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Safety Margins for Reliability Analysis of Frame Structures

Hiroo OkADA*, Satoshi MATsuzAKI** and Yoshisada MuUROTSU***

(Received November 15, 1983)

The new method is proposed in this paper for generating safety margins of general
frame structures, taking account of interaction of the applied loads on yielding of the
sections and structural failure defined as production of large nodal displacements due
to the plastic collapsing. The plasticity condition of the sections is approximated by
a linear surface and the matrix method is applied to formulate the safety margins as
linear combinations of the strengths of the elements and the applied loads, which greatly
facilitates reliability analysis of the frame structures under any loading conditions.

1. Introduction

The early studies on reliability analysis of frame structures were focussed on
estimation of reliability by evaluating its lower and upper bounds for given modes
of failure!™®, It is difficult in practice to specify the relevant modes of failure
and their equations a priori for large structures with high degrees of redundancy.
Consequently, identification of stochastically significant failure modes is recognized
to be an essential step to be done for reliability assessment of structural systems.
Researches for automatically generating mode equations of truss or frame structures
were initiated in the case where failure of structural elements was governed simply
by axial forces or bending moments.*~¥ However, failure criteria under com-
bined loads have not been fully applied to reliability analysis of general frame
structures.'?

This paper is concerned with a new method of generating safety margins for
general frame structures by taking account of interaction of the applied load effects
on an yielding section. For the purpose, the plasticity condition of a structural
element is at first approximated by a linear surface, and then the corresponding
reduced stiffness matrices and equivalent nodal forces representing the residual
strengths of the yielded elements are derived for the plastic analysis, by using a
plastic deformation theory. Finally, safety margins for reliability analysis are
formulated by using a matrix method.

2. Elastic-Plastic Analysis of Frame Structures

2.1 Basic assumptions

The following assumptions are made, concerning frame structures to be con-
sidered:
(1) Consider a frame structure whose elements are uniform and homogeneous
and to which only concentrated loads are applied. In such a frame structure,
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critical sections where plastic hinges may form are the joints of the elements and
the places at which the concentrated loads are applied. Consequently, those poten-
tial plastic hinged sections are taken as the ends of the elements to facilitate struc-
tural analysis.

(2) Yielding of a section occurs when the yield function F, is equal to zero, that
is, F,==0. Further, the yield function F, is determined by the dimension and yield
stress of the element as well as the applied internal forces X,.

(3) Mechanical behaviours of materials are perfectly elastic-plastic. That is,
the plastic hinged sections follow the plastic deformation theory, and the other
section behaves elastically.

2.2 Plasticity condition

Let X, and 8, denote the nodal force and displacement vectors of the unit
element 7, j, e.g., the element number ¢ in the local coordinate system shown in
Fig. 1.

From the assumption (1), the bending moment varies linearly from node i to j.
It follows that the maximum bending moment of the unit element occurs at one
or both of the nodes. Eventually, the yielding occurs at one or both of the ends
of the unit elements when the plasticity condition F,=0 (k=i, j) is satisfied. In
case where the interaction at the yield section is not taken into account, this condi-
tion is simple.*”') 1In order to overcome the difficulties encountered in failure
analysis'® considering the interaction effect of the internal forces upon the plas-
ticity condition, the yield function is approximated by a linearized surface as given
in the following form:

F=R,—CiX,=0  (k=i,j) (1)
Y Mzi’ 24 sz’ 9zj
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(a) Plane frame
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{b) Space frame

Fig. 1 Nodal forces and nodal displacements.
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where R, : strength of the element end £,
C7?: factor determined by the dimension of the element.

Several examples of the plasticity conditions based on the above approxima-
tion are given for explanation:
(1) Plane frames where the interaction of the bending moment and axial force
upon the plasticity condition is taken into account and when a fully plastic mo-
ment is taken as the reference strength (see Fig. 2):

zk
Ry
ka
-R Apk_ R Apk
k kAZ
AZpk pk
_Rk

Fig. 2 Linearized plasticity condition considering the interation of
the bending moment and axial force.

Ry=04,AZ,, (a)
C?‘:(Azpi/Api Sign (in)a 0, Sign (Mzi)9 09 0, 0) (b)
CT=(0,0,0, AZ,;/A,; sign (F,), 0, sign (M) (¢c)
where g, : Yyield stress
AZ,: plastic section modulus
Ay, @ area of an element section

sign(«): signof (+)

Xt:(in, F

yis

Mzia ij9 ij> sz)T (d)
In particular, the well-known plasticity condition subjected solely to the bending
moment is obtained by making the first term of C7 and the fourth term of C] equal
to zero.

