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A Study of 2“:—1 -Harmonics (n=0, 1, 2, ...) in the Neighborhood of

Branching Point in the Nonautonomous Piecewise Linear Systems
with Unsymmetrical Restoring Force

Yoshiaki SHIRAO*, Toshikuni NAGAHARA* and Masao Kipo*

(Received June 15, 1983)

This is a study of lei;_-l-harmonics in the neighborhood of branching point in the

nonautonomous second order differential equation with piecewise linear restoring force
having unsymmetrical characteristics in the case of the undamped systems.

This report dealt with the qualitative behavior of the branching of the trajectories of

2n:—1 -harmonics (n=0, 1, 2, ...) from that of harmonics.

1. Intreduction

It is well known?-2-9-% that nonlinear systems can possess periodic solutions
which are called subharmonic oscillations in which the smallest period of the motion
may be any integral multiple of the period of the external force.

However, the qualitative behavior of the solutions whose fundamental frequency
isa fraction% of the driving frequency has been studied very little in piecewise linear
systems with unsymmetrical restoring force in the neighborhood of the branching
point, at which the subharmonic oscillations will turn to the harmonic oscillations.

1t is the purpose of this paper to outline the fundamental nature of the solutions
having period 4T, (Ty: period of external force) in the neighborhood of branching
point.

2. Periodicity Conditions

In order to present the periodicity conditions® as to the solutions like harmonic
solutions shown in Fig. 1, consider the differential equation

#+f(x)=Ecos ot )
where f(x) is a piecewise linear restoring force (shown in Fig. 2) given by
Bx—KE:x, (x=x0)
- ; @
k®x (x<x,)
=k K?

in which, k, /, K and x, are positive constants. In this paper dots over a quantity
refer to differentiation with respect to the time .
Initially in this equation, assume
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Fig. 1 Restoring force characteristics Fig. 2 Periodic solution of type 14

x0)=M (>x)
. } 3
x(0)=0
Then, the condition of x’s continuity requires that
E 2 E 2
(M— W —_ "—1*2—x0> cos ltl—i— T (o0} wt1=*ﬁ—xo (4)

E Kz . wKE )
—l(M——Zgja;g‘ —1—2x0> smltl—l—m_—wg—) sSinwty

tan k(%—n) = E
k(xo—kT_—w—z- CcoSs a)t1>

©)
2r . . . ‘ .
where T0=—w— and ¢, is the time when the solution reaches the first corner point x,.

It is clear that periodicity conditions (4) and (5) depend on four parameters
M, E, o and 1,. Rearranging Eqs. (4) and (5), and using the other parameters (o
and t,), M and E which lead to periodic solutions are expressed as follows:
-i—l—: 1 T [kK $(I2—w?) cos lt; coswiy sink(—zzwo——q)
° R(E—wt)(P—o?) 4 cos k(T"—tl)

+IK?(k®— w?) sinlty coswty cosk(—%——n) +wK* coslty sinwt, cosk(l;i—tl)

+kl(k®?— %) {k sin [ty cos k(%—ﬁ)—f—l cos It sin k(~]2:"—~t1)}

-I—kaz{a) COS wt; sin k(—gi—tl) +k sin ot cos k(%—t»}] (6)
E _ k {l cos It sin k(%—n)—l—k sin /¢, cos k(—g—o—a)} )

o 14 cos k(—g‘l——tl)

%(%—) = o k<112,9__11> (i;—:) {kcos Ity sink(—?——h) +Isinlt, cosk(%—t(,g))}
K ki {
AP(P— ) (K*—?) cos k(—gl-—-tl)

ok(I2—o?) sinlt, sinwt cosk(—TL——u)

Xo 2
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4 w?K?® sinlt; coswt, sink(%——tl) 4wl (k?—o?) cos It; sin f; sink(%——n)}
9)

A(F— w?) (k*— »?) cosk(%—tl>=wl<2 coslt; sinwi, cosk(%—ﬁ)

+U(k*—w?) sinlt; cos oty COSk(%"—tl)Jrk(lz—wz) cos It; coswt; sink(%—h)
(10)

3. Branching Condition

If x°(¢) is the fundamental harmonic solution type ;4 obtainable by using the
periodicity conditions defined in section 2, the stability of x°(¢) can be studied by the
first-order variation equation for the solution in Eq. (1). Now, if y is the variation,
then the first-order variation equation is given as

y+a(t)y=0 03]
where
2 x()>x
a(z);if‘ = (x)>x0) (12)
Ox x=x0) ke (x(r)<xo)
and Eq. (11) means a Hill’s equation. The reason for this lies apparently in the
fact that a(r) has the characteristics (shown in Fig. 3) of

a(t)=a(—1)
} (13)
a(t)=a(t+T,)
4 T4 T t
Fig. 3 Coefficient a(t) of periodic solution type ;4

