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This paper investigates dynamics of a management system for controlling a pair of energy storages. The system
involves the following two characteristics: each storage behaves in a manner that reduces the number of charge
noncharge cycles and begins to be charged when the price of power is lower than a particular price threshold. The
price is proportional to the past total power flow from a power grid to all storages. A peak of the total power flow
occurs when these storages are charged simultaneously. From the viewpoint of nonlinear dynamics, the energy
storages can be considered as relaxation oscillators coupled by a delay connection. Our analytical results suggest
that the peak can be reduced by inducing an antiphase synchronization in coupled oscillators. We confirm these
analytical results through numerical simulations. In addition, we numerically investigate the dynamical behavior
in 10 storages and find that time delay in the connection is important in reducing the peak.
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I. INTRODUCTION

Many interesting nonlinear phenomena can occur in mul-
tiple self-oscillations with mutual connections, even when
there is no centralized control. Such phenomena have received
considerable attention in nonlinear science [1–5] and are
now used in a number of engineering applications, such
as secure communication [6,7], control of robotics [8],
sensor networks [9], antenna beam forming [10,11], fre-
quency down converters [12,13], and parallel power converters
[14,15].

Power-grid networks have been attracting increasing at-
tention not only in the industrial arena but also in nonlinear
science [16–19]. The smartgrid and microgrid concepts, which
deal with the control of power-grid networks with distributed
users and power sources, are expected to play an important role
in future energy systems [20]. Energy storages are considered
as essential for stable operation of power-grid networks [21].
In particular, it is well accepted that the management of
distributed energy storages will be a key to the smart control
of power-grid networks.

There have been many practical management schemes
for controlling distributed energy storages, in which each
such storage belongs to its own user (agent) (e.g., see Refs.
[22–25]). These schemes must obtain all users’ states and
demands and then manipulate the users on the basis of
the information obtained. These schemes involve the fol-
lowing problems: They have a heavy load of appropriate
manipulations to compute for all users on the basis of
the enormous amount of obtained information; the software
for the computation must use complicated algorithm to
accommodate a wide variety of changing situations, such as
new user entry, old user exit, and system parameter change;
and obtaining information and manipulating users require
interactive communication [26]. Therefore, the initial cost
of establishing an energy system including hardware and
software and the cost of running the system would inevitably be
high.

The reduction of peak load [27] has been recognized as one
of the most important problems to be solved for power systems.

To the authors’ knowledge, however, there have been only a
few attempts to utilize nonlinear phenomena in the power
systems community. The present paper proposes a distributed
system, a real-time power price systems, based on knowledge
of nonlinear dynamics. This paper is concerned with the simple
situation,1 illustrated in Fig. 1, in which there are several users
each of which possesses its own storage (e.g., electric battery
or thermal storage) and purchases power from a common
power grid (i.e., power source). Each user manipulates its
own storage independently in accordance with the following
two simple rules: (a) Each user aims to reduce the number of
charge noncharge cycles to prevent storage degradation [28]
and to reduce power loss in converting energy and (b) each
user aims to purchase power for its own benefit when the price
is less than a threshold. The common power price for all users
is assumed to be proportional to the past total power flow. This
is because a particular length of time is required to measure the
total power flow and to inform the power price to every user
[29–31].

In comparison with the most previous schemes, our system
has the following features: Data required for communication is
only the past total power flow (i.e., scalar data); there is no need
to use interactive and high-speed communication, because past
data are sent unidirectionally to all users; and the algorithm
for control, rules (a) and (b), is quite simple. These features
allow our system to take advantage of low initial and running
costs.

It should be emphasized that energy storages with rules
can be regarded as coupled oscillators, as illustrated in
Fig. 2. As the energy state of each storage is self-oscillatory
with slow and fast time scales, the storages behave as relaxation
oscillators [32,33]. The storages are interacted via the common
delayed power price which tends to push the energy state

1Practical situations in which there are various types of users and
various energy sources are difficult to analyze. Thus, this article
focuses on one of the simplest situations to analytically investigate
the fundamental dynamics of storage users.
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FIG. 1. Storages with delayed power price.

phases apart. Thus the interaction can be regarded as a
repulsive connection with delay [34]. From the viewpoint of
nonlinear science, the present paper investigates the dynamics
of relaxation oscillators globally coupled by a repulsive delay
connection and provides a procedure to design parameters
inducing antiphase synchronization.

