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On the Periodic Solutions of Nonautonomous Piecewise
Linear Systems with Asymmetric Characteristics

Yoshiaki SHiRAo* and Masao KiDo*

       (Received June 4, 1977)

   This is a study of periodic solutions of a nonautonomous second order difi

ferential equation with piecewise linear restoring force having asymmetric character-

istics, which has been studied very little, in the case of no damping.

   In this report the simple periodic solutions like harmonic oscillation are

analyzed, and the periodicity conditions including the initial conditions arpd also

the stability conditions are obtained.

                            1. Introduction

    The present paper deals with the periodic solutions of certain second order non-

linear diflerential equations which are not smali perturbation of linear equations

or of autonomous equations.

    The differential equation

          X+cab+Lt(x)=F cos tut, (1)
in which f<x) is nonlinear, occurs in several different kinds of physical problems,

where here and throughout this paper dots over a quantity refer to differentiation

with respect to the time. The obvious example is the pendulum with an external

force applied. The problem of finding the forced oscillation of a single mass sub-

jected to an elastic restoring force leads in general to equation (1) if the amplitude

of the motion is not kept small. The series ferroresonance circuit containing iron

core inductances also leads to equation (1). The probiem of hunting of synchronous

electrical machinery is still another example of physical p;ob!em which leads to the

                                                                 '         '

    In this paper piecewise linear systems subjected to the differential equation of

type equation (1) were studied because certain calculations can be made explicitly.

But a certain of the results will carry over to more general equationsi'.

                                                 '    It is well-known that periodic solutions will be obtained by connecting the

solutions in each interval smoothly at every corner Point and giving the condhions

ofperiodicity of equation2', however the theory of the periodicity coditions including

                                           ttthe initial conditions has not yet been established. '
    This paper will first give the periodicity conditions containing the initial con-

ditions and the theory of the stability in relation 'to periodic solutions mentioned
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above.

   Numerical results of regions in which periodic solutions, such as harmonic and

subharmonic oscillations, occur and frequency response which means the relation

between the amplitude of the oscillation and the driving frequency show many

peculiarities that can not be explained by conventional linear theory.

   Work on piecewise linear systems has been done by Maezawa3). His approach

is via Fourier series. Other work on piecewise linear systems has been done by

Loud4). His attention is directed to the branching phenomena of the symmetrical

system.

                       2. Periedicity Conditions

   In this chapter we will discuss the periodic solutions, type called iA shown in

Fig. 2, of second order scalar differential equation of which restoring fbrce is a

piecewise linear function shown in Fig. 1, which are connected smoothly only twice

in one period.
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     Fig. 1. Restoring force characteristics. Fig. 2. Periodic solution of type iA.

   Consider the equation

         x+f<x)==E cos tut, (2)
where.t(x) is a piecewise linear restoring term given by

         f(x)..,{12,xx'K2Xo((xX//ie)); . (3)

             l2=k2+K2.

   Since the equation (2) has no damping, the ste4dy state periodic solutions are

either in phase with the impressed force or 1800 out of phase with it.

   Then assume the initial conditions as fo11ows,

         :.((Oo)):ge.(>XO)' l . - (4)

The conditions of (4) clearly indicate that the nonlinearity of the problem really has
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some effect on the solutions and also the solutions of equation (2) have symmetry

with respect to t=772, where Tmeans period of the solution and T==2pn/to (p: posi-

tive integer).

   Let xO(t) bg periodic solution of equation (2), then conditions (5) hold:

                                                      '          :.:(,l',=-=-X2(.T.,,-.L'},.I (s)

   Throughout this paper the region x21xo is called the domain I and the other

region x:$xo is called the domain II. The equation governing the domain I is

         X+l2x-K2xo=E cos tut, (6)
and the second domain xg.xo is expressed by

         x+k2x =E cos tut, (7)
where l#to and k#tu.

