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On the Periodic Solutions of Nonautonomous Piecewise
Linear Systems with Asymmetric Characteristics

Yoshiaki SHIRAO* and Masao Kipo*

(Received June 4, 1977)

This is a study of periodic solutions of a nonautonomous second order dif-
ferential equation with piecewise linear restoring force having asymmetric character-
istics, which has been studied very little, in the case of no damping.

In this report the simple periodic solutions like harmonic oscillation are
analyzed, and the periodicity conditions including the initial conditions and also
the stability conditions are obtained.

1. Introduction

The present paper deals with the periodic solutions of certain second order non-
linear differential equations which are not small perturbation of linear equations
or of autonomous equations.

The differential equation

f4cx-+f(x)=F cos of , ¢))

in which f{(x) is nonlinear, occurs in several different kinds of physical problems,
where here and throughout this paper dots over a quantity refer to differentiation
with respect to the time. The obvious example is the pendulum with an external
force applied.. The problem of finding the forced oscillation of a single mass sub-
jected to an elastic restoring force leads in general to equation (1) if the amplitude
of the motion is not kept small. The series ferroresonance circuit containing iron
core inductances also leads to equation (1). The problem of hunting of synchronous
electrical machinery is still another example of physical problem which leads to the
same equation. o '

In this paper piecewise linear systems subjected to the differential equation of
type equation (1) were studied because certain calculations can be made explicitly.
But a certain of the results will carry over to more general equations®.

It is well-known that periodic solutions will be obtained by connecting the
solutions in each interval smoothly at every corner point and giving the conditions
of periodicity of equation?, however the theory of the periodicity coditions including
the initial conditions has not yet been established.

This paper will first give the periodicity conditions containing the initial con-
ditions and the theory of the stability in relation to periodic solutions mentioned
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above.

Numerical results of regions in which periodic solutions, such as harmonic and
subharmonic oscillations, occur and frequency response which means the relation
between the amplitude of the oscillation and the driving frequency show many
peculiarities that can not be explained by conventional linear theory.

Work on piecewise linear systems has been done by Maezawa®. His approach
is via Fourier series. Other work on piecewise linear systems has been done by
Loud®. His attention is directed to the branching phenomena of the symmetrical
system.

2. Periodicity Conditions

In this chapter we will discuss the periodic solutions, type called ;A shown in
Fig. 2, of second order scalar differential equation of which restoring force is a
piecewise linear function shown in Fig. 1, which are connected smoothly only twice
in one period.
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Fig. 1. Restoring force characteristics. Fig. 2. Periodic solution of type ;4.
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Consider the equation
#-+f(x)=E cos ot , ?)

where f(x) is a piecewise linear restoring term given by

_(IEBx—K%x (x2x0),
Sy = {kzx <x), 3)
=kt 4K,

Since the equation (2) has no damping, the steady state periodic solutions are
either in phase with the impressed force or 180° out of phase with it.
Then assume the initial conditions as follows,

x0)=M(>x) , }

#(0)=0. @

The conditions of (4) clearly indicate that the nonlinearity of the problem really has
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some effect on the solutions and also the solutions of equation (2) have symmetry
with respect to t=T)/2, where T means period of the solution and T=2p=n/o (p: posi-
tive integer).
Let x°(z) be periodic solution of equation (2), then conditions (5) hold:
x()=x%(T—1),
s | )
X()y=—x%(T—1).
Throughout this paper the region x=x, is called the domain I and the other
region x=x, is called the domain II. The equation governing the domain I is

$+12x—K?xy=F cos vt, 6)
and the second domain x=x, is expressed by
i#+k*x=E cos ot, @)

where / #o and k#o.
To get conditions for the required periodic solutions, equation (6) must be
solved under the conditions (4). Then the solution x.(¢) is

E E K2

K2
X1(t):<M—72*:w—2—l—2 xo> cos It + I cos wt *-I—-ITXO (8)
and
E K? . E .
)ﬁ(t):—l(M—--lz—_“F——lz— xo) sin It — Pt sin ot . ©)