This paper analytically investigates the dynamical behavior
of our system with a pair of storages from the viewpoint
of nonlinear dynamics. The analytical results provide a
condition for avoiding the peak load; moreover, this condition
allows us to systematically design our system for peak load
reduction. These analytical results and the design procedure
are confirmed through numerical simulations. Furthermore,
the dynamics of 10 storages is numerically investigated, and
we find that the time delay can play an important role in
reducing the peak load. Finally, the relationship of our system
to previous studies on coupled oscillators are explained in
detail.

FIG. 2. Globally delay-coupled relaxation oscillators

II. MATHEMATICAL MODEL

We begin by considering the situation, illustrated in Fig. 1,
in which N users receive power from a power grid; moreover,
each user possesses a storage (e.g., battery or thermal storage)
and constantly consumes power V . The energy stored in the
storage, Xi(τ ) ∈ [0,X̄], with the storage capacity X̄ > 0, of
user i ∈ {1, . . . ,N} at time τ can be written as

Xi(τ ) = Xi(0) − V τ +
∫ τ

0
Ui(τ

′)dτ ′, (1)

where Xi(0) is the initial stored energy. Ui(τ ) ∈ {0,Ūi} is the
received power, where Ūi denotes the charging power. The
total power flow from the power grid to all of the storages is
given by

Utotal(τ ) =
N∑

i=1

Ui(τ ). (2)

We suppose that every user acts independently for its own profit
based on two simple rules. First, each user aims to reduce
the repetition of charge and noncharge actions, because an
increase in repetition accelerates storage degradation (e.g., for
batteries) and increases power loss in converting energy (e.g.,
for thermal storages). Second, each user begins charging his
or her own storage when the power price is less than a price
threshold. This paper investigates the dynamical behavior of
storage state (1) with these two rules.

Here we propose a power price,

P (τ ) = 1

N
Utotal(τ − �), (3)

proportional to the past (i.e., delayed) total power flow, where
� � 0 is the length of time required for a power supplier to
detect the total power flow and to inform the price to the
users. Without loss of generality, we can suppose that V <

Ū1 < · · · < ŪN . The storage has charge and noncharge states.
For a charge state [i.e., Ui(τ ) = Ūi], the storage energy Xi(τ )
increases and reaches the full-charge state [i.e., Xi(τ ) = X̄].
Then the storage state changes to noncharge [i.e., Ui(τ ) = 0],
and the storage energy Xi(τ ) decreases and reaches a state
threshold Xc ∈ (0,X̄). The storage begins to be charged only
if Xi(τ ) � Xc and P (τ ) � Pc. If its storage is empty [i.e.,
Xi(τ ) = 0], the storage begins to be charged independent of
the price P (τ ).

To simplify the analysis of dynamical behavior, we define
the transformation of the variables and the parameters by

xi := Xi

X̄
∈ [0,1], ui := Ui

V
� 0, p := P

V
� 0, (4)

t := V τ

X̄
� 0, T := V �

X̄
� 0, pc := Pc

V
� 0, (5)

xc := Xc

X̄
∈ (0,1), ūi := Ūi

V
� 0, (6)

so we obtain a simple normalized model,

dxi(t)

dt
= ui(t) − 1, (7)
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FIG. 3. Dynamics of normalized i-th storage system (7)–(10).

with normalized storage state xi(t) and normalized time t . The
normalized received power is

ui(t) =
{
ūi if charge mode
0 if noncharge mode , (8)

where ūi > 1 is the normalized charging power. The normal-
ized power price p(t) is

p(t) = 1

N
utotal(t − T ), utotal(t) :=

N∑
i=1

ui(t). (9)

The charge and noncharge modes of storage i are switched by
the following law, as illustrated in Fig. 3:

(1) noncharge mode ⇒ charge mode
if {p(t) � pc and xi(t) � xc} or {xi(t) = 0}.

(2) charge mode ⇒ noncharge mode
if xi(t) = 1.

(10)

Note that the six parameters (X̄, V , Ūi , �, Xc, Pc) in our
system are reduced to only four parameters (ūi , T , xc, pc)
in the normalized system. This will simplify our analysis.
Figure 4 sketches the time-series data of storage state xi(t),
price p(t), and received power ui(t). The state of each storage
seesaws repeatedly between low-charge level xi(t) ∈ [0,xc]
and full-charge level xi(t) = 1. In other words, each storage
inevitably induces a self-oscillation and behaves as a relaxation
oscillator. In addition, the price p(t), which includes past
information about all the storages, has an influence on each
storage. Therefore, the normalized system (7)–(10) can be
considered a globally delay-coupled relaxation oscillator, as

FIG. 4. Sketch of time-series data of storage state xi(t), price
p(t), and charging power ui(t).

illustrated in Fig. 2. This paper investigates the dynamics of
oscillators (7)–(10) analytically.

