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Analysis of a dc bus system with a nonlinear constant power load and its delayed feedback control
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This paper tackles a destabilizing problem of a direct-current (dc) bus system with constant power loads, which
can be considered a fundamental problem of dc power grid networks. The present paper clarifies scenarios of the
destabilization and applies the well-known delayed-feedback control to the stabilization of the destabilized bus
system on the basis of nonlinear science. Further, we propose a systematic procedure for designing the delayed
feedback controller. This controller can converge the bus voltage exactly on an unstable operating point without
accurate information and can track it using tiny control energy even when a system parameter, such as the power
consumption of the load, is slowly varied. These features demonstrate that delayed feedback control can be
considered a strong candidate for solving the destabilizing problem.
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I. INTRODUCTION

The dynamics of power-grid networks has attracted consid-
erable attention in the field of nonlinear science (see Refs. [1,2]
and references therein). Most of these studies investigate the
dynamics of the alternating-current (ac) power-grid networks
which are widely used in daily life. On the other hand,
it is well accepted in the field of power electronics that
direct-current (dc) bus systems will play an important role
in future power systems [3] (see Fig. 1). The main reasons are
as follows: power sources are easy to integrate due to phase
control being unnecessary; renewable and alternative power
sources typically generate dc electric power; and the utilization
of dc loads in electronics, such as information technology
equipment, is increasing at a rapid rate [3,4].

Many types of dc loads employ a point-of-load power
conditioning and control system. Such loads behave as
constant power loads (CPLs), which consume a constant
power independent of their supply voltage; they can be
regarded as nonlinear negative resistances, since the input
current decreases (increases) with an increase (decrease) of
the supply voltage [5]. Such negative resistances can induce
destabilization of dc voltages. This is a crucial problem for
dc bus systems in practical use. Very recently, there have
been various studies on analyzing and solving this problem in
the field of power electronics. The destabilizing phenomenon
has been investigated from various viewpoints: dynamical
behavior and basin of an operating point [6], linear stability
of the operating point [7], basin of the operating point with
multistage filters [8], and dynamics of a discrete-time model
[9]. Further, several strategies for enhancing the stability of
an operating point have been demonstrated as follows: use
of passive damping [5], application of a bidirectional dc-dc
converter [10], use of a virtual capacitor [11], feedback control
based on the vector field [3,12], and control for multiple power
sources and loads [13–16].

These studies have tackled the destabilization problem from
viewpoint of power electronics. However, for this problem,
there has been little study on analysis and control based on
nonlinear science. The present paper thoroughly investigates
the nonlinear dynamics of a simplified dc bus system on

*http://www.eis.osakafu-u.ac.jp/�ecs

the basis of bifurcation theory [17]. Further, a delayed
feedback control [18,19], one of the most popular methods
for stabilizing unstable periodic orbits [20,21] and unstable
fixed points [22–27] in nonlinear systems, is introduced to
solve the destabilization problem. This is because the delayed
feedback control has the following advantages: A system
state converges exactly on an unstable fixed point with its
noninvasive property [28], even though the location of the
point is unknown and the state can track a wandering point
using tiny control energy when a system parameter is slowly
varied. The analytical results based on bifurcation theory allow
us to provide a systematic procedure for designing a controller.
Some numerical examples demonstrate that the designed
controller works well for the stabilization of a destabilized
operating point.

The following notation is used in this paper. The principal
argument of a complex number z is denoted by Arg [z] ∈
[0,2π ). For a real number x, the largest integer that is not
greater than x is denoted by �x�.

II. SIMPLIFIED DC BUS SYSTEM

Consider the simplified dc bus system shown in Fig. 2, in
which E, r , L, and C represent the dc voltage source, the
equivalent resistance, the inductance, and the capacitance of
the dc bus, respectively. The dc bus voltage, denoted by vP(t),
is applied to a CPL. The currents iL(t) and iP(t) are through
the L and CPL, respectively. The product of vP(t) and iP(t)
in the CPL is always constant P : vP(t)iP(t) = P, ∀t � 0. We
can model the circuit illustrated in Fig. 2 by

C
dvP(t)

dt
= − P

vP(t)
+ iL(t),

(1)

L
diL(t)

dt
= −vP(t) − riL(t) + E.