It is known from Floquet theory as to normal solutions that

Wt+To)=py(t) (14)
and for

p:e’%% (m, n relatively prime integers) (15)

there exist periodic solutions of period nT,. The condition p=e’% means that

y(t+4T,)=y(t), and
01021 }
p1+0:=0

if p; and o, are the roots of the characteristic equation of Eq. (11). In this report the
case of n=4 will be considered similar to the previous reports.?-” Let ¢(¢) and ¢(¢)

(16)
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be fundamental solutions of Eq. (11) which satisfy the following conditions at z=0:
9(0)=1, $(0)=0 }
¢(0)=0, ¢(0)=1

Then ¢(¢) is an even function but ¢(z) is an odd function. Using ¢, and o,
expressed in terms of ¢(¢) and ¢(r), we get

an

01+02=¢(To)+¢(T0)=0 (18)

and from the expicit formulas for ¢(¢) and ¢(z)
A To)=¢(Tp)=cos 2lt, cos 2k (%-— t1> —% (% + l;—) sin2lt, sin2k <-€°*— t1) =0
(19)

From this expression we can readily obtain the following theorem:

Theorem 1.

The solutions of period 4T, of Eq. (11) are admitted under the condition (20) if
Eq. (19) holds.

k 2s+1 I .
= < (s=0,1,2, ...... ) (20)

Let the following decreasing sequence:

P (i=0,1,2, ..., 25+1) @1)

SRS
where P,>1 and P;s.,<<1 under the condition (20), and

P;>1>P,,, (22)
Then Eq. (19) holds in the following interval:

frcnc g e

The proof can be done in the following ways when the even/odd characteristics of
jand s are used. Assume both j and s are even (the other possibilities are similar);

2k<%—tl> then becomes

25—j T, 254+1—j
(s#])”<2k<7_tl><(L2L)£ (24)

when j =0 (mod 4), it is in the first quadrant;
when j =2 (mod 4), it is in the third quadrant:

Similarly for jo-<2It, < (j+1)5 (25)

when j =0 (mod 4), it is in the first quadrant;
when j=2 (mod 4), it is in the third quadrant.
Here let
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h(t)=cos 2It cos 2k<—72i—t> “%GE + 1,‘—) sinlf sin 2k<%—t> 26)
then

h(z):— 8 <lcos2lt sm2k<A~——r>—}—szsln21r cosZk( D) r)) <0 @27)

)= K sin s sm2k<—-—t>>0 (28)
(+D= .

This expression is generally valid for the interval of time between - 2 ] and o

It can also be shown that there corresponds a definite value of ¢ for any practical case.

ht)

it (B
49 42
] t

Fig. 4 A(t) in the interval JT’; <r<(jt})7"

P

4. Branching Phenomena

In the neighborhood of the ;4 type fundamental periodic solution obtained by
satisfying the initial conditions (3) of Eq. (1) in section 2, there exists the case for the
periodic solutions with period 47, of the variation equation as shown in section 3.

In such a case the solution to Eq. (1) with x=M and x=N at =0 is written by
x(t; M, N, E) and the functions are defined as follows:

F(M, N, EY=x(4Ty; M, N, E)—x(0; M, N, E) } 29)
G(M, N, EY=x(4T,; M, N, E)—x(0; M, N, E)

Now it is evident that solution x{(7; M, N, E) has a period 4T, when
F(M, N, E)y=G(M, N, E)=0 (30)

Moreover figures in which the points in the (M, N, E) space satisfy F=G=0 give a
set of curves. In fact, the curve

M=M(t,), N=0, E=E(t;) 3D

given by Eqgs. (6) and (7) is a portion of the point set for F=G=0.
Let (M,, 0, E;) be the point satisfying Eq. (31) when Eq. (19) holds. The first-
order partial derivatives may be written
Fu(M,, 0, E))=¢(4T,)—1=0
Fy(M,, 0O, Eo):</’(4To):0 (32)
Fe(M,, 0, E))=x:(4T,)=0
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Gu(M,, 0, E))=¢(4T5)=0
GN(MO’ 0, Eo)=¢(4To)— 1=0 (33)
Gz(M,, 0, Eg)=xg(4T,)=0

where, ¢(r) and ¢(¢) are the solutions of Eq. (11) and xz(¢) is obtained by differentiating

x(t; M, N, E) with respect to E and evaluating the result at the point (M,, 0, E,).
This is the solution of the following equation:

y+a(t)y=cos ot }
y(0)=3(0)=0
From the fact the value of the first-order partial derivatives of the functions F and