III. DYNAMICAL BEHAVIOR

This section provides preliminaries and proposes an ana-
lytical framework. For simplicity, we restrict our attention to
the simplest situation N = 2.

A. Numerical examples

As a beginning, we observe the dynamical behavior of the
normalized system (7)–(10) in numerical simulations. The
parameters, charging powers and price threshold, are set to

ū1 = 2.5000, ū2 = 2.6250, pc = 0.25ū1. (11)

Figures 5(a) and 5(b) show the time-series data of storage states
x1,2(t) and total power flow utotal(t) with N = 2 for (xc,T ) =
(0.30,0.05) and (xc,T ) = (0.10,0.40), respectively. Without
using price, the two storages oscillate independently for t <

5. Moreover, we see that the peak load occurs when they
are simultaneously in the charge mode. They are controlled
with price (9) for t � 5. The peak load is suppressed in the
steady state as shown in Fig. 5(a), but it still occurs in Fig.
5(b). These differing results indicate that we must choose the
appropriate parameters, ū1,2, pc, xc, and T , to suppress the
peak load. The primary purpose of this paper is to clarify
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FIG. 5. Time-series data of storage states x1,2(t) and total power
flow utotal(t) with N = 2: (a) (xc,T ) = (0.30,0.05) and (b) (xc,T ) =
(0.10,0.40).
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the peak-generating mechanism and to design the parameters
for suppressing the peak load.

B. Assumptions and definition

Let us assume the following.
Assumption 1. Assume that the charging powers ū1,2 and

the price threshold pc satisfy

2 < ū1 < ū2, pc ∈
(

0,
1

2
ū1

)
. (12)

The first condition in (12) means that the charge periods of
storages are less than the noncharge periods. It is necessary
that the two storages do not charge simultaneously. The second
condition in (12) is also necessary for the two storages to
affect each other. To simplify our analysis, we now define the
following parameters:

ū∗
1 := 1

ū1 − 1
∈ (0,1), ū∗

2 := 1

ū2 − 1
∈ (0,1). (13)

Assumption 1 guarantees that 0 < ū∗
2 < ū∗

1 < 1.
The peak load is defined as follows.
Definition 1. If there exists time t∗ such that the total power

flow utotal(t) defined by Eq. (9) with N = 2 is less than or equal
to ū2 for any time t � t∗, that is,

utotal(t) � ū2, ∀t � t∗,

then the peak load (i.e., simultaneous charging) does not occur
in a steady state.

It is easy to see that a sufficiently short delay (i.e., T � 1)
might not induce the peak load. For long delays, however, we
cannot intuitively see whether the peak load occurs. Now we
attempt to reveal its dynamics, because this would be important
information for designing our system.

Moreover, we introduce the following assumption.
Assumption 2. Delay time T satisfies

T ∈
(

0,
1

2
(1 − xc)

)
. (14)

This assumption will simplify our analysis of the dynamics,
as we see later. The upper limit of time-delay range (14) is
one-half of the time required for a fully charged storage to
reach the threshold xc. Thus, this assumption is not a strict
condition.

C. Dynamics on phase plane

This subsection investigates the dynamics in a pair of
storages on a phase plane. Figure 6 illustrates the trajectory of
the storages on the phase plane x1(t) – x2(t). The dynamics
can be understood in detail with reference to Fig. 6.

A: Storage 1 is in the full-charge state, and storage 2 is in
noncharge mode.

A → B: Both storages are in noncharge mode.
B: Storage 2 reaches the state threshold, x2(t) = xc, and

then begins to charge in response to the low price p(t) = 0.
Note that this price depends on the past states of these storages,
that is, the point b at which both storages are in noncharge
mode.

B → C: Storage 1 is in noncharge mode, and storage 2 is
in charge mode.

FIG. 6. Schematic illustration of trajectory of two storages on
phase plane.

C: Storage 1 reaches the state threshold, x1(t) = xc, but
cannot begin charging because of the high price, p(t) =
ū2/2 > pc. This is because the past state of storage 2 at point
c is in charge mode.

C → D: Storage 1 is in no-charge mode and storage 2 is
in charge mode.

D: Storage 2 reaches the full-charge state, x2(t) = 1, and
then changes to noncharge mode.

D → E: Both storages are in noncharge mode.
E: Storage 1 begins charging, because the price turns

changes to low, p(t) = 0. The reason is that the past state
of storage 2 at point D turns to noncharge mode.

E → F: Storage 1 is in charge mode, and storage 2 is in
noncharge mode.