   To get conditions for the required periodic solutions, equation (6) must be

solved under the conditions (4). Then the solution xi(t) is

         xi(t)== (M- l,-Eto, - 5,2 xo) cos lt+ l,-Etu, cos tut+ 5,2 xo (s)

and

                                            toE .                        E K2          abi(t)==-l(M- l,-to, - l, xo) sin lt- l,-tu, sin tut. (9)

    Suppose that xi(t) reaches xo first at t =ti, then the following relations will

be obtained:

          xi(t)>Xi, O:.i{t<ti, (10)
      xi(ti) = (M- l,-Eto2 - 5,2 xo) cos lti+ l,-Etu, cos toti+522 xo=xo, (11)

                                          tuE .                     E K2      ab1(tl)=-l(M-l2-tu2 - l2 xo) sin ltl- l2-tu2 sm nt1 , (12)

            ( == -Yi) ,

and in order that this solution is connected with a solution in the domain II, it must

be that

          abi(ti)<O i.e., yi>O. (13)
    Therefbre if the above solution xi(t) is connected with the solution of the second

domain smoothly at t=ti, from equation (7) the solution x2(t) in x;Sxo is

          x2(t)==(xo- k,Etu, cos tuti) cos k(t-ti)+ k,gtu, cos dit

               +-21(-yi+ k,tu.Eto, sin toti) sin k(t-ti), (i4)
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and

                                  '          ab2(t)=-k(xo- k,{llta, cos tuti) sin k(t-ti)- k,to-Etu, sin wt

                            '                          '              '                +(-y, -i- k,tu-Edi, sm tot,) cos k(tLt,) . (ls)

The necessary condition in order that the periodic solutions sought in equation (2)

are iA type shown in Fig. 2 becomes

         x2(t)<x,, t,<t<T-t,. (16)
And moreover the necessary and suMcient conditions to get the periodic solutions

by connecting again x2(t) at t==T-ti with the solution in x)xo are derived from

equation (5) and are

         x2(t,)=:x2(T-t,)=x, ,

         S2(ti)== -ab2(T-ti)=:-Yi .

By setting in (14)

}

A==
l/(xo- k2g'to, cos alti)2+ Ijl}-(-yi+ k,tu-Etu, sin tuti

              tuE .
       -Yi+                  sln tutl
            k2-tu2

)l2,

(17)

tanq= k(xo- k2gtu2 cos totl) '

we obtain in place of equations (17) the following conditions:

          A cos ca=:A cos (kT-2kti-q) , y

          kA sin op=kA sin (kT-2kti-q) . J

   There are two cases, based on difierent assumptions as to

amplitude A, which are of interest. These will be considered in

   (i) IB case A=O '
Assuming A = O, from equations (18) there result

               E
                   COS tutl ,         Xo=             k2-to2

              toE .
                   sln ,tutl .          Yi,=             k2.tu2

    --

the

the

(18)

(19)

nature of the

next articles.

(20)

(21)

Substituting equations (20) and (21) into equations (11) and (12) there results

          tu tan lti==ltan tuti. (22)
   Then the conditions for the solution of equation (2) to be periodic under the

initial conditions (4) are written as followsi :
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i2-E tu2 - 522 xo) cos lti + i2ffEto2 'cos toti+ 522 xo=xo ,
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Regions in which periodic solutions occur.

(a) Harmonicsolutions. (b) Ultraharmonicsolu.tions.
(c) Subharmonic solutions of order 312.
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In this case due to the results of numerical analysis the harmonic oscillation domain

is narrow and exists in the neighbourhood of corner point, so that an example is

shown in case of l2=3, k2=1, tu=O.5, Wxo==1.ooO038 and ewxo===O.75oo288.

   (ii) In case A#O

Equations (19) become

tan op==tan k( T
-2--t,

-l(M-

)

E - iS,2 xo) sin lti + toK2E
l2-tu2 (k2-to2)(l2-tu2)

.

sln tutl

                       k(xe- k2gto2 cos totl)

In case A #O the conditions of periodicity are as fbnows:

  (M- l2-Eto2 - 522 xo) cos iti + l2-Edi2 cos tuti+ 522

  tank(f-t,) -l(Mml2.Etu2 -5,2 xo) sm lt,+

Xo=Xo '

toK2E

.

(k2-.2) (l2-.2)

(23)

sin totl

                                                                .                              k(xo- k2gto2 cos tutl )

These equations mean the relation among the fbur elements, initial value M, ampli-

tude ofthe external force, E, angular frequency ofthe external fbrce, tu, and transition
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time ti (the time when the solution xt(t) reaches the corner point xo first). And if

two of them are known, the remaining elements are obtained, that is to say, for given

E and M angular frequency to and transition time ti which lead to periodic solutions

will be easily found. Also if E and tu are given, we have the initial value M and

transition time ti to construct periodic solutions.

