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                2n+1   This is a study of                     -harmonics in the neighborhood of branching point in the
                  4
nonautonomous second order differential equation with pieoewise linear restoring force

having unsymmetrical characteristics in the case of the undamped systems.

   This report dealt with the qualitative behavior of the branching of the trajectories of

2n4+ 1 -harmonics (n==o, 1, 2. ...) from that of harmonics.

                             1. Introduction

    It is well known"･2)･3)･`) that nonlinear systems can possess periodic solutions

which are called subharmonic oscillations in which the smallest period of the motion

may be any integral multiple of the period of the external force.

    However, the qualitative behavior of the solutions whose fundamental frequency
is a fraction t of the driving frequency has been studied very little in piecewise linear

systems with unsymmetrical restoring force in the neighborhood of the branching

point, at which the subharmonic oscillations will turn to the harmonic oscillations.

    It is the purpose of this paper to outline the fundamental nature of the solutions

having period 47- b (7-b : period of external force) in the neighborhood of branching

pomt.

                         2. Periodicity Conditions

    In order to present the periodicity conditions5' as to the solutions like harmonic

solutions shown in Fig. 1, consider the differential equation

          X+f(x) =r Ek ;os tut (1)
where.f(x) is a piecewise linear restoring force (shown in Fig. 2) given by

          f(x)-IZ2,X.-"2XO E.X'It,',"O,j (2)

           l2,=k2+K2

in which, k, l, K and xo are positive constants. In this paper dots over a quantity

refer to differentiation with respect to the time t.

    Initially in this equation, assume
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Fig. 1
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Fig. 2 Periodic solution of type iA

         x(o)==M (>xo) l
         ab(o) ==o s
Then, the condition of x's continuity requires that

    (M- l2-Etu2 --ti22 xo) coslti+ l2wwEta2 costuti== i22 xo

                      '
    tank( 7b -t,) -l(M- l2-Etu2 - 522 xo) smlti+ alK2E

(l2..2)(k2-.2)

(3)

(4)

sin ditl

         2 ' k(xo-k2illto2 coswtt)

                                                             (5)

         2rr
where 7b= tu and ti is the time when the solution reaches the first corner point xo.

   It is clear that periodicity conditions (4) and (5) depend on four parameters

M, E, al and ti. Rearranging Eqs. (4) and (5), and using the other parameters (to

and ti), M and E which lead to periodic solutions are expressed as fo11ows:

llll{o = i2(k2-to2)(i2-to2)i ] cosk( I:! -ti) [kK2(i2-tu2) cositi costoti sink( [ll? -ti)

E
xe

+IK2(k2-bl2) sinlti costuti cosk( IllP -ti)+caK` cosltt sintutt cosk( I:l -ti)

+kl(k2-al2) (k sin ltt cos k( ? -ti)+l cos lti sin k( {? -ti)l

+tokKh ltu cos toti sin k( Illl -ti)+k sin toti cos k( # -ti)l] (6)

= iA cos ki I:i -t,) Ii COS iti SM k( ? -ti)+k sin iti cos k( Ill! -t,)} (7)

d
dt,

(g,) 1

d cos k(
      (s'
Il]! -ti)

kl

) (k cos lti sink(

Yl

Xo lil2(l2- to2) (k2- to2) cos k( ll]! -tl)

      ? - ti) +lsin lti cos k(?- ti) l

                             (8)

Ituk(l2-to2) sinltt sintuti cosk( ll]! -ti)
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   +to2K2 sinlti costoti sink( ? -ti)+tul(k2-to2) cos lti sin tuti sink( il]l -ti)i

                                                             (9)

A(l2-tu2)(k2-tu2) cosk( 1;! -ti) --tuK2 coslti sinditi cosk( llll -ti)

   +l(k2-to2) sin lti cosditi cosk(--llli--ti)+k(l2-o2) cos lti costuti sink( Il]l -ti)

                                                            (10)

                       3. BranchingCondition

   lf xO(t) is the fundamental harmonic solution type iA obtainable by using the

periodicity conditions defined in section 2, the stability of xO(t) can be studied by the

first-order variation equation for the solution in Eq. (1). Now, ify is the variation,

then the first-order variation equation is given as

where

         a(t) iE gf .....o(t)=l12, ((Xx:((tt)):X.O,l (i2)

and Eq. (11) means a Hill's equation. The reason for this lies apparently in the

fact that a(t) has the characteristics (shown in Fig. 3) of

a(t)=a(-t)

a(t) === a(t+ 7b)
}

p2

,e2

act)

(i3)