F: Storage 2 reaches the state threshold, x2(t) = xc, but
cannot begin charging because of the high price, p(t) =
ū1/2 > pc. This is because the past state of storage 1 at point
f is in charge mode.

F → G: Storage 1 is in charge mode, and storage 2 is in
noncharge mode.

G: Storage 2 is empty, x2(t) = 0, and then begins charging
independent of the price.

G → H: Both storages are in charge mode, resulting in
peak load.

As aforementioned, the behavior of these storages can be
expressed as a trajectory on the phase plane.

IV. DESIGN OF SYSTEM PARAMETERS

This section presents a systematic procedure for designing
the system parameters, xc and T , under Assumptions 1 and 2
such that the peak load described in Definition 1 does not
occur. It is easy to understand that both of the following
conditions are satisfied if the peak load does not occur.

Condition (a): There does not exist a time interval in which
both storages are in charge mode simultaneously (i.e., there is
no trajectory that has a positive slope with an increase such as
G → H in Fig. 6).

Condition (b): The dynamics settles in a steady state (i.e.,
a stable limit cycle appears on the phase plane).
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FIG. 7. Definition of regions �i (i = 1, . . . ,20).

First, we deal with Condition (a). Let us define a Poincare
section as follows:

� := {(x1,x2) ∈ R2 : x1 = 1,x2 ∈ [0,1],ẋ2 < 0}. (15)

As the trajectories with positive slopes (i.e., ẋ2 > 0) induce the
peak load, in this section, the trajectories are restricted to those
with negative slopes (i.e., ẋ2 < 0) at x1 = 1 from the segment
x2 ∈ [0,1] at x1 = 1. Let us define a return map, F : � → �,
by

x2[n + 1] = F (x2[n]), (16)

where the state of the map is defined by x2[n] := x2(tn) on
� at the n-th time, tn. Now we specify this map. Let us
define regions �i (i = 1, . . . ,20) under Assumption 2 2 as
illustrated in Fig. 7. We find that there are nine potential cases
for which trajectories from � to � do not include any positive
slopes:

Case 1 : �1 → �11 → �6 → �16 → �∗, (17)

Case 2 : �1 → �11 → �7 ∪ �8 → �17 → �∗, (18)

Case 3 : �1 → �11 → �9 ∪ �10 → �19 ∪ �20 → �∗,

(19)

Case 4 : �2 ∪ �3 → �12 → �6 → �16 → �∗, (20)

Case 5 : �2 ∪ �3 → �12 → �7 ∪ �8 → �17 → �∗, (21)

Case 6 : �2 ∪ �3 → �12 → �9 → �19 → �∗, (22)

Case 7 : �3 ∪ �4 → �13 ∪ �14 → �6 → �16 → �∗, (23)

Case 8 : �3 ∪ �4 → �13 ∪ �14 → �7 ∪ �8 → �17 → �∗,

(24)

2The upper limit of T in Assumption 2, which is equivalent to
xc + T < 1 − T , indicates that the regions �4,9,14,19 exist as shown
in Fig. 7. Throughout this paper, the existence of limit cycles and
their stability are analyzed on the basis of regions �i (i = 1, . . . ,20)
defined by Fig. 7.

Case 9 : �3 ∪ �4 ∪ �5 → �13 ∪ �14 ∪ �15

→ �8 ∪ �9 ∪ �10 → �18 ∪ �19 ∪ �20 → �∗,

(25)

where �∗ := �1 ∪ �2 ∪ �3 ∪ �4 ∪ �5. Each case provides a
path of trajectories on the phase plane. For instance, Case 1
[see Eq. (17)] indicates that trajectories visit the regions, �1,
�11, �6, �16, and �∗, in sequence. The return map F can be
described by

F (x) =




f1(x) for Case 1
f2(x) for Case 2

...
f9(x) for Case 9

,

where map fj for case j is defined by

f1(x) = x − ū∗
1 + ū∗

2, (26)

f2(x) = −ū∗
1x − (1 + ū∗

1)T + 1 − ū∗
1ū

∗
2, (27)

f3(x) = x + (1 + ū∗
1)xc − ū∗

1 + ū∗
2, (28)

f4(x) = −ū∗
2x + (1 + ū∗

2)T − ū∗
1 + ū∗

2, (29)

f5(x) = ū∗
1ū

∗
2x − (1 + 2ū∗

1 + ū∗
1ū

∗
2)T + 1 − ū∗

1ū
∗
2, (30)

f6(x) = −ū∗
2x + (1 + ū∗

2)T + (1 + ū∗
1)xc − ū∗

1 + ū∗
2, (31)

f7(x) = x − (1 + ū∗
2)xc − ū∗

1 + ū∗
2, (32)

f8(x) = −ū∗
1x − (1 + ū∗

1)T + ū∗
1(1 + ū∗

2)xc + 1 − ū∗
1ū

∗
2,

(33)

f9(x) = x + (ū∗
1 − ū∗

2)xc − ū∗
1 + ū∗

2. (34)

The case number j depends on the system parameters (i.e., xc,
T , ū1,2) and the state x2[n].