Suppose that x;(t) reaches x, first at t=#, then the following relations will
be obtained:

x()>x, 0=t<t, (10)
E K? E K?
xl(t1)= <M—m~?—xo> cos Ity -‘I—mz— [oo}] wtl+l—2xo=xo s (11)
E K? ) E .
XI(tl):—l(M_m——ﬁ— Xo> sin /t; — —l%;z— sin wify , (12)
( =_y1) )

and in order that this solution is connected with a solution in the domain II, it must
be that

x1(t)<0 ie., y1>0. (13)
Therefore if the above solution x(¢) is connected with the solution of the second

domain smoothly at t=t¢,, from equation (7) the solution xz(¢) in x=x, is

E
xz(t)=<x°_7€5——m2 cos a)t1> cos k(t—t1) +F% cos wt

1 wE . .
+?<_y1 +- Tz Sin wtl> sin k(t—1,) , (14)
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and
Xo(t)= —k(xo — % cos wt1> sin k(t—t:) — k:)—iw? sin ot
wE .
-+ (_yl +m sin a)t1> Ccos k(t—tl) . (15)

The necessary condition in order that the periodic solutions sought in equation (2)
are 14 type shown in Fig. 2 becomes L

x)<xo, t<t<T—t,. (16)

And moreover the necessary and sufficient conditions to get the periodic solutions
by connecting again x(¢) at t=T—1; with the solution in x=x, are derived from
equation (5) and are

xe(t)=x(T—1t))=%o , } an
)'Cz(h)= ——)'Cz(T—t1)== —¥1 .
By setting in (14)
E 2 1 oE . 2
A=Y (= g cosan) -+ { (=t i sinon)|
—y1+% sin ol (18)
tang= s
k(xo— Pt cos wtl)
we obtain in place of equations (17) the following conditions:
A cos 9=A cos (kT—2kt,—¢), } 19)
kA sin p=kA sin (kT—2kt;—¢) . (

There are two cases, based on different assumptions as to the nature of the
amplitude A4, which are of interest. These will be considered in the next articles.
(i) In case A=0 ‘
Assuming 4=0, from equations (18) there result

E
xo=—_~_—w—-2~ cos oty , (20)

k2

E
= k:’_wz sin at, . . 4 21

Substituting equations (20) and (21) into equations (11) and (12) there results
o tan Ity=[tan wt, . (22)

Then the conditions for the solution of equation (2) to be periodic under the
initial conditions (4) are written as follows: ‘
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E K@ E K*
(M= 5= = ) o8 It 5 cos ot =,
xo:m cos wt;, o tan /t;=[tan ot .
1.40 ,
W unstable {*=3
k=1
© RS
k
1.00
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i z WA\ unstable
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0.50 1.0 M 2.0
xo
(b) ©
Fig. 3. Regions in which periodic solutions occur.

(a) Harmonic solutions.

(b) Ultraharmonic solutions.

(c) Subharmonic solutions of order 3/2.
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In this case due to the results of numerical analysis the harmonic oscillation domain
is narrow and exists in the neighbourhood of corner point, so that an example is
shown in case of /2=3, k?=1, 0=0.5, M/x,=1.000038 and E/x,=0.7500288.

(ii) Incase 4#0
Equations (19) become

T
tan g==tan k(?""tl)

E

12—t

Kz . wKz2E . 23
_l—zx") sin /t; -+ e—a®) (I'—a?) sin w#; (23)

_1<M_

i coson)
- COS of
w2

k(xo ~ e

In case 4+0 the conditions of periodicity are as follows:

E K2
T3 COS oli+——Xo=X,
W 2

12— l

E K2

(M—lz—_;;——ﬁ—xO> cos Ity +
K? . wK*E .

_lTx°> sin /t; + (e—o) (" —at) sin ot,

E

2___ a2
12—

_1<M_

T
tan k(?—t1)= E
—— COS 0wl )
_w2

k(xo ~ %

These equations mean the relation among the four elements, initial value M, ampli-
tude of the external force, E, angular frequency of the external force, », and transition

L
E
1.50 %;~=0.50
AT 12=3
Xo [ kz=1
xEo=o.25 - 1.001
5.0 j2—3 1.00F w |
1Al L k*=1 %o |
%o
0.50F 0.50-
a; L L
Qol-)
az L as -
0 \ . . 0L = . 0L
0.70 1.00. @ 0.48 0.50 0.55 © 0.65
k k
@) o (b)

Fig. 4. Frequency responses.
(a) Harmonic solution. (b) Ultraharmonic solution.
(c) Subharmonic solution of order 3/2.
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Fig. 5. Initial value responses.
(a) Harmonic solution. (b) Ultraharmonic solution.
(c) Subharmonic solution of order 3/2.

time #; (the time when the solution x(f) reaches the corner point x, first). And if
two of them are known, the remaining elements are obtained, that is to say, for given
E and M angular frequency » and transition time ¢, which lead to periodic solutions
will be easily found. Also if E and » are given, we have the initial value M and
transition time #; to construct periodic solutions.