The dynamics of Eq. (1) depend on the five circuit
parameters r , L, C, P , and E. One of the main purposes
of this paper is to clarify how these parameters influence the
circuit dynamics. To that end, transformation of the system
states and time,

x := 1

E
vP, y := L

rCE
iL, τ := t

rC
,
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FIG. 1. Conceptual diagram of a dc bus system (CPL: constant
power load; PV: photovoltaic cell).

and the parameters,

a := rP

E2
, b := r2

L/C
, (2)

are applied to Eq. (1). We can then write a simple dimension-
less model for the circuit as

ẋ = −a

x
+ by, ẏ = −x − by + 1, (3)

where ẋ denotes the derivative of x with respect to the
dimensionless time τ . Notice that parameters (2) have the
following properties:

a: Proportional to the power of the CPL, P , and resistance
r and inversely proportional to the square of voltage source E;

b: Proportional to the square of resistance r and inversely
proportional to L/C.

Since system (3) has only the two dimensionless parameters
a > 0 and b > 0, we can analytically clarify the influence of
these parameters on the circuit dynamics. This paper will deal
with dimensionless dynamical system (3) for analysis and its
control instead of circuit (1).

III. BIFURCATION ANALYSIS

This section will investigate the dynamics of system (3) on
the basis of bifurcation theory.

A. Analytical results

The fixed points p+ := [x∗
+,y∗

+]T and p− := [x∗
−,y∗

−]T ,
where

x∗
± = 1

2
(1 ± √

1 − 4a), y∗
± = a

bx∗±
, (4)

FIG. 2. Simplified dc bus system.

FIG. 3. Nullclines of system (3) (bold line: ẋ = 0; dotted line:
ẏ = 0).

are located at the intersections of the nullclines of system (3)
as sketched in Fig. 3. p± correspond to the operating points of
circuit (1). Figure 3 suggests that p± are born and die via the
saddle-node (SN) bifurcation. Here we consider the stability
of p±, which is governed by the characteristic equation at p±,

f (s,x∗
±) = 0, (5)

where

f (s,x) := s2 +
(

b − a

x2

)
s + b − ab

x2
. (6)

Now we find a double-zero (DZ) bifurcation point [17], where
Eq. (5) has double roots at s = 0.

Lemma 1. A double-zero bifurcation occurs in dimension-
less system (3) at

4a = 1, b = 1. (7)

Proof. Equation (5) has double roots at s = 0 when its
coefficients for s1 and s0 are zero. It is easy to find condition
(7) from Eq. (6) with Eq. (4). �

Here we find an existence condition for SN bifurcation and
that for the fixed points.

Lemma 2. Consider dimensionless system (3). SN bifurca-
tion occurs at

a = 1
4 , (8)

with the exception of DZ bifurcation point (7). Further, there
exist

p± ∈ {(x,y) : 0 < x < 1, 0 < y < 1/b}
for a < 1/4, but not for a > 1/4.

Proof. We omit this proof, since it is straightforward to find
this condition from Eqs. (4) and (6). �

Further, we show an existence condition for Hopf (HP)
bifurcation and find its bifurcation curve.

Lemma 3. Consider dimensionless system (3) which has the
fixed points p±. HP bifurcation at p+ can occur on

a = b

(1 + b)2 (9)

if and only if b < 1 holds. On the other hand, HP bifurcation
never occurs at p−.

Proof. See Appendix A 1. �
Now we will seek a condition for when the type of fixed

points changes from focus to node. This change occurs when
the locus of two different real roots coalesces and then departs
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from the real axis in the complex plane. In the field of control
theory, the point on the real axis at which this change occurs
is called the breakaway point [29]. Here we introduce an
existence condition for breakaway and its bifurcation curve.

Lemma 4. Consider dimensionless system (3) which has the
fixed points p±. The type of p+ changes from focus to node
(i.e., breakaway occurs) when

a = 2
√

b − b

(1 + 2
√

b − b)2
(10)

if and only if b < 4 holds with the exception of DZ bifurcation
point (7). Such a change never occurs at p−.