(2) Space frames where interaction of the bending moments and an axial force
is considered and when a fully plastic moment about the z axis is taken as the refer-
ence strength:

R,=0,AZ,, (e)
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CT :(AZzpi/Api Sign (Fm')a 03 0’ O, AZzp:‘/AZypi Sign (Myi):

Sign (Mz:')’ 0’ 0’ 0, 0, O’ O) (f)
C7=(0,0,0,0,0,0, AZ,,,/4,; sign (F,}), 0, 0, 0
AZ,);|AZ,,; sign (M,;), sign (M) (g)

where AZ,,,, AZ,,,: plastic section modulus about the z and y axes, respectively

XIZ(F::D Fyia in’ be Myi’ Mzi, st’ F,

EZL) sz: sza Myj: sz)T (h)
2.3 * Derivation of reduced stiffness matrices and equivalent nodal forces

When an element remains elastic, the relation between the nodal force vector
X, and displacement vector &, of an element is written as
X, =ktat (2 )
where k,: elastic element stiffness matrix
After a section of the element has yielded, i.e., the plasticity condition F,=0 has
attained, the relation between X, and &, will be derived in the following.

The total displacement 3, of the element is assumed to consist of an elastic
displacement 8¢ and a plastic displacement 8%, i.e.,

8, =83+ 8 =0i+01-+2] (3)

Based on the plastic deformation theory, the plastic deformation is expressed
in the form:

=22 __ ¢,
oF, (4)

where 4; and 1; are factors to indicate the magnitude of plastic deformation. For
example, when section i () is elastic, ;=0 (3;=0).
Nodal force X, is expressed as

Xt=ktaf =Ic,(a,—0’t’) ( 5 )
Substituting Egs. (3) and (4) into Eq. (5) gives

X,=k8:+2,k,C;+2;k,C; (6)
Substituting Eq. (6) into Eq. (1) reduces to:

R,—C7 (k8,4 2:k,C;+2,;k,C;)=0 -1

R;—C{(k8,+2,k,C;+2,;k,C;)=0 (7-2)

From Egs. (7), the relation between 2;, 4; and 8, is derived. By substituting the
resulting relation into Eq. (6), the following equation is obtained:

X,=k8,+ X (8)
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where k% : reduced clement stiffness matrix
X®: equivalent nodal force vector

The explicit forms of k%), X and 2, are expressed as follows:
(1) In case of an elastic element:

K=k, ©-1)
XP=0

(2) In case of failure at the left-hand end:
Zi:(Ri—C?ktat)/(Czrktci): xj =0
EP(=ki)=k,—k,C,CTk/(CTk,C) -2
X (=X 1)=RkC/(CTk,C)

(3) In case of failure at the right-hand end:
2;=0, lj:(Rj_C?ktat)/(C;kth)
EP(=kf)=k,—k.C;CTk,/(C]k,C)) 9-3)
XP(=XF)=R;k,C;/(CTk,C))

(4) In case of failure at the both ends:

Ml e rien N \
{z,}_'[ JLH,+ ]{R.}

J
CTk,C, CTk,C;]* CTk,
[G-1]: ’ [H]: T
CTkC; CTK.C, CTk,
EP(=ki")=k,~[H]'[G|[H]

- (9-4)

— . R,
Y. YLRy__ Tr-1 ¢
XP(=Xi")=[HT'[G ]{R.}

7

The reduced element stiffness matrix k¥’ and the equivalent nodal force vector
X are analytically derived from Egs. (a), (b), and (c) and they are given in Fig.
3 for the plane frame in which the interaction of the bending moment and axial
force upon the plasticity condition is considered. Moreover, it should be noted
that the following fact is observed from the results in Fig. 3. By taking C*=C*
=0, the reduced element stiffness matrix and the equivalent force vector for a
plane frame subjected to the bending moment alone are obtained, and those for a
truss structure subjected only to the axial force are given by putting, C*—oco and
R;/(CE-D)—>R{(=0,;A,)).