:

:
:

l

Fig. 3

     tl T-tl Tt
CoeMcient a(t) of periodic solution type iA

It is known from Floquet theory as to normal solutions that

         Jv(t+ 7b) -= py(t) (l 4)
and for

              2ontr          p::=eirii- (m,nrelatively prime integers) (15)

                                                      mrrthere exist periodic solutions of period n7" b. The condition p==ed-2- means that

y(t+47-b)-y(t), and

          :IP;;,L-ol (16)
if pi and p2 are the roots of the characteristic equation of Eq. (11). In this report the

case ofn=4 will be considered similar to the previous reports.6'･7' Let op(t) and ip(t)
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be fundamental solutions of Eq, (11) which satisfy the following conditions at t==O:

          $(,g),:81za),=--91 ･ (i7)

    Then op(t) is an even function but ip(t) is an odd function. Using pi and p2

expressed in terms of q(t) and ip(t), we get

          p,+p2== op(Tb)+di(7b)-O (18)
and from the expicit formulas fbr q(t) and Q(t)

   g(7h)==di(7h)==cos21ti cos2k( Illr -ti) -t(f+-l;-) sin21ti sin2k( ? -ti)==O

                                                             (19)

From this expression we can readily obtain the fo11owing theorem:

Theorem 1.

The solutions of period 47b of Eq. (11) are admitted under the condition (20) if

Eq. (19) holds.

          k< 2S,+' <k (s-=o, i, 2, ,.....) (2o)

Let the fo11owing decreasing sequence:

          p,,,..-I;.l-i-+ 2S+kl-i ) (i=o, 1, 2, ......, 2,+1) (21)

where Po>1 and P2s,i<1 under the condition (20), and

          Pi>1>P,., (22)
Then Eq. (19) holds in the fo11owing interval:

          1'z (j+l)z                    21 (23)          21 <ti<

The proof can be done in the fo11owing ways when the even!odd characteristics of

j and s are used. Assume both J' and s are even (the other possibilities are similar);

2k
( Ill? -ti) then becomes

                               (2s+ 1 -v') n          (2S7')rr <2k( Illr -t,)< 2 (24)

whenj -==O (mod 4), it is in the first quadrant;

when J' -== 2 (mod 4), it is in the third quadrant:

                     n"          Similarly for .i-2 <21ti<(J'+1)z2- (25)

whenJ' m=O (mod 4), it is in the first quadrant;

whenJ' -==2 (mod 4), it is in the third quadrant.

Here let
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    h(t) ==cos21t cos2k( ? -t)--iY(f l- 5) sinlt sin2k( # -t) (26)

then

    'K2    h(t)==---ziz- (lcos21t sin2k(tt--t)+kK2sin21t cos2k(? -t))<O (27)

    A(t)== 2kK/` sin21t sin2k(?-t)>o (28)

This expression is generally valid for the interval of time between '1
2'3 and (i+2;)n .

It can also be shown that there corresponds a definite value of t for any practical case.

h<t)

jn
4P

(j+1)T

4P
t

Fig. 4 h(t) in the interval {i/t <t<(]'+4il)Z

                      4. BranchingPhenomena

   In the neighborhood of the iA type fundamental periodic solution obtained by

satisfying the initial conditions (3) of Eq. (1) in section 2, there exists the case for the

periodic solutions with period 4Tb of the variation equation as shown in section 3.

   In such a case the solution to Eq. (1) with x=M and ab=N at t=O is written by

x(t; M, N, E) and the functions are defined as follows:

         2(("Ml"NIEE')tL:.1`4%7b;,MMINNIEE')IX,(8o;,"M',".]2')l (2g)

Now it is evident that solution x(t; M, N, E) has a period 471) when

         F(M, N, E)-G(M, N, E):==O (30)
Moreover figures in which the points in the (M, N, E) space satisfy F:==G:= O give a

set ofcurves. In fact, the curye

         M-=M(t,), N=-O, E-E(t,) (31)
given by Eqs. (6) and (7) is a portion of the point set for F==G==O.