Proof. See Appendix A 2. �
These analytical results provide us with useful information

for understanding the dynamical behavior of system (3). The
following section will show a numerical example based on
such analytical information.

B. Numerical example

We will investigate how the parameters a and b influence
the dynamics of system (3). Figures 4(a) and 4(b) show
the bifurcation curves for p+ and p−, respectively. The DZ
bifurcation point in Lemma 1 is represented by an open square.
The SN bifurcation lines estimated by Eq. (8) in Lemma 2
suggest that there exist p± under the lines. In addition, Lemma
3 indicates that the HP bifurcation curve for p+, estimated by
Eq. (9), exists for b < 1. Lemma 4 provides the information
that the breakaway of p+ occurs on the broken curve given by
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FIG. 4. Bifurcation curves of system (3): (a) p+ and (b) p−.
SN: saddle-node bifurcation; HP: Hopf bifurcation; HO: Homoclinic
bifurcation; DZ: double-zero bifurcation; BW: breakaway.
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FIG. 5. (Color online) Phase portraits of system (3) (b = 0.40).
These portraits correspond to the arrowed broken line A in Fig. 4. D:
saddle; Sf : stable focus; Uf : unstable focus; Un: unstable node; ULC:
unstable limit cycle.

Eq. (10) in the range b ∈ (0,4) with the exception of the DZ
bifurcation point b = 1.

The homoclinic (HO) bifurcation, a typical global bifurca-
tion, is estimated by the bifurcation tool MATCONT [30]. It
can be seen that the HO bifurcation curves exist for b < 1 and
coalesce with the HP bifurcation curve at the DZ bifurcation
point.

Figure 5 shows the phase portraits (x versus y) at b = 0.40
and a ∈ [0.1300,0.2487], which correspond to the arrowed
broken line A in Fig. 4. As shown in Fig. 5(a), for a = 0.1300,
p− is the saddle point (D) and p+ is the stable focus (Sf ), and
the ω branch of D is the basin boundary of Sf [31]. The α

and ω branches of D move closer together with an increase of
a; eventually, they link together (i.e., HO bifurcation) at a =
0.1466 as illustrated in Fig. 5(b). This linked branch described
by the dashed-dotted curve is the homoclinic orbit. A further
increase of a induces an unstable limit cycle (ULC), the basin
boundary of Sf , from the homoclinic orbit [see Fig. 5(c)]. ULC
becomes smaller with an increase of a; ultimately, ULC and
Sf coalesce. Then Sf changes to an unstable focus (Uf) and
ULC disappears, as shown in Fig. 5(d). This is the subcritical
HP bifurcation. After this bifurcation, there is no stable steady
state. This situation corresponds to that of the dc bus system of
Fig. 2, whereby dc power cannot be provided to the CPL. The
type of p+ is changed from an unstable focus to an unstable
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FIG. 6. (Color online) Phase portraits of system (3) (b = 1.20).
These portraits correspond to the arrowed broken line B in Fig. 4. Sn:
stable node.

node (i.e., breakaway) by a further increase of a. Figure 5(e)
and its enlarged view [Fig. 5(f)] show that the saddle (D)
and the unstable node (Un) have a common branch. A further
increase of a induces the SN bifurcation where they coalesce
and disappear.

Figure 6 shows the phase portraits at b = 1.20 and a ∈
{0.1000,0.249996}, which correspond to the arrowed broken
line B in Fig. 4. For a = 0.1000, p− is the saddle (D) and p+
is the stable focus (Sf), as illustrated in Fig. 6(a). The ω branch
of D is the basin boundary of Sf . The type of p+ changes from
a stable focus to a stable node (Sn) by a further increase of a

[see Fig. 6(b)]. The saddle and node eventually coalesce and
disappear via the SN bifurcation.

From the viewpoint of circuit parameters, we summarize
our bifurcation analysis for the two situations: b < 1 ⇔ r <√

L/C (see Fig. 5) and b > 1 ⇔ r >
√

L/C (see Fig. 6). An
increase of a = rP/E2 induces the following scenarios:

(1) r <
√

L/C: The operating point p+ changes from a
stable focus to an unstable focus via a Hopf bifurcation, from
an unstable focus to an unstable node via a breakaway, and
finally disappears via a saddle-node bifurcation.