3. Generation of Safety Margins

Consider a frame structure with n elements and at most m/ loads (m: degree
of freedom of a node) applied to its / nodes. Let the left- and right-hand ends
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c) In case of Failure at the both ends

Fig. 3 Reduced element stiffness matrix kS‘”, and equivalent nodal force vector X for a

plane frame structure.
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of an element be serially numbered. Here, the failure criterion of the i-th element
end is given by

Structural failure of a frame structure is defined as occurrence of the plastic
collapsing in the structure. A criterion for structural failure is given in the follow-

ing manner. When the element ends r, r,, -++, 7,-, have failed, stress analysis is
performed once again and the element stiffness equation is obtained as

X,~KPd,+ X (n

where &% : reduced element stiffness matrix
X{: equivalent nodal force vector

After calculating the reduced element stiffness matrix for all the elements, they
are assembled to have the total structure stiffness equation:

K®d—=L-+R® (12)

where d : total nodal displacement vector referred to the global coordinate system
K®O=3"TTEPT,: reduced total structure stiffness matrix
i=1

T,: transformation matrix
L : vector of the external loads

R®=_3YTTX?: equivalent nodal force vector referred to the global
i=1

coordinate system
Solving the above equation with respect to the nodal displacement vector yields
d=[K®?|"Y(L+R®) (13)

From Eq. (13), the nodal displacérnent vector d, of the t-th element referred to
the global coordinate system is given by

d,=[KPTL+R?) (14)

where the matrix [K%’]7! indicates the matrix formed by extracting the rows cor-
responding to the vector d, from the matrix [K®]71. As 8, is related to d, through
the transformation matrix 7,: 8,= T'd,, the nodal force vector X, of the 7-th mem-
ber is given by

X,=bP(L+RD)+XP 15)
where VP =KD T KP]!

After repeating the above processes, structural failure results when the element
ends up to some specified number p,, e.g., element ends r,, 1y, +++, and r,,, have
failed. Occurrence of the plastic collapsing is determined by investigating the
total structure stiffness matrix [K®#]. For example, a criterion for structural failure
is given by
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[[K@]| <& (16)

where ¢ is a specified constant. Another criterion will be afforded by the magni-
tudes of the nodal displacements.

Now let us consider the expressions for the safety margins of the element ends.
When the element ends ry, 7,, --+, and r,_, have failed, the safety margin of the sur-
viving element end i (element number ¢) is given by

ZP=R+CTOP 3 TIXP —XP)—CTHPL an
=1
p—1 ml
=R:‘+}§ airer;,_jgl b;;L; (18)

Note that Eq. (17) results by substitution of Eq. (15) into Eq. (10), and Eq. (18)
does by resolution of the vectors into their components.
By using the safety margins, a criterion of structural failure is given by

ZH<0  (p=L1,2, -, py) (19)

If there are any failed element ends r,, which have their coefficients ar,,r, equal
to zero in the safety margin of the last yielded element end r,,, i.e.,

Arprsy =0 (20)

they are the redundant element ends which do not directly contribute to occurrence
of the plastic collapsing.

In the searching process of a complete failure path, the value of 2, (k=i, j)
has an important physical meaning as described below. When 2, (k=i, j) satisfies

4,=0 @1
in Egs. (9), yielding of the element end continues. On the other hand, when
,<0 (22)

unloading has started. Consequently, in case of 1,<0, it is neccessary to eliminate
the element end k from the set of the failed element ends to form a complete failure
path.

In summary, the plasticity condition of the element end under the combined
loads has been approximated by a linear surface given by Eq. (1) regardless of a
plane or space structure, and the safety margin of the element end has been ex-
pressed as a linear combination of the strengths of the element ends and the applied
loads. Consequently, reliability analysis is greatly facilitated when the strengths
and the loads are random variables.

4. Conclusions

The method was developed in this paper for generating the safety margins of
the frame structures to perform their reliability analysis under the combined loading
conditions. The plasticity condition of the element section was approximated by
a linear surface and structural failure was determined by production of large nodal
displacements due to the plastic collapsing. The matrix method was applied to



Safety Margins for Reliability Analysis of Frame Structures 163

have the expression of the safety margins and the failure criteria. The conclusions

are
1.

summarized as follows:

The reduced stiffness matrix describing the elastic-plastic behaviour of the
elements and the equivalent nodal forces after development of plastic hinges
are derived by approximating the plasticity condition with a linear surface.
By using the matrix method, the safety margins of the element ends are ex-
pressed as linear combinations of the strengths of the elements and the applied
loads.

The proposed method can be applied to generation of the safety margins both
for plane and space frame structures under any loading conditions.
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