    In Fig. 3 a part of the regions of periodic solutions is shown by the aid of nu-

merical analysis, where k2==1 and l2=3. Frequency response examples are shown

in Fig. 4 in case of k2==1 and l2=:3. Fig. 5 illustrates initial value response be-

tween the initial value M and the amplitude of the periodic solution when k2=1

and l2=3.
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                            3. Stability

   Let xO(t) be the periodic solution of equation (2) with period T=Zpn/to under

the initial conditions (4), then the discussion of the stability of the periodic solution

of equation (2) depends on the variational equation associated with xO(t) (Fig. 6).

The variational equation of equation (2) associated with the periodic solution xO(t)

for the variation y(t) is

         y+a(t)y -- O, (24)
where a(t) is an even and 7:periodic function which is given by the fbrmula

          a(t)-QK,.X.'' '-I12, Ei:E3i::ll･ (25)

                   x=xO(t)

Therefore equation (24) means a Hill's equation. Then the conditions that equation

(24) has periodic solutions are generally obtained by !he Fourier series expansion

and in this chapter the same procedure as in Chapter 2,is used since the coeMcient

a(t) has the characteristics shown in Fig. 7. '
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     Fig. 6. Periodic solution xO(t). Fig. 7. CoeMcient a(t).

   In what follows q(t) refers to even function and ¢(t) odd function.

will give the each interval solutions of equation (24).

   ,Case Og.t<ti (x9(t)>xe)

From equation (24) in this case we have

                        '                                '                              '
         y+l2y==O.

Let qi(t) and Qi(t) be solutions of equation (26) with the initial conditions

qi(O)=:dii(O)=1, ipi(O)==ei(O)==O, then

         qi(t)=cos lt,

          ¢i(t)i}' sin lt. ' .

t

Here we

(26)

(27)

(28)
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   Case ti<t<T-ti (xO(t)<xo)

From equation (24) in the same way as above

         y+k2y=O .

Let q2(t) and ip2(t) be solutions of equation (29) obtained by connecting

opi(t) and Qi(t) at t==ti, then we obtain

                               l
          q2(t)==cos lti cos k(t-ti)-I sin lti sin k(t-ti) ,

         ¢2(t)=-k cos lti sin k(t-ti)-l sin lti cos k(t-ti) ,

               1 1.          ¢2(t)=7 sin lti cos k(t-ti)+-k- cos lti sm k(t-ti) ,

          .k          ip2(t)==-7 sin lti sin k(t-ti)+cos lti cos k(t-ti) .

   From above discussion we have following four cases for periodic solutions.

   Case I q(t) 7i･periodic

The fbllowing condition can be obtained,

          ip2('liM) =O ,

that is,

          kcos lti sink(f-ti) +l sin lti cos k(i-ti)==O . (34)

33
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This equation implies the jump phenomena shown in Fig. 8. '

   ,Case･II ･ptt) Tperiodic

In this case

          ¢2(f) -O ,

'so that･

                                             .t          k sin lti cos k(-i;-ti) +l cos lti sin k(-lil-ti) ===6. (35)

                                    .t                                                   'This comprises the relation E==O. It fo11ows from equations (34) and (35) that if

cases I and II occur together, there exist nonnegative numbers ni and n2, of same

parity, such that

           "kt+"i2 .. :. ' ' (36)
                                            '
    Caselll q(t)2Tperiodic

          op2(f>-O,' '' ,
that is,

                  '          k gos. l(i cos k(-T2--ti) .-l sin lti sin k(-iil-ti) =o. (37)

                                     '                                              '                  - tt    CaselV ip(t)2Tperiodic

          di2(f) --O' ,

          -k sin lti sin k(-i;-ti)+lcos lti cos k(-il--ti)==O . (38)

    If cases III and IV occur together, from equations (37) and (38) there exist

nonnegative integer ni and n2, of opposite parity, such that

          nl          k+l == .,' (39)
             '
Let pi and p2 be the characteristic multipliers of equation (24), then

                      ;/           '          ' plp2==:1,

                                           '
 Pi+P2 -2Iq2 (f) ip2(f)+¢2(f) ¢2(f)l , (40)

      =2(cos 21ti cos 2k(-i;-ti)--S-(ili+-II-) sin 21ti sin 2k(-i;-ti)l ･

                                                     '                              t tttt tt tFurthermore the periodic solutions are stable when lpi+p2I<2 and unstable fbr



          On the Periodic Solutions ofIVbnautonontotLs Piecewise Linear &,stems 35
                       with Asymmetric C;haracteristics

jpi+p21>2. The condition ipi+p21=2 means the border line of stable and unsta-

ble regions and has a connection with branching phenomena. The results obtained

in this chapter are also shown in Fig. 3.

