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  On the Flow of a Compressible Fluid Past a Circular Cylinder, I

                               Tamedi SIMASAKI*

                             (Received January 31, 1955)

    The M2-expansion method is more suitable than any other methods for the calculation

of the steady two-dimensional irrotational fiow of a compressible fluid past a body with

blunt-nose and with fairly large thickness-ratio. In this paper, a fifth approximate solu-

tion correct to the order of M'O is obtained for the fiow without circulation past a circular

cylinder, by applying Imai's new M2-expansion method'), where M is the free-stream

Mach number. The analytical formulae for the fiuid velocity on the surface of.the body

are given. Also, the local sound velocity on the surfaee and the critical sound velocity

as well as the critical Mach number are given. Numerical computations have been

carried out for the case of flow of air in four cases in which Mis equal to O.40, O.45,

O.50 and O.55 respectively. Thus, it has been found that the critical Mach number for

the circular cylinder seems to converge to O.40 and that the potential flow may exist up

to M=O.50.

                                1. Introduction

    The thin-wing expansion method and the hodograph method are both useful for

dealing with the steady two-dimensional irrotational fiow of a compressible fluid past a

cylindrical obstacle. However, they are not a!ways convenient for the body with blunt-

nose and with finite thickness-ratio.

    0n the other hand, the M2-expansion method is more suitable for any cylindrical

obstacle with arbitrary cross-section. Recently, thls method has been improved by Dr. I.

Imai in several featuresi),2),3),`). Especially the method used in the present paper seems

to be the most convenient for a circular cylinder placed in a uniform flow of a comp-

ressible fluid. Introducing the conjugate complex variables, he has established an

ingeneous method to calculate the complex velocity potential under appropriate boundary

conditions. As for a circular cylinder without circulation, Imai5) himself has obtained

the approximate solution correct to the'order of M6. The present author has also cal-

culated to the order of M8 by use of the original method of Janzen6) and Rayleigh7),

though the results are unpublished.

    In 1928, G.I. Taylor8) has remarked that the regular solution of the above problem

may exist when the Mach number is equal to O.4,,but not equal to O,5 and the limit of

the Mach number for the potential fiow may be. near to O,45. This so-called Taylor's

problem or the mixed region problem, however, has not come to a satisfactory conclusion.

Thus it is required to examine the convergency of the M2-expansion series more pre-

cisely. For this purpose, we have improved the approximate solution so far correct to
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the order of MiO by making use of Imai's new M2-expansion method'). The velocity

potential newly obtained is in exact agreement with Imai's to the order of M6 and with

the unpublished one of the author to the order of M8. Numerical computations have

been carried out for the case of air (r =1.405) in four cases in which Mis equal to

O.40, O.45, O.50 and O,55 respectively. From the results of them, it has been found that

the critical Mach number for the circular cylinder seems to converge to O.40 and that the

potential flow may exist up to M=O.50.

                          2. 0utline of Imai's method

    According to Imai's method, the equations of motion and that of continuity of the

steady two-dimensional irrotational fiow of a compressible fiuid can be reduced to a

single equation as

                               gz' =(iH pP..)-oO'f･ (2･ i)

where q is the velocity potential; p and p.. are respectively the density at any point in

the fluid fiow and at infinity in the undisturbed fiow;f and 2 are the conjugate ones of

the complex velocity potential f and the complex coordinate 2 respectively.

    If we assume that f, q,1- pP. and the magnitude of the fluid velocity 4 can be

expanded in the ascending powers of M2 as follows:

                             i.:-e,".A,itf:2'.7ei(G4'.'11:, 1

                                                              1                        1- P = p, +p,M2 +p,M4 + ･･. ,                                                                           (2. 2)
                                                              t
                            Peo

                             Oq Oq                       q2=4-o2- oA2 ==i+qe+qiM2+q2M`+･･･, J

then, comparing the values of the same order of M; we have

                                      Oqe Oqo
                                             -1                                qo =4                                      02 02

                       q, == 4 32qo g/--' +conjugate compiex ,

                                                '                  q,, =4 g2qo tOq2- +2 $2qi 2.S-i+conjugate complex, (2. 3)

                  q, == 4 3,qo gS-3 +4 3.qi gS-2+conjugate compiex ,

  ' q4 = 4 32qO @a2opA+4-Oo:i;L' 3kq3+2 g2q2 gg-2+conjugate compiex,

                        t------}--i-------}-----)-----t-----------------                                                       '

               p, == o,' p, =}q, , p, ='S q,-g- (i-le) q3 ,

               P3 = Lli" q2 't (1 - k) qeqi + ts (1 -- '3k + 2le2) qg ,
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             p4 = -iiL q3 - -ll- (i - le) (2aoq2 + ql) + t/-6 (i - 3le + 2le2) qgqi

                                                                            (2. 4)
                 - 3g4 (1 - 6le + 11le2 - 6le3) q3 ,

                                            '                                                 '         ps : L} a4 --t (1 -.'le) (qoq3 +qiq2) +iilts (1 -- 3le+2le2)(qe2q2+qoql)