(2) r >
√

L/C: The operating point p+ changes from a
stable focus to a stable node via a breakaway and finally
disappears via a saddle-node bifurcation.

It can be seen that the bifurcation scenario of the operating
point p+ strongly depends on the balance between r and√

L/C.

IV. DELAYED FEEDBACK CONTROL
OF A DC BUS SYSTEM

This section will show that an unstable operating point p+
can be stabilized by the well-known delayed feedback control.
A systematic procedure for designing the controller will be
provided on the basis of our previous result [23] in the field
of control theory. A numerical example will demonstrate that
the designed controller works well and that it can track the
stabilized point even when the power consumption of the load
(i.e., parameter a) is slowly varied.

A. Control system

A delayed feedback controller is added to the simplified dc
bus system, as illustrated in Fig. 7. We can write the circuit

FIG. 7. Simplified dc bus system with delayed feedback control.

equation as

C
dvP(t)

dt
= − P

vP(t)
+ iL(t) + iu(t),

L
diL(t)

dt
= −vP(t) − riL(t) + E,

where iu(t) represents the current injected from the controller,
that is,

iu(t) = 1

rk

{vP(t − �) − vP(t)} .

Note that vP(t − �) denotes the past bus voltage with delay
time �. Transformation of variables and parameters,

xT := 1

E
vP(t − �), T := �

rC
, k := r

rk

,

allows us to obtain a dimensionless dynamical system,

ẋ = −a

x
+ by + u, ẏ = −x − by + 1, (11)

with delayed feedback control,

u = k (xT − x) . (12)

It should be noted that the analytical approach in the preceding
section cannot be used for dynamical system (11) with
controller (12) due to its infinite dimension. Also note that
the location of p± in system (11) without control [i.e., system
(3)] never moves, even for system (11) with control.

Since the operating point always corresponds to p+, as
analytically shown in Sec. III, we will focus only on the
stability of p+ in the controlled dynamical system. The
linearized system with control at p+ is described by[

ẋ�

ẏ�

]
=

[−k + a/(x∗
+)2 b

−1 −b

][
x�

y�

]
+

[
k 0
0 0

][
x�T

y�T

]
,

(13)

where x� := x − x∗
+, y� := y − y∗

+, x�T := xT − x∗
+, and

y�T := yT − y∗
+. The stability of linear system (13) is gov-

erned by its characteristic quasipolynomial,

g(s,T ) := s2 + γ1s + γ2 + (η1s + η2)(1 − e−sT ), (14)

where its coefficients are

γ1 := b − a

(x∗+)2
, γ2 := b − ab

(x∗+)2
,

(15)
η1 := k, η2 := kb.
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From Eq. (6), we notice that the first three terms of Eq. (14),
which are identical to g(s,0), govern the stability of p+ in
system (3). The fourth term depends on controller (12). Recall
that p+ is stable if and only if the infinite number of roots for
g(s,T ) = 0 are all in the open left half plane.

B. Stability analysis

The main purpose of this section is to propose a systematic
procedure for designing the controller parameter k and T such
that p+ is stable. Let us review a key result given by Kokame
et al. [23] in preparation for our proposal.

Theorem 1 (Ref. [23]). Consider the stability of the
characteristic quasipolynomial

g(s,T ) = s2 + γ1s + γ2 + (η1s + η2)(1 − e−sT ) (16)

under the assumption

γ1 < 0, γ2 > 0. (17)

If the coefficients of Eq. (16), γ1,2 and η1,2, satisfy the four
inequalities

d0 := γ2 + 2η2 > 0,

d1 := γ 2
1 + 2 (γ1η1 − γ2 − η2) < 0,

(18)
d2 := d2

1 − 4
(
γ 2

2 + 2γ2η2
)

> 0,

d3 := ψ1

ω1
− ψ2

ω2
< 0,

where

ω1 :=
√

−d1 − √
d2

2
, ω2 :=

√
−d1 + √

d2

2
,

ψi := Arg
η2 + jωiη1

γ2 + η2 − ω2
i + jωi (γ1 + η1)

, (19)

i = 1,2,

then there exists T such that g(s,T ) is stable. Further, under
condition (18), g(s,T ) is stable if and only if T belongs to one
of the intervals

T ∈
(

ψ1 + 2πl

ω1
,
ψ2 + 2πl

ω2

)
,

(20)

l = 0, . . . ,

⌊
ψ2ω1 − ψ1ω2

2π (ω2 − ω1)

⌋
.