Second, we consider Condition (b). If the map fj has the
stable fixed point x∗

j satisfying

x∗
j = fj (x∗

j ), (35)

then there exists a stable limit cycle on the phase plane [i.e.,
Condition (b) holds]. Now we investigate the existence of the
fixed point for all cases (j = 1, . . . ,9).

The analytical results for Cases 1, 3, 4, 7, 8, and 9 are
provided below.

Lemma 1. There does not exist a fixed point for Cases 1, 3,
4, 7, 8, and 9 under Assumption 1.

Proof. See Appendix A 1.
The existence of stable fixed points for Cases 2, 5, and 6 is

explained by the following lemmas.
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Lemma 2. There exists a stable fixed point x∗
2 for Case 2 if

the parameters xc and T satisfy

xc ∈
(

ū∗
1 − ū∗

2

1 + ū∗
1

,1

)
, (36a)

T ∈
(

1 − ū∗
1ū

∗
2

2(1 + ū∗
1)

,
1 − ū∗

1ū
∗
2

1 + ū∗
1

)
, (36b)

under Assumptions 1 and 2.
Proof. See Appendix A 2.
Lemma 3. There exists a stable fixed point x∗

5 for Case 5 if
the parameter T satisfies

T ∈
(

(1 − ū∗
1ū

∗
2)(1 − xc)

2(1 + ū∗
2)

,
1 − ū∗

1ū
∗
2

2(1 + ū∗
1)

)
, (37)

under Assumptions 1 and 2.
Proof. See Appendix A 3.
Lemma 4. There exists a stable fixed point x∗

6 for Case 6 if
the parameters xc and T satisfy

xc ∈
(

ū∗
1 − ū∗

2

1 + ū∗
1

,1

)
, (38a)

T ∈
(

0,
(1 − ū∗

1ū
∗
2)(1 − xc)

2(1 + ū∗
2)

)
, (38b)

under Assumptions 1 and 2.
Proof. See Appendix A 4.
These lemmas yield the following main result.
Theorem 1. There exists a stable fixed point if the parame-

ters xc and T satisfy

xc ∈ (x∗
c ,1), x∗

c := ū∗
1 − ū∗

2

1 + ū∗
1

= ū2/ū1 − 1

ū2 − 1
, (39)

T ∈ (0,T ∗), T ∗ := 1 − ū∗
1ū

∗
2

1 + ū∗
1

= 1 − 1

ū1 − ū1/ū2
, (40)

under Assumptions 1 and 2.
Proof. This is obvious from Lemmas 2, 3, and 4.
This theorem provides a procedure for designing the system

parameters xc and T .
(Step 1) The charging powers ū1,2 and the price threshold

pc are given.
(Step 2) If they do not satisfy Assumption 1, then we

abandon our design.
(Step 3) Design the state threshold xc such that condition

(39) holds.
(Step 4) Design the delay time T such that both Assump-

tion 2 and condition (40) hold.
The analytical results aforementioned are confirmed nu-

merically in the next section.

V. NUMERICAL RESULTS AND DISCUSSION

This section verifies the analytical results for N = 2
numerically. Moreover, the dynamical behavior for N > 2
is investigated through numerical simulations. Finally, some
potential contributions of our proposal and previous work
related to our system in the field of nonlinear science are
summarized.

xc

T

T

T/2

(a)

(b)

(c)

(d)

Case 2

Case 5

Case 6xc

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

FIG. 8. Regions for Lemmas 2 (Case 2), 3 (Case 5), 4 (Case 6),
and Theorem 1 (gray area) in parameter space xc − T (ū1 = 2.500,

ū2 = 2.625): (a) (xc,T ) = (0.30,0.05), (b) (xc,T ) = (0.10,0.40),
(c) (xc,T ) = (0.60,0.12), and (d) (xc,T ) = (0.20,0.30).