              -- g-16 (1 "- 6le + 1lk2 - 6le3) qo3q, + 3s14o (1 -- 10le + 35le2 - 50le3 +24k`) qg ,

                     ------}---------------------1------------------- 1 .
and

   i fiiv =: S(p, OopoN2Lt + p, Oopoi2Nr-2+ ･･･ + pN -Oo{L') de + G-N(2), (N == o, i, 2, ･･･), (2. s)

                                                    '
where the adiabatic index r is equal to k+1 and G- N(2) are the complementary functions

which are analytic functions of 2 only and should be determined by the appropriate

boundary conditions. - '

            3. Determination of the complementary fumctions G-N(2)

    Here we consider the case of a circular cylinder without circulation. We put a

circular cylinder with unit radius normally to the uniform flow of a compressible fiuid

whose direction coincides with that of x-axis and whose speed is unit.

   'We assume

        ' U== uo+ulM2+u2M4+...,
                          v=v,+v,M2+v,M`+･･･, (3, 1)

     ' ¢=¢o+¢iM2+ip,M`+...,
where u and v are the x- and y-components of the fiuid velocity respectively and ip is

the stream function. Then the boundary conditions becorne as follows:

             uo == 1, vo == O; uN= vN= O, (N = 1, 2, ･･･) at infinity, (3. 2)

                   ¢N==O, (N=:O, 1, 2, ･･･) on the unit circle. (3. 3)
Here the first and the second conditions of (3.2) correspond to the flow of an incom-

pressible fiuid. .    Now we denote

                             .fiv =IN(2, 2) +GN(2), (3. 4)
then, if no circulation, rmxN(2, 2) are expanded in the form:

                              7N(2, 2) == ;S] amn2M2", (3. 5)
                              ' m,n
where amn is generally complex number.

When the values of 2 and 2 on the surface (22=1) are denoted by tand trespec-
tively, we can def6rm (3. 5) in the form:

                            7N(t, tH)=:lll fM.･+ )ll] e.". (3. 6)

The condition (3. 3) can be written in the form:

                              3GAr(t) =-3x-N(t, t), (3. 7)

L
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 where 3 denotes the imaginary part. It is obvious that the signs of the imaginary parts

 of x-N(t, t) do not change by the following transformation:

                                                                '
   . IN(t, i) ---eF-;i IFt +¥ e.", (3. s)

 where dm is the conjugate complex value of am. Thus the required analytic functions

 GN(2) which satisfy the condition (3. 7) are given in the form:

                              CN(2)=zil i'lii.--:Il] 2;;. (3,g)

 And these procedures are very simple and easy ones.

     Now, f6 and .iE correspond to an incompressible fiuid flow under the conditions (3. 2)

 and (3. 3) and it is well known that

                             A=2+-il', ft=2+Lltt. (3.io)

 By making use of these fundamental complex velocity potentials, we can proceed the

 subsequent evaluations as follows:

                   4z-,(2, 2) == z(-- >) +t (i -- 3,) +>(-g+ 3i22) ,

                    4-z,(t, T) = - l,i+-li--?- 313+lgit,

                      - 11211                     4G,(2) = -ET,+-?'+?- g2'3'+sh ,

                                    21                              10 1
                           == g?- +s i,･

 and so on. Thus the required integrals fN are given successively from the small number

 of the suthx N

                               4. Surface velocity

     Following.the above analysis, we have obtained the complex velocity potential cor-

 rect to the order of M'e. And the velocity potential and the stream function are also

 reduced so far correct to the same order of M; And these results agree with those due

 to Imai5) to the order of M6.

     However, the analytical expressions of the complex velocity potentials: .fl, n, f5, .rk

 and fg; the velocity Potentials: qi, q2, q3, q4 and gs and the stream functions: ¢i, ip2,

 Q3, ip4 and ips are all omitted here for the limitation of space. So, in this paper we shall
I
 report the velocity distribution on the cylindrical surface.

     Let qs be the magnitude of the fluid velocity along the surface of the cylinder and put

       qs == [- '}- "g-g-]...,

         = 4soo +qs!oM2 + (qs2o + qs2ile) M` + (q.3o +q.3ik + q,32le2) M6

            + (qs4o + qs4ik +qs42le2 + qs43k3) M8 + (q.so +q.sile + q.s2le2 + q.s3le3 + q,s,le4) MiO



where

index,

where
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r and 0 are the polar coordinates, narnely 2= reie and le is the modified a

namely le==r-1. Then we have the following formulae:

    kmn = A sin e+B sin 30 +C sin 5e +D sin 7a +'E sin 9e +F sin 11e ,

the coeMcients A, B, C, D, E and F are shown in Table 1.

          '
                                        '                             Table 1
            '                                    '
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by

we

         5.