As Eq. (16) in this theorem is equivalent to our characteristic
quasipolynomial (14), we can associate assumption (17) with
the following facts: γ1 < 0 is a necessary condition for the
characteristic function at p+ without control, g(s,0), to be
unstable; and for γ2 < 0, which contradicts assumption (17),
the fixed point p+ cannot be stabilized, since g(s,0) = 0 has
a positive and a negative real root (i.e., the well-known odd-
number limitation [32]). These facts suggest that g(s,0) =
0 with assumption (17) has its two roots in the open right
half plane. The following corollary clarifies system (3) under
assumption (17).

Corollary 1. Assumption (17) for system (3) is given by

a ∈
(

b

(1 + b)2 ,
1

4

)
, b < 1. (21)

FIG. 8. Sketch of ψ1,2,ω1,2,T introduced in Theorem 1: g(s,T )
is stable within the gray intervals.

Proof. As it is easy to derive assumption (21) from γ1,2 in
Eq. (15) and x∗

+ in Eq. (4), this proof is omitted. �
The relationships between ψ1,2, ω1,2, and T introduced in

Theorem 1 are sketched in Fig. 8. Assumption (17) guarantees
that g(s,T ) = 0 with T = 0 has two unstable roots. For T > 0,
we know that g(s,T ) = 0 has an infinite number of roots.
Increasing T from 0, the pair of dominant complex-conjugate
roots moves from the right to the left at T = ψ1/ω1. Thus,
g(s,T ) becomes stable. A further increase of T moves the
pair of dominant complex-conjugate roots from the left to
the right at T = ψ2/ω2; from here, g(s,T ) becomes unstable.
This movement from the right to the left (the left to the right)
is repeated with period 2π/ω1 (2π/ω2). The gray intervals in
Fig. 8 represent the stable intervals of g(s,T ). From Eq. (19),
we notice that ω1 < ω2 holds; then we have 2π/ω1 > 2π/ω2.
This guarantees that the intervals narrow with an increase in
T and eventually disappear.

We will estimate a stabilizable parameter space (b versus
a) where there exists T such that g(s,T ) at p+ is stable.
Figure 9(a) illustrates the HP and SN bifurcation curves for
p+ without control. Corollary 1 guarantees that assumption
(17) holds only when b and a are within the parameter space
between these curves. Now let us restrict our attention to the
stability of p+ with control. The gray regions in Figs. 9(b),
9(c), and 9(d) are the stabilizable parameter spaces where
inequalities (18) hold for k = 0.02, 0.10, and 0.28, respec-
tively. For instance, we focus on point A: (b,a) = (0.20,0.17).
Figures 9(b), 9(c), and 9(d) show that p+ is stabilized for

b

a

(a) k=0 (b) k=0.02

(d) k=0.28(c) k=0.10
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FIG. 9. Stabilizable parameter space. Inequalities (18) hold in the
gray region.
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FIG. 10. (Color online) Stability regions in controller parameter
space, k vs T (a = 0.17, b = 0.20). Thin black line: (ψ1 + 2πl)/ω1;
bold red line: (ψ2 + 2πl)/ω2.

k = 0.10,0.28, but not for k = 0.02. This suggests that the
stabilizable parameter space depends on k.

C. Design of controller

The preceding subsection showed that, for a given k, the
stabilizable parameter space can be estimated by inequalities
(18). However, a design procedure for k is still lacking. This
subsection proposes a systematic procedure for designing k

and T such that p+ is stable for a given a and b.
Step 1: The parameters a and b are given.
Step 2: If these parameters satisfy Corollary 1, then go to

the next step, otherwise we have to abandon our design.
Step 3: Substituting Eq. (15) with Eq. (4) into Eq. (18),

d0,1,2,3 are reduced to polynomials of only variable k. For
k satisfying inequalities (18), the stable intervals of T are
estimated from Eq. (20).