A. Case of N = 2

For N = 2, we can design the system parameters xc and
T in accordance with Theorem 1. For (Step 1), the charging
power and the price threshold are given as in Eq. (11) in
Sec. III A. For (Step 2), we confirm that they satisfy Assump-
tion 1 and then proceed to the next step. For (Step 3), the state
threshold xc is chosen from condition (39),

xc ∈ (x∗
c ,1), x∗

c = 0.0308. (41)

For (Step 4), from Assumption 2 and condition (40), we see
that the delay time T is taken from

T ∈
(

0, min

{
T ∗,

1

2
(1 − xc)

})
, T ∗ = 0.3538. (42)

Figure 8 illustrates a region (gray area) derived from Theorem
1 on parameter space xc − T . Notice that if xc and T are
chosen from the gray region, then the peak load never occurs
in a steady state. The time-series data for the parameter
sets (a) (xc,T ) = (0.30,0.05) and (b) (xc,T ) = (0.10,0.40) in
Fig. 8, as shown in Figs. 5(a) and 5(b), agree with the analytical
result of Theorem 1.

This stability region can be divided into the three subregions
corresponding to the three cases of limit cycles, Lemma
2 (Case 2), Lemma 3 (Case 5), and Lemma 4 (Case 6).
Let us numerically review the dynamics in each subregion.
Figure 9(a) shows the trajectory in a steady state on the phase
plane for the parameter set (a) (xc,T ) = (0.30,0.05) in Fig.
8 [see also Fig. 5(a)]. It can be seen that the trajectory has
the following characteristics: It does not have a positive slope
with an increase [Condition (a)], it forms a stable limit cycle
[Condition (b)], and it visits the regions of Case 6 defined by
Eq. (22) (Lemma 4). Moreover, the trajectory for the parameter
set (b) (xc,T ) = (0.10,0.40) in Fig. 8 [also see Fig. 5(b)] is
shown in Fig. 9(b): It has a positive slope with an increase
[i.e., Condition (a) does not hold], and it forms a stable limit
cycle [Condition (b)]. The trajectories for the parameter sets
(c) and (d) are shown in Figs. 9(c) and 9(d), respectively: They
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FIG. 9. Trajectories in steady state on the phase plane
(ū1 = 2.500, ū2 = 2.625): (a) (xc,T ) = (0.30,0.05), (b) (xc,T ) =
(0.10,0.40), (c) (xc,T ) = (0.60,0.12), (d) (xc,T ) = (0.20,0.30).

do not have a positive slope with an increase [Condition (a)],
they form stable limit cycles [Condition (b)], and they visit
the regions of Cases 5 and 2 defined by Eqs. (21) and (18)
(Lemmas 3 and 2), respectively. These numerical results agree
with the analytical results.

Let us numerically confirm that the peak load in the steady
state never occurs in the stability region. We now define a peak
load in the steady state,

ûtotal := max
t∈[tmin,tmax]

utotal(t), (43)

where the upper and lower limits, tmin and tmax, of the time
interval are set to 0 � tmin < tmax to ignore the transient
behavior. The peak load ûtotal might depend on the initial states,
xi(0) and charge and noncharge modes; thus, we will estimate
the averaged peak load, 〈ûtotal〉. The initial states, xi(0) ∈ [0,1]
and charge and noncharge modes are randomly chosen, and
each storage behaves independently without using the price for
t < 100. These storages begin to be controlled using price at
t = 100. The limits of the time interval are set to tmin = 1500
and tmax = 2000. The averaged peak load 〈ûtotal〉 is estimated
by repeating the above procedure 10 times. The peak load
〈ûtotal〉 is plotted as a function of xc and T in Fig. 10(a). The
dark (light) region indicates low (high) peak load. This result
leads to the conclusion that the analytical result of Theorem 1
agrees well with the numerical result.

B. Case of N > 2

We have shown that our analytical results are valid for
a pair of storages (N = 2). However, for N > 2, we cannot
analytically guarantee whether they are valid. Let us consider
the dynamics of N = 10 storages with the price threshold pc =
0.49ū1 through numerical simulations. The averaged peak

x c

0 0.2 0.4 0.6 0.8 1

T

0

0.1

0.2

0.3

0.4

0.5

3

3.5

4

4.5

5(a)

(a)

(b)

x c

0 0.2 0.4 0.6 0.8 1

T

0

0.1

0.2

0.3

0.4

0.5

14

16

18

20

22

24

26(b)

FIG. 10. Plots of averaged peak load 〈ûtotal〉 on parameter space
xc vs T for (a) N = 2 with ū1,2 = 2.5000,2.6250 and (b) N = 10
with ū1,...,10 ∈ [2.5000,2.8000].

load 〈ûtotal〉 is estimated by repeating the following procedure
10 times: xi(0) ∈ [0,1] (i = 1, . . . ,10), charge and noncharge
modes, and the charging powers ūi ∈ [2.5000,2.8000] (i =
1, . . . ,10) are randomly chosen.