In Fig. 3 a part of the regions of periodic solutions is shown by the aid of nu-
merical analysis, where k2==1 and /2)=3. Frequency response examples are shown
in Fig. 4 in case of k*=1 and /2=3. Fig. 5 illustrates initial value response be-
tween the initial value M and the amplitude of the periodic solution when k?=1
and /2=3.
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3. Stability

Let x°(¢) be the periodic solution of equation (2) with period T=2p=/w under
the initial conditions (4), then the discussion of the stability of the periodic solution
of equation (2) depends on the variational equation associated with x°(¢) (Fig. 6).
The variational equation of equation (2) associated with the periodic solution x°(¢)
for the variation y(¢) is

j+a(t)y=0, (249
where a(¢) is an even and T-periodic function which is given by the formula
_0f(x)}. _ i (A0)>x0),
a(t)= ox - {k” (x*(t)<x0) . (25)

x=x%(¢)

Therefore equation (24) means a Hill’s equation. Then the conditions that equation
(24) has periodic solutions are generally obtained by the Fourier series expansion
and in this chapter the same procedure as in Chapter iis used since the coefficient
a(t) has the characteristics shown in Fig. 7.

x°%(t)

aft)

/0 B

: ! l
, [
!
T-1, T ¢t E2b-- !

—

v

— ]

iy T-—‘t, T &

Fig. 6. Periodic solution x°(¢). Fig. 7. Coefficient a(z).

In what follows ¢(z) refers to even function and ¢(¢) odd function. Here we
will give the each interval solutions of equation (24).

Case 0=t<t; (x%(t)>xo)
From equation (24) in this case we have

y+12y=0. (26)

Let ¢i(¢) and ¢1(¢) be solutions of equation (26) with the initial conditions
21(0)=¢1(0)=1, ¢:(0)=¢1(0)=0, then

i(t)=cos I, ' @7

¢1(t)=% sinlr. (28)
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Case n<t<T—t (x%(t)<<x0)
From equation (24) in the same way as above
J+kiy=0. (29)

Let ¢:(t) and ¢:(f) be solutions of equation (29) obtained by connecting smoothly
o:(t) and ¢.(t) at t=1,, then we obtain

@t)=cos It; cos k(t—tl)——% sin /t, sin k(t—1t1) , (30)
¢2(t)=—k cos It; sin k(t—t,)—1 sin It; cos k(t—1y) , (31)’
¢2(t)=—;— sin /t; cos k(t—tl)—l—f;; cos It; sin k(t—ty)., | (32)
do(t)= ——I; sin [, sin k(t—t,)+cos It; cos k(t—1y) . 33)

From above discussion we have following four cases for periodic solutions.
Case I ¢(2) T-periodic
The following condition can be obtained,

T
#(7)=0-
that is,
k cos It, sin k(g——zl) +1'sin It; cos k(%—n):O . (34)
A 12=3
k2=1
1.25 —=—0.50
Xo
© ="
k /,»’
stable
———— unstable
120 [T U S TS O
1.0 M 2.0
Xo

Fig. 8. Jump phenomena.
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This equation implies the jump phenomena shown in Fig. 8.
Case II ¢ft) T-periodic
In this case

so that .
k sin It; cos k(%—h) + 1 cos It, sin k(g—zl) =0. (35)

This comprises the relation E=0. It follows from equations (34) and (35) that if
cases I and II occur together, there exist nonnegative numbers n, and ns, of same
parity, such that
m

k
Case Il ¢(¢) 2T-periodic

()0

N2 2
T %6)

that is,

k cos hfl cos k<—27:—11> —1 sin It; sin k(g—t1)=0 . 37

Case IV ¢(t) 2T-periodic
/T
h(3)=0,
T

—k sin It; sin k(—

5 —t1>+ I cos It; cos k(z—n):O . (38)

2

If cases III and IV occur together, from equations (37) and (38) there exist
nonnegative integer n, and s, of opposite parity, such that

ny Rs 2
Tt T @

Let o1 and p; be the characteristic multipliers of equation (24), then

o102=1,
ot =2{p: <§) ¢2<§> + @(%) ‘02(%)} \ (40)
= 2{cos 2lt; cos 2k(§—-t1> _é—<%+£l) sin 2/t; sin 2k<—§~—t1>} .