 For the air

the following

have

Velocity distribution on the surface for air (r==1.4G5)

(r =1,405), the distribution of the fluid velocity qs on the surface is given

 formulae. Let

            q.=q.o+q.iM2+q.2M`+･･･, (s. 1)

                                            '
                                          ' q., =2sine, q.,=-g sine-S sin 3o,
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qs2 = 1.0026 2so sina

   - 1.1530 417 sin 3e

   + O.4256 250 sin 5e

qs4 = 4.8430 097 sin e

   - 8.8632 869 sin 3e

   + 7.7674 316 sin 5e

   - 3.5428 827 sin 7a

   + O.6768 074 sin 90

          '

         Table 2

'

'

SIMASAKr
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U> = Ui+qs2M`
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The values of

given in Table3,

Table6 and are

Fig. 4 and Fig. 5

is equal to O.40,

tively. The dotted

5 are the curves

the surface and

sections with the

the positions of

surface. And from

be seen that the

to M==O.50.

       .

       The values of qse,

       qs2, ･･･ are shown in

   Table 2 and Fig. 1.

       Next, by using

   Table2 we can eva-
   luate the velocity on the

   surface for any Mach

   number corresponding to

   each step of approxima-

   tions. Here we shall

   define the new notations

    U6, Ui, Ule,･･･ by the

   following expressions:

,..UiT..U.6,l:,ll,iMII,i,j.1(,,)

q, q, q, q and q are
    Table4, Table5 and

  shown by Fig.2, Fig.3,

  in four cases in which M

 O.45, O.50, and O.55 respec-

   lines in Figs. 2, 3, 4 and

  of the sound velocity on

  consequently their inter-

   velocity curves will give

  the sonic points on the

     these figures, it will

 potential flow may exist up
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Table 3. M= Omo
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                        6. Critical Mach number for air

    owing to Taylor'sS),9) and Imai's`),5) results, the potential flow round a cylindrical

obstacle seems to have its maximum fluid velocity on the surface of the obstacle. And

such characteristic features have been also verified by numerical calculations. So, the

critical Mach number which indicates the first appearance of the sorric point in the entire

region of the flow, may reasonably be given from the maximum velocity q... on the

surface by making use of the well-known relation:

                1 .k+2 2 le               M4' 2 qmax-J2-･ (6)

         --is the so-called critical Mach

 regarded as a very important

 compressible effects in the
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For the value of q... we have used the present results to the order of M'O and evaluated

it for each step of approximations. The maximum velocity as well as the ' critical Mach

number M* are shown in Table7 and Fig. 6, where the dotted lines are drawn,merely

to estimate the convergency of approximations. From Fig. 6, it will be seen that the

critical Mach number seems to converge to O.40 and also that the convergency of the

flow velocity is good when M =O.40.

                  7. Local and critical sound velocity for air

    According to the results of the preceding paragraph, the critical Mach number M*

is nearly equal to O.40, so that the flows for M=O.45, O,50 and O.55 may contain the

so-called sonic lines -which separate the fiow field into subsonic and supersonic regions.

And the starting points of such sonic lines are given by the intersections of the curve

of the local sound velocity and the curve of the fluid velocity on ,the surface. For this

purpose, we used the well-known relation:

                                        le k                              C2 == ]}2+-2---2- q2, (7)

                                                   .
where C is the local sound velocity. If 4 is taken to the order of MiO, then the values

                                                                            'of C on the cylindrical surface are obtained for M=O.40, O.45, O.50 and O.55, and they are

given in Table8 and plotted in Figs. 2, 3,4 and 5 by the dotted lines as already cited.

                                              By using (7), we have also calcu-
     Table･8. Local sound velocity (C)
                                          lated the values of C to which the fiuid
      on the cylindrical surface.

                                                                              is
   Mach
    number                          O.50                                 O.55                    O.45            O.40
  eo

o

10

20

30
4L(]i

50

oo

7Q

80

90

2.5402

2.5360

2.5236

2.5038

2.4758

2.4419

2.4032

2.3632

2.3307

2.3176

2.2673

2.2629

2.2496

2.2277

2.1971

2.1584

2.1098 -

2.0500

1.9970

1.9734

2.osoe

2.0454

2.0316

2.0087

1.9768

1.9342

1.8732

1.7840

1.6797

1.6290

1.8730

1.8684

1.8547

1.8319

1.8009

1,7444

1.6845

1.5371

1.3043

1.1657

velocity q on the cylindrical surface

equal in the above four cases. Here we

shall call it the critical sound velocity

C* and its values are shown in Table 9.

   Table 9. Critical sound velocity (C*).

Mach number
M
O.40

.O.45

O.50

O.55

Critical sound
c*

vel.

2.3164

2.0676

1.8694

1.7081

                                 8. Comclusions

    We have calculated the complex velocity potential to the order of MiO by the

M2-expansion method of Imai. For the air (r==1.405), the numerical values gf velocity

on the circular cylinder surface are obtained for M=O.40, O.45, O.50 and O.55. From these

results, it has been concluded that the limiting Mach number for the potential flow seems

to be near O.50 and the 'critical Mach number to be near O.40. Therefore, it is suggested

that the so-called Taylor's mixed region may exist in the range of M between Q,40 and O,50,



   The convergency of the M2-expansion series will be discussed more fully in the

following report.
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