The peak load 〈ûtotal〉 is plotted as a function of xc and
T in Fig. 10(b). The analytical boundary lines with N = 2,
ū1 = 2.5000, and ū2 = 2.800, calculated by Lemmas 2 (Case
2), 3 (Case 5), and 4 (Case 6), are also described in this figure
solely to provide information. The dark (light) region indicates
that the peak load is low (high). We roughly see that the peak
load 〈ûtotal〉 is low in the region of Cases 5 and 2 as compared
with the region of Case 6. Figures 11(a) and 11(b) show
the time-series data of x1,...,10(t) and utotal(t) at (a) (xc,T ) =
(0.40,0.06) and (b) (xc,T ) = (0.40,0.16), respectively, shown
in Fig. 10(b). For a short delay T = 0.06, as shown in
Fig. 11(a), the storages are not synchronized; thus, the
total power flow occasionally shows peaks. Conversely, for
a long delay T = 0.16, all the storages behave as two-
phase oscillations with antiphase synchronization as shown in
Fig. 11(b); moreover, each phase includes five storages, and
the peak load does not occur. We notice that the two-phase
oscillators behave as a pair of storages in Case 5 [cf.,
Fig. 9(c)].
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FIG. 11. Time-series data of the storage states x1,...,10(t) and the
total power flow utotal(t) with N = 10 and xc = 0.40: (a) T = 0.06
and (b) T = 0.16.

In general, the analysis of dynamical systems including
delays [35] is difficult because of their infinite-dimensional
dynamics [36–38]; furthermore, it is well accepted that time
delay in engineering systems is regarded as harmful to
system stability. Note that 〈ûtotal〉 for parameter set (xc,T ) =
(0.40,0.16) (i.e., long delay) is lower than that at (xc,T ) =
(0.40,0.06) (i.e., short delay). This fact implies that the time
delay T can induce synchronization and reduce the peak load.

C. Discussion

This section will summarize some potential contributions
of our proposal to power systems research. Moreover, we
will mention the relationship of our power system to previous
studies in nonlinear science.

The core idea of this paper involves the application of
knowledge of nonlinear science to a problem in the power
systems research. Although our system might be regarded as
an interdisciplinary study, it is still at the most fundamental
level and has substantial room for improvement. In particular,
antiphase synchronization, one of the nonlinear phenomena
that occur in coupled oscillators, can be useful in reducing
the peak of total power flow. This result provides the potential
of using substantial nonlinear phenomena to solve various
problems in power systems research. As most nonlinear phe-
nomena are induced by simple rules (e.g., coupled nonlinear
oscillators, coupled nonlinear maps, and reaction-diffusion
systems), the main advantage of using nonlinear phenomena
might be simplification of the control law and system structure
even for large power systems.

Note that our study deals with an interesting nonlinear
system, relaxation oscillators coupled by a time-delay global-
repulsive connection, as sketched in Fig. 2. From the viewpoint
of nonlinear dynamics, we now consider the relation between
our system and previous studies.

Relaxation oscillators, which have slow and fast time
scales, have been well known in nonlinear science [32,33].
The storages in our system also have two such time scales,
such as states in charge and noncharge modes (i.e., slow
scale) and jumps between these modes (i.e., fast scale).
Hence, these storages can be regarded as a type of relaxation
oscillators.

Time-delay connections have attracted attention in the
field of nonlinear dynamics [37], because they induce several
interesting phenomena, such as coexistence of several syn-
chronizations [39], enhancement of synchronization [40–42],
time-delay-induced phase transition [43], and induction of
stabilization [44–46]. We observe that the time delay in
connection would be the key to the suppression of the peak
load in our system with N = 10.

Connection topologies in networks are classified into
local, global, and intermediate connections [1,3]. It is widely
accepted that the dynamics of networks strongly depends
on connection type. The connection in our system is con-
sidered not only as a global connection but also a delay
connection [47,48], because the price sent to each user
includes the delayed sum of the received power flows of all
users.

The interactions in connection are divided into three cases,
attractive, repulsive, and mixed: The attractive interaction
induces in-phase synchronization, as it tends to pull the
oscillator phases together; the repulsive interaction induces
the antiphase synchronization due to push action [49,50]; and
their mixed interaction causes interesting phenomena [51].
The price in our system, which is proportional to the past total
power-flow, acts to push the phases of charge mode apart.
Hence, the interaction between the storages is considered as a
repulsive connection with delay [34].