G is zero at the point (M,, 0, E,), it is necessary to take into account the second-order
partial derivatives of F and G for F=G==0, which could be found by the formulas

(34)

Fyuu(M,, 0, E;)=0
Fye(M,, 0, Ej)=0
Fyy(M,, 0, Eg)=0
Fyn(M,, 0, Eg)=0 (35)
Fye(Mo, 0, Eg)=xy5(4To; Mo, 0, E,)

= —4—(5'];1 (@) 9T (8)) (alt)+xs(To)p(1)) #0

Guu(M,, 0, Ey)=0
GMN(M 0 0, Eo)=0
Gyn(M,, 0, E)=0
Gye(M,, 0, E))=0
Gue(Mo, 0, E)=3xuyx(4Ty; M, 0, Ey) ' 36)
aB—K* " .

=" (PP(21) +9*(To)¢?(t1)) (xu(t)+x£(To)e(21)) #0
Gze(M,, 0, E))=5%5:(4T,; M,, 0, E;)

- ~§‘Uz——§‘?t%@ (#*(t)— (T (1)) (xe(t)+x(To)o(1,))

Egs. (35) and (36) may be derived in the same manner as were the equations of
previous reports®-” and so they need not be derived here. It should only be pointed
out that F=G=0 has two branches in the neighborhood of the point (M,, E;): one
is bounded on E=E, (37) and the other on the following equations:

1
N=0 and Guz(Mo, 0, Eo) (M—Mo)+5 Gze(Mo, 0, Eo) (E—Ee)=0  (38)

The solution curve for which the latter branch is bounded on

GEE(MO, 0, EO)
2GME(M07 0’ EO

satisfies x°(t)=x°(t+T,) and corresponds to the fundamental harmonic solution

N=0, M—M,=—

y (E—Eo) 38y
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as determined by Egs. (6) and (7). The solution bounded on the former branch
E=F, can be shown to be

x(t)= %—"——l—al coswt+dascos2wt-+......

1 3
—l—a1I cos th—l—a% cos —4~a>t—l— ...... (39)

Finally, by using the periodicity conditions discussed so far, we obtain the
results, as shown in Figs. 5(a)-(d), from a numerical analysis in the neighborhood
of the branching point. The results of calculation based upon this method show
good agreement with those found with the theoretical analysis.

-1.36
A 2_
-260F 1 : :2 :13 A stable
: T w =47 ';L ----- unstable
l o 70- -~ _~‘\ mlxo
Llf x e > e T~
Ay A 4A - SasA
4% stable \f‘ SO0 2 g rN
P wstable \\ /=1 w=15
l, A
_26‘5 V| i (] 1 b
105 Mo 130 1.0 M 1.30
(a) n=0 (b) n=1
0.369
stable £§= ? §=3 1A stable
= k=
..... unstable] ;=09 0745 Fw=0.63 | ----- unstable
L i
| T > AT 7
0365} 2l / \
4A’// 1 5\\\ LA AL Y 4A
/ T T \ I’ 1 \‘
/I \‘ I \‘
ol L 1 N 0.7[,] 1 ! 14
110 M 140 1.10 M 140
Xo Xo
() n=2 (d) n=3

Fig. 5 Branching phenomena of solutions of order 2":_1 (n=0,1,2,..)from

harmonic solution in M-E plane

5. Conclusions

In the foregoing sections the behavior of the trajectories of solutions in the
neighborhood of a branching point, has been discussed, largely from the point of
view of its first variation equation, having periodic solutions of period 475.

The results are summarized as follows:

(i) For the piecewise linear system, the periodicity conditions are obtained.
(i) For the piecewise linear system, the condition that the solutions of the first
variation equation has periodic solutions of period 47, can be written by a simple



8 Yosniaki SHIRAO, Toshikuni NAGAHARA and Masao Kipo

equation.
(i) Branching phenomena of the solutions of the fraction harmonics of order

Cn+1)/4 (n=0, 1, 2, ...) from the harmonic solutions will occur under the following
condition:

k 2n+1 )

» 4 »

It is impossible to summarize completely the branching phenomena in this
report. It is hoped that this report will serve merely to point out problems that
require further investigation, for example the branching phenomena from the frac-
tional harmonics of order (2n--1)/2. This paper was partly published in Japanese
in Trans. of IECE of Japan, vol. J64-A, 10, 870 (1981). The computations are
performed on the ACOS-700 at the computer center, University of Osaka Prefecture.
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