments shows that C-L method

fads to converge depending on the mitial values or the types of distribution while

the proposed method is versatile to apply to any types oflimit state functions.

                 L? ts L4 h=5m, l=10m
          b va･ IVk M7 t"lo
                lvE lvk tvfb T L-,-50kN･m
                                   h
            1va /vls tvth M, -L [,=L-,==[,==40kN
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i M M M th

M ng
   {b) Side

L
,

   ILdla Mi
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L
2  va M7 th

                t,,k

          M} tvd!; tLaQ, Mi
             (c) Combined mechanism
               Fig. 4 Collapse modes of a three bay frame structure

      5. Reliability Analysis of Column Subjected to Combined Loads

   By using the proposed method, reliability analysis is carried out for

subjected to a combined load effect of a bending moment and an axial force

a column

as shown



32 Yoshisada MUROTSU, Masaaki YONEZAWA, Hiroo OKADA, Satoshi MATSUZAKI
                 and Toshiki MATSUMOTO

in Fig. 5. The critical section to fail is assumed to be the root ofthe column. The,basic

random variables are the horizontal load Pl, the vertical load ll2, and the yield stress

/Cly of the column. The form of the cross section is rectangular. Then the fu11y plastic

bending moment capacity ?llb and the fu11y plastic axial force capacity Ai2J are given by

                             kH-
                             m:･

Fig. 5

R
P
,

l
A column subjected to combined loads

Mb = Zp Cy, Alb = Ap Cy (22)

where lb =ll4･ va2, and Ap= V;H

The applied bending momentM and the axial forceNare M=Pl･ l andN=ll2, res-

pectively. The failure criterion under the combined load effect is often taken as

       z=1- -MMb -(i¥l,)2 (23)

A linearized criterion is also proposed8):

               MN

   The effect of the failure criteria are examined on the resulting probabilities of fai1-

ure. The mean and coefficient of variation of the yield stress are fixed to be Cly = 245

MPa and CV( ly = O.1 while the mean of the horizontal and vertical forces are changed as

explained below with their coefficients of variation fixed to be O.1. The central safety

factor is defined here by

                   1       SF == -.                                                         (25)            l M/ Mb1 + 1 Mi Nio1

The relative contribution of the bending moment and the axial force to the failure is

evaluated by the ratio:

R= 1 ti/M1 / l N-/ 2X7},l (26)
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Table 1 Failure probabilities for the collapse modes

of a three bay frame structure

                           IPD (3,4), CV (O.3,03)

Limitstatefunction Method Pf

Proposedmethod 2.0718xlo-2(a)Beammechanism

Z=M2+2M3+M4-rl122L2
R-Fmethod 2.0718x10-2

C-Lmethod 2.0828xlo'2

Proposedmethod 1.1440xlo'-4(b)Sideswaymechanism

Z=Ml+M2+M4+Ms+M7+Ms+Mlo+Ml1
-hLl

R-Fmethod 1.1440xlo-4

C-Lmethod failtoconverge

Proposedmethod 1.6565xlo-4(c)Combinedmechanism

Z=Ml+2M3+2M4+Ms+M7+Ms+Mlo+Ml1
-hLl-(l127L2

R-Fmethod 3.6607xlo-4

C-Lmethod failtoconverge

Table 2 Failure probabilities fbr the various vatues of SF and R

IPD(1,1) IPD(4,4)

Linear Non-linear Linear Non-linear

SF R Pl(kN) P2(kN) Pf Pf Pf Pf
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   Table 2 lists the probabMties of failure for the various combinations of st7 and R

when ad the basic random variables are distributed either normally or in Gumbel's

form. As expected, it is seen that the numerical values due to the two criteria are

identical when R is extremely large or smal1, i.e., the bending moment or the axial

force is dominant. In-between, the linear failure criterion yields a conservative estima-

tion of the failure probabihty. Figs. 6 (a) and (b) plot in the U-space the B･-points

corresponding to the various values of R with ,SF = 1.67, which shows that the best

linearization points are dependent on the probability distribution.
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                         6. Conclusion

   The new method has been proposed for seaching P.point in the AFOSM method,

by applying the extended Lagrangean function. It is compared with the methods by

Rackwitz-Fiessler and Chen-Lind through numerical examples. It is shown that the

three methods yield the similar results. Finally, the proposed method is successfu11y

applied to the reliability analysis of a column subjected to a combined load effect of

the bending moment and the axial force to examine the effect of the linear and non-

linear fallure criteria on the resulting failure probability. It is shown that the linear

criterion gives a conservative estimate of failure probability particularly when the

relative contributions of the bending moment and the axial force are competitive.
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