As mentioned, each of the key subjects in our systems
have been investigated already in detail; thus, a substantial
amount of knowledge has been accumulated on each. The
time-delay-induced suppression of peak load observed in our
system, as shown in Fig. 11(b), does not contradict the results
of the previous study, the enhancement of synchronization by
a repulsive delay connection [34]; however, other accumulated
deep knowledge on each subject has not been sufficiently
utilized in analyzing and designing our system. It is expected
that such knowledge will allow us to improve our analysis
and design, which will lead to the improvement of system
performance.

VI. CONCLUSION

This paper investigated the dynamical behavior of a pair
of storages from the viewpoint of nonlinear dynamics. A
systematic procedure for designing the system parameters was
provided. The analytical results suggest that the peak load can
be reduced even if the real-time pricing systems involve delay
time.
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APPENDIX A: PROOFS OF LEMMAS

This Appendix provides proofs of lemmas.

1. Proof of Lemma 1

First, we consider cases 1, 3, 7, and 9. As the maps f1,3,7,9

described by Eqs. (26), (28), (32), and (34) have gradient 1 and
some bias, there does not exist a stable isolated fixed point (35).
Second, we consider Case 4. The map f4 does not have a fixed
point x∗

4 in the region �2 ∪ �3 = [T ,xc + T ] under ū∗
2 < ū∗

1
(⇔ ū1 < ū2) in Assumption 1. Third, we consider Case 8. The
trajectory from the fixed point x∗

8 never visit �7 ∪ �8 under
ū∗

2 < ū∗
1 (⇔ ū1 < ū2) in Assumption 1 and under definition

(6). This implies that a fixed point x∗
8 for Case 8 does not

exist. In conclusion, fixed points x∗
1,3,4,7,8,9 do not exist under

Assumption 1.

2. Proof of Lemma 2

We show the existence of a limit cycle that visits the regions
described by Eq. (18) and its stability for Case 2. It is easily
confirmed by simple manipulations that if T satisfies condition
(36b), then a fixed point x∗

2 satisfying x∗
2 = f2(x∗

2 ) exists within
the region �1. The trajectory starting from x∗

2 in section �

inevitably visits the region �11. We easily see that if xc satisfies
condition (36a) under Assumption 2 and 0 < ū∗

2 < ū∗
1 < 1 in

Assumption 1 holds, then the trajectory visits the region �7 ∪
�8. Moreover, we easily confirm that the trajectory visits the
region �17 and returns to x∗

2 . These facts guarantee that under
Assumptions 1 and 2, if the two conditions (36a) and (36b)
hold, then the limit cycle starting from x∗

2 and returning to
x∗

2 exists. In addition, it is guaranteed that the limit cycle is
stable, as the map f2 defined by Eq. (27) has the gradient
−ū∗

1 ∈ (−1,0).

3. Proof of Lemma 3

As in the proof of Appendix A 2, for Case 5, the existence of
the limit cycle visiting the regions described by Eq. (21) and its
stability will be proved. We see that if T satisfies condition (37)
under Assumptions 1 and 2, then the fixed point x∗

5 satisfying
x∗

5 = f5(x∗
5 ) exists within the region �2 ∪ �3. The trajectory

starting from x∗
5 inevitably visits the region �12. In addition,

we can see that if T satisfies condition (37), then the trajectory
visits the region �7 ∪ �8. It is clear that the trajectory visits
the region �17 and return to x∗

5 . As a result, we notice that
under Assumptions 1 and 2, if condition (37) holds, the limit
cycle starting from x∗

5 and returning to x∗
5 exists. In addition,

we can guarantee that the limit cycle is stable, as the map f5

defined by Eq. (30) has the gradient ū∗
1ū

∗
2 ∈ (0,1).

4. Proof of Lemma 4

The proof follows closely that of Appendix A 2. The
existence of a limit cycle visiting the regions described by
Eq. (22) and its stability for Case 6 will be provided below. If
xc satisfies condition (38a) under Assumption 2 and 0 < ū∗

2 <

ū∗
1 < 1 in Assumption 1, then the fixed point x∗

6 of map f6

exists within the region �2 ∪ �3. The trajectory starting from
x∗

6 inevitably visits the region �12. Moreover, we see that if the
conditions (38a) and (38b) are satisfied, the trajectory visits
the region �9. Then the trajectory visits the region �19 and
returns to x∗

6 . From these arguments, we can guarantee that if
conditions (38a) and (38b) hold under Assumptions 1 and 2,
then the limit cycle starting from x∗

6 and returning to x∗
6 exists.

Furthermore, we know that the limit cycle is stable, because
the gradient of map f6 is −ū∗

2 ∈ (−1,0).
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