Let us design the controller in accordance with the above
steps. (Step 1) The parameters a = 0.17 and b = 0.20 are
given (see point A in Fig. 9). (Step 2) They satisfy Corollary
1, and so go to the next step. (Step 3) The polynomials d0,1,2,3

with respect to variable k are derived. Figure 10 shows the
stable intervals of T for positive values of k which satisfy
inequalities (18). The thin black (bold red) curve of Fig. 10
denotes the critical T of which a pair of complex-conjugate
roots moves from the right to the left (the left to the right) of
the complex plane with an increase of T . The fixed point p+ is
stable if and only if k and T are within the regions surrounded
by these curves. We see that there are three stability regions
for l = 0,1,2 in Eq. (20). Now we will clarify the relationship
between these regions and the stabilizable parameter space
shown in Fig. 9. The gains k used in Figs. 9(b), 9(c), and 9(d)
are described by the dotted lines (b), (c), and (d) in Fig. 10,
respectively. For (b) k = 0.02, as can be seen in Fig. 9(b), the
point A is not within the stabilizable parameter space; thus,
there does not exist T on the dotted line (b) in Fig. 10 within
the stability regions. In contrast, for (c) k = 0.10, the point
A is within the stabilizable parameter space [see Fig. 9(c)]. It
can be seen that there exist T on the dotted line (c) in Fig. 10
within the stability regions. For (d) k = 0.28, we have the same
results for (c).
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FIG. 11. (Color online) Time-series data of state variables x and
y, parameter a, and control signal u for b = 0.20. Controller (12)
with k = 0.10 and T = 5.0 is applied to system (3) at τ = 150.

D. Numerical example

This subsection will report that the designed controller with
k = 0.10 and T = 5.0 (see the black dot in Fig. 10) works well
numerically even for a sequence of the following practical
situations.

(i) Parameter a is fixed at a = 0.10 for time interval τ ∈
[0,150) (see point B in Fig. 9).

(ii) Parameter a is changed to a = 0.17 at τ = 150 (Fig. 9:
B ⇒ A), and then its value is fixed for τ ∈ [150,250).

(iii) Parameter a is varied as a = 0.17 + 0.01
sin 0.05π (τ − 250) for τ � 250.

Consider situation (i). Since p+ with a = 0.10 is a stable
focus, there is no need to use controller (12). Figure 11 shows
the time series data of the state variables, parameter a, and
control signal u. The trajectory of state variables x and y in
the phase plane is shown in Fig. 12(a). It can be seen that
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(c)  a=0.17

(b)  a=0.10(a)  a=0.10 −> 0.17

(b)  a=0.10

(c)  a=0.17

FIG. 12. (Color online) Trajectory of (x,y) on the phase plane
(b = 0.2): (a) a = 0.10 → 0.17 at τ = 150, (b) a = 0.10, and
(c) a = 0.17 → 0.17 + 0.01 sin 0.05π (τ − 250) at τ = 250. Open
circle: initial state (x(0),y(0)); red (gray) point: fixed point p+D.
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the time-series data and the orbit (x,y) converge on the stable
fixed point p+ [see Fig. 12(b)].

Consider situation (ii). The location of p+ jumps from the
red (gray) dot in Fig. 12(b) to that in Fig. 12(c) at τ = 150.
At this time, the designed controller (12) is applied. The orbit
(x,y) then wanders from the red (gray) dot in Fig. 12(b) to that
in Fig. 12(c). Control signal u starts to oscillate at τ = 150 and
then converges on zero as the orbit (x,y) converges on p+. This
result suggests the following two facts: The energy required
for stabilization is small, and the orbit (x,y) converges exactly
to p+ even if the location of p+ is unknown. These facts stem
from the inherent advantages of delayed feedback control.

Consider situation (iii). Parameter a oscillates at a low
frequency; the location of p+ also oscillates. From Figs. 11
and 12(c), we see that the orbit (x,y) successfully tracks the
oscillating p+, even though the location of the oscillating p+ is
unknown and the control signal u cannot be large. This result
shows that such tracking, one of the advantages of delayed
feedback control [33], is useful for the case of slow fluctuations
of parameters.