                 4. Periodicity Conditions for Special Case

    In the equations (6) and (7) the conditions tu==land to==k lead the secular term

in the each interval solution and so they say the periodic solutions do not occur5'.

    But from the foregoing analyses fbllowing facts are obvious:

    1) The periodicity conditions can be found.

    2) According to the analogue and numerical results, the existence of the

periodic solutions has been confirmed.

    4.1 Case tu==l

Assuming the special case to==l, equation (6) yields

          X+l2x-k2xe==E cos lt. (40)
Under the conditions (4) we get the solution xi(t) having secular term, t sin lt, but in

the same way for the periodic solutions as in Chapter 2 the conditions of periodicity

become in general as fbllows:

    (M- ;,2 xo) cos lti+ 2El ti sin lti+ ;,2 xo=xo, (42)

tan k(f-ti)=
-l(M-Iiil xo) sin lti+-E-2 ti cos lti+S;iil2)IE,) sin lti

k(xo - E
k2-l2

cos ltl)
･ (43)

M

xO
(
t
)
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,
l
,
1
i

ilIlIsll
l
l
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t
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As an exampte･the･harmonic solution obtained by using equations-(42) and (43) is

Tshown' in Fjg. '9; Where kg=1, Z2. =3s M/xo i:1.264 and Elxo==-2.5.

   4.2Casetu==k - .'･ i" ･････ ･･ '..,',v
Using the conditions and the same procedure as the case tu=l, the periodicity con-

diti ons are reduced to the forrr}s: . ･.. ･, ' ･.'･.

   '(M= l,-EiS - 5,2 xo) cos,lti+ l,umE.k, cos 2ti+ 5,2 xo==xo ,' (an)

                           tt              .. ..,, ,.., . .. .. s               tt t ttt t. . t .. .t t                    t /tttt tttt tttt t tt . tt t    (- i)pA2 sin (ktl 4i op2)== {Zkl7 ,･ ,'. ' . ., ''/.･1, ,- .', '. ,･- (4s)

      t' '' '''''/tt /; 't '' lt ''':tl ':'"' ''t'"''ttt' ' ''1' /'' /'tt '' ':' ''' /' 't' // ...'t. .r, ..., r. ,1 ,.,., ..

where :･,･r-･:v-･ -:' ･-1' .- ,.- 1,-
    yi==l(M- l,-Ek, - 5,2 xo) sin lti+ t,k-Ek, sin kti ,

A,,-V(KQ.=.. ,E,

tan q2 =

Yi+

ti sin.kti)2+ It

2k Sin ktr + 'lrti

(yt + 2Ek sin kti+ Iir,ti cos kti)l2,

cos kt,

k(xe- ik ti sin kti)

and period･T=2pq/to. The results for k2==1', l2=3, Mlxo=2.478 and E7xo==1.0

are' shown in Fig. 10. ,
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                            5. Conclusions

    In this paper the periodicity conditions are dealt with in regard to the periodic

solutions passing over the corner point twice in one period in asymmetric systems

with piecewise linear restoring force, which have been studied very little. And the

conditions of periodicity, general cases and special cases, including the initial con･ny

ditions are found. It must be emphasized that from the conditions mentioned above

periodic solutions, harmopic, ultraharmonic oscillations and so on, can be obtained

easily by numerical calculations and the harmonic components of the periodic

solutions are known exactly according to the initial conditions.

    Hereafter the more general solutions than in this paper will be derived, that is

to say, the periodic solutions will be distinguished in two cases according as the

number of connection of solutions in half period and the branching phenomena in

connection with subharmonics will be analyzed.

    Finally it is noted that numerical calculations were performed by using TOSBAC

-5600 Model 120 at the computer center, University of Osaka Prefecture.
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2
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3
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