   Let (Mo, O, Eo) be the point satisfying Eq. (31) when Eq. (19) holds. The first-

order partjal derivatives may be written

         Llf(Mo, O, Eo)-- op(47Hb)-1-o

         iFIrv(Mo, O} Eo)=Q(4Tb)::=O (32)
         Ez(Mo, O, Eo):-:xE(47-b)-O
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          G.(Mb, O, E,)-ip(47"b)-O

          GN(Mo, O, Eo)-di(47'b)-1 ==O (33)
          G.(M,, O, EZ,)=ab.(4 Tb)=O

where, op(t) and ¢(t) are the solutions of Eq. (1 1) and xE(t) is obtained by difierentiating

x(t; M, N, E) with respect to E and evaluating the result at the point (Mo, O, Eb),

This is the solution of the fbllowing equation:

          v-1- a(t)y == cos tut} (34)
         y(o) ==v(o)=o                       '

From the fact the value of the first-order partial derivatives of the functions F and

G is zero at the point (Mo, O, Eo), it is necessary to take into account the second-order

partial derivatives of F and G fbr F=G==O, which could be found by the formulas

          E..(Mb, O, E,) =O

          EM･E(Mb, O, E,)=o

          17..(M,, O, Eb)=O

LvN(Mo, O, Eo)==O

FbiE(Mo, O, Eo)==xNE(47`b; Mo, O, Eb) 1

.,.-

 4( .2,it//2) (gc,2(t,)+¢,2( Tb)op2(ti)) (xE(ti)+xE(7b)¢'(ti));LO )

G..(Mb, O, E,)==O

G..(M,, O, E,)=O

G..(Mb, O, E,)= o

G..(M,, O, E,)= O

G..(Mb, O, Eb)==ab..(47-b; M, O, E,)

  4(l2-k2)
= ko(t,) (q'2(ti)+gb2(7'b)gb2(ti)) (xE(ti)+xE(7h)q,(tt)) "E O

GEE(Mo, O, Eb)==:abEE(4 Tb; Mo, O, Eo)

..

 -8(l2- .k. ,2iX,)e(27'b) (q,2(t,)-q,2(7b)gb2(ti)) (xE(ti)+xE(7"b)4'(ti))

(35)

(36)

   Eqs. (35) and (36) may be derived in the same manner as were the equations of

previous reports6),7) and so they need not be derived here. It should only be pointed

out that F=G== O has two branches in the neighborhood of the point (Mo, Eo): one

is bounded on E==Eo (37) and the other on the following equations:

                                     1
        N=O and GME(Mo, O, Ee) (M- Mo)+ -7 GEE(Mo, O, Eo) (E- Eb) =O (38)

The solution curve for which the latter branch is bounded on

                       GEE(Mo, O, Ee)
                                    (E-Eb) (38)'        N=O, M-Mo=-                       2GME(Mo, O, Eo)

satisfies xO(t) ==xe(t+7h) and corresponds to the fundamental harmonic solution
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as determined by Eqs. (6) and (7). The solution bounded on the fbrmer branch

E :::Eb can be shown to be

          xO(t): : -!;t' +ai cos tut+a2 cos2tot+ . . . . . .

                       13                +at cos atut+as cos z-nt+...... (39)

   Finally, by using the periodicity conditions discussed so far, we obtain the

results, as shown in Figs. 5(a)-(d), from a numerical analysis in the neighborhood

of the branching point. The results of calculation based upon this method show

good agreement with those found with the theoretical analysis.

                                     -1.36
       -2SO i12 ,'.S'i '"+ .....l:Zbtk{,

       diixe4f,II/I-iA,N/s.g;.,< -:ig,f.S/r,/r,1-"'d'):N,cN".

            Ix            '       -26.5
          1.os M 1.3o 1･O !!L 1.30                                                Xo                  Xo
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                                  2n+1Fig. 5 Branching phenomena of solutions of order
                                    4
     harmonic so!ution in MLE plane
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.) from

                          5. Conclusions

   In the foregoing sections the behavior of the trajectories of solutions in the

neighborhood of a branching point, has been discussed, largely from the point of

view of its first variation equation, having periodic solutions of period 47- b
.

   The results are summarized as fo11ows:

(i) For the piecewise linear system, the periodicity conditions are obtained.

(ii) For the piecewise linear system, the condition that the solutions of the first

variation equation has periodic solutions of period 47b can be written by a simple
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equatlon.

(iii) Branching

(2n+1)14 (n-O,

condition:

phenomena of the solutions of the fraction harmonics of order

1, 2, ...) from the harmonic solutions will occur under the following

k

-<to
2n+1
4

   l

<-  tu
   It is impossible to summarize completely the branching phenomena in this

report. It is hoped that this report will serve merely to point out problems that

require further investigation, for example the branching phenomena from the frac-

tional harmonics of order (2n+1)/2. This paper was partly published in Japanese

in Trans. of IECE of Japan, vol. J64-A, 10, 870 (1981). The computations are

performed on the ACOS-700 at the computer center, University of Osaka Prefecture.
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