V. CONCLUSION

The present paper deals with analysis and control of a dc
bus system with a CPL on the basis of nonlinear science.
The circuit equation describing the dc bus system, which
includes five circuit parameters, is reduced to a dimensionless
dynamical system with only two system parameters. The
bifurcation analysis clarifies the following two scenarios for
an increase of consumption power of the load: (i) for relatively
small resistance, an operating point changes from a stable focus
to an unstable focus via the Hopf bifurcation, changes from an
unstable focus to an unstable node via a breakaway, and, finally,
disappears via a saddle-node bifurcation and (ii) for a relatively
large resistance, the operating point changes from a stable
focus to a stable node via a breakaway and, finally, disappears
via a saddle-node bifurcation. This analytical result allows us
to propose a systematic procedure for designing a delayed
feedback controller which can stabilize an unstable operating
point. This controller has the following characteristics: the
control energy required for stabilization is small due to its
noninvasive property; the circuit state converges exactly on
the operating point even though the location of the point is
unknown; and the circuit state can track a wandering point
using tiny control energy when a system parameter, such as
the power consumption of the load, is slowly varied. These
features demonstrate that delayed feedback control is a strong
candidate for solving the destabilizing problem of dc bus
systems.

It is well accepted that the destabilizing problem of dc
power-grid networks needs to be solved for future practical use.
Huddy and Skufca reported that delay-connection-induced
amplitude death [34] can be used for this problem in a pair of dc
bus systems on numerical simulations [16]. Their pioneering
work is the first report on applications of nonlinear science to
the destabilizing problem. In contrast, the present paper deals
with a more fundamental application: bifurcation analysis and
delayed feedback control of a single dc bus system. It has
been reported that amplitude death can be an extension of
the stabilization of a single oscillator with delayed feedback

control [35]; therefore, it is expected that the fundamental
results reported in the present paper will be extended to solve
the destabilizing problem of dc power-grid networks by using
our accumulated knowledge on amplitude death in networks
[36–38].
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APPENDIX: PROOF OF LEMMAS

This Appendix provides proofs of Lemmas 3 and 4.

1. Proof of Lemma 3

Consider an HP bifurcation point where the roots s of
f (s,x) = 0 are on the imaginary axis. This situation is
described by substituting s = jω, ω > 0 into f (s,x) = 0,

f (jω,x) = b − ab

x2
− ω2 + jω

(
b − a

x2

)
= 0. (A1)

Elimination of a and x in Re [f (jω,x)] = 0 and Im [f (jω,x)]
= 0 yields ω2 = b(1 − b). This equation suggests that if
b < 1 holds, then there exists a > 0 such that HP bifurcation
occurs at s = ±j

√
b(1 − b). In contrast, if b > 1 holds,

then HP bifurcation never occurs for any a > 0, due to the
nonexistence of ω ∈ R. For b = 1, there exists a > 0 such
that DZ bifurcation occurs. Thus, we see that b < 1 is the
necessary and sufficient condition for the existence of a > 0
for HP bifurcation. It is easy to check that Im [f (jω,x)] = 0
on bifurcation curve (9) holds for x = x∗

+ but not for x = x∗
−.

2. Proof of Lemma 4

At the breakaway point, f (s,x) = 0 has a multiplicity of
roots. We have its discriminant being zero when the following
holds:

(bx2 + a − 2x2
√

b)(bx2 + a + 2x2
√

b) = 0.

Since a > 0 and b > 0 hold, this equation can be reduced to a
simple equation,

a = (2
√

b − b)x2, (A2)

which specifies the relationship between the parameters (a, b)
and x at the breakaway point. It is obvious that there exists
a > 0 if and only if 2

√
b − b > 0. As we are considering

the stability of fixed points, x in Eq. (A2) should be the x

component of p±. Some simple algebraic manipulation allows
us to know that, for Eq. (10), Eq. (A2) with x = x∗

+ holds but
not with x = x∗

−. This suggests that breakaway only occurs at
p+ if Eq. (10) is satisfied. Note that we have to exclude the
DZ bifurcation point, since Eq. (A2) with x = x∗

+ includes it.
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