Furthermore the periodic solutions.are stable when |o;-+ps<<2 and unstable for
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loi+02/>2. The condition |p;+p02l=2 means the border line of stable and unsta-
ble regions and has a connection with branching phenomena. The results obtained
in this chapter are also shown in Fig. 3.

4. Periodicity Conditions for Special Case

In the equations (6) and (7) the conditions w=/ and w=Fk lead the secular term
in the each interval solution and so they say the periodic solutions do not occur®.

But from the foregoing analyses following facts are obvious:

1) The periodicity conditions can be found.

2) According to the analogue and numerical results, the existence of the
periodic solutions has been confirmed.

4.1 Case w=I/
Assuming the special case w=1, equation (6) yields
x+12x—k*xo=FE cos It. (40)

Under the conditions (4) we get the solution x,(¢) having secular term, ¢ sin /¢, but in
the same way for the periodic solutions as in Chapter 2 the conditions of periodicity
become in general as follows:

2 E . 2
(M —;c—zxo) cos It + 2—lt1 sin /t; + f—zxo:xo R (42)
k2 . 22 .
—1] (M ——xo> sin lt1-|—£ t; cos ltH—M sin /t,
T 12 2 2l(k2—12)
tan k(*—h) - . (43)
2 E
k(xo— e cos ltl)
100~ ]2=3
L =]
ay =]
ay E
x%t) (%) I o= 25
I M
M n +=1.264
\ /r\\ 50 | Xo
o \ i (+)
i T—-t., T i w5
oLt N
0 1 2 3 4 n
(a) (b)

Fig. 9. An example of harmonic solution in case w=I.
(a) Harmonic solution by analogue computer.  (b) Harmonic analysis.
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As an example the harmonic solution obtained by using equations~(42) and (43).is

shown’ in Fig. 9; where k2=1, 12=3; M/x,=1.264 and E/x,=—2.5. C
4.2 Case o=k L .

Using the conditions and the same procedure as the case w=/, the perlodlclty con-

ditions are reduced to the forms:

(M_mz__ﬁ—x") cos lt1+ k2 cos kt1—|— xo——xo . ) 44)
(__1)pA2 sin (kt1+¢2) 2k2 > . : R (45)

where

E Kz
y1=l(M— TR >sm +— [2 sin kty ,

. B .
. Ag:‘/(x,q,— Ttl sin kt;) + {% <y1 +2E_k sin kt, -+ —g—t; cos ktl)} s

E
Y1+ 2% sin kt;-l— tl cos kt:

tan ¢p = —

E .
k(xo - '27‘1‘1 sin kt1>

and period T=2pr/w. The results for k=1, I*= 3 M/xo—2 478 and E/xo-—l 0
aré shown in Fig. 10. ‘ ,

100~ 12=3
. d" I 2=1
x°(t) . . a; [ =k
’ : - (%) + ‘]2:1 0
. ) L Xo 7
— ' %‘—*2.478
M \ /E\‘ 50—
v ] — L. '
ol B . —_—)
t /T4 T £ L e (=)
: i
L
]
0 H I 1
0 1 2 3 . 4 n

@ : (b)

Fig; 10. An example of harmonic solution in case w=k.
(a) Harmonic solution by analogue cornputer
(b) Harmonic analysis. - o
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5. Conclusions

In this paper the periodicity conditions are dealt with in regard to the periodic
solutions passing over the corner point twice in one period in asymmetric systems
with piecewise linear restoring force, which have been studied very little. And the
conditions of periodicity, general cases and special cases, including the initial con-
ditions are found. It must be emphasized that from the conditions mentioned above
periodic solutions, harmonic, ultraharmonic oscillations and so on, can be obtained
easily by numerical calculations and the harmonic components of the periodic
solutions are known exactly according to the initial conditions.
~ Hereafter the more general solutions than in this paper will be derived, that is
to say, the periodic solutions will be distinguished in two cases according as the
number of connection of solutions in half period and the branching phenomena in
connection with subharmonics will be analyzed.

Finally it is noted that numerical calculations were performed by using TOSBAC
—-5600 Model 120 at the computer center, University of Osaka Prefecture.
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