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On the Flow of a Compressible Fluid Past a Circular Cylinder, I

Tamedi SIMASAKI*

(Received January 31, 1955)

The M?-expansion method is more suitable than any other methods for the calculation
of the steady two-dimensional irrotational flow of a compressible fluid past a body with
blunt-nose and with fairly large thickness-ratio. In this paper, a fifth approximate solu-
tion correct to the order of M is obtained for the flow without circulation past a circular
cylinder, by applying Imai’s new MZ?-expansion method", where M is the free-stream
Mach number. The analytical formulae for the fluid velocity on the surface of the body
are given. Also, the local sound velocity on the surface and the critical sound velocity
as well as the critical Mach number are given. Numerical computations have been
carried out for the case of flow of air in four cases in which M is equal to 0.40, 0.45,
0.50 and 0.55 respectively. Thus, it has been found that the critical Mach number for
the circular cylinder seems to converge to 0.40 and that the potential flow may exist up
to M=0.50.

1. Introduction

The thin-wing expansion method and the hodograph method are both useful for
dealing with the steady two-dimensional irrotational flow of a compressible fluid past a
cylindrical obstacle. However, they are not always convenient for the body with blunt-
nose and with finite thickness-ratio.

On the other hand, the MZ?-expansion method is more suitable for any cylindrical
obstacle with arbitrary cross-section. Recently, this method has been improved by Dr. I
Imai in several features»?,3»%, Especially the method used in the present paper seems
to be the most convenient for a circular cylinder placed in a uniform flow of a comp-
ressible fluid. Introducing the conjugate complex variables, he has established an
ingeneous method to calculate the complex velocity potential under appropriate boundary
conditions. As for a circular cylinder without circulation, Imai® himself has obtained
~ the approximate solution correct to the order of M?® The present author has also cal-
culated to the order of M® by use of the original method of Janzen® and Rayleigh®,
though the results are unpublished. ‘

In 1928, G.I. Taylor® has remarked that the regular solution of the above problem
may exist when the Mach number is equal to 0.4, but not equal to 0.5 and the limit of
the Mach number for the potential flow may be near to 0.45. This so-called Taylor’s
problem or the mixed region problem, however, has not come to a satisfactory conclusion.
Thus it is required to examine the convergency of the M?-expansion series more pre-

cisely. For this purpose, we have improved the approximate solution so far correct to
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the order of M° by making use of Imai’s new M?Z-expansion method”, The velocity
potential newly obtained is in exact agreement with Imai’s to the order of M® and with
the unpublished one of the author to the order of M®. Numerical computations have
been carried out for the case of air (y=1.405) in four cases in which M is equal to
0.40, 0.45, 0.50 and 0.55 respectively. From the results of them, it has been found that
the critical Mach number for the circular cylinder seems to converge to 0.40 and that the

potential flow may exist up to M=0.50,

2. Outline of Imai’s method
According to Imai’s method, the equations of motion and that of continuity of the
steady two-dimensional irrotational flow of a compressible fluid can be reduced to a

single equation as

=) % @D

where ¢ is the velocity potential; p and p. are respectively the density at any point in
the fluid flow and at infinity in the undisturbed flow; f and 2 are the conjugate ones of
the complex velocity potential f and the complex coordinate z respectively.

If we assume that f, ¢, 1——-5— and the magnitude of the fluid velocity ¢ can be

o0

expanded in the ascending powers of M? as follows:

f=ftfiM?*+ M+
¢ =@t M+, M +

l_ﬂL:Po"‘Ple"‘PzMA“' Tty ( 2.2)
=402 gg =14go+q, M+ M* +

then, comparing the values of the same order of M, we have

09, 09,
% =4 9z 02 -1
=4 gg" QZ +conjugate complex ,
6¢o 6(”2 6‘/71 0‘/’1
6 7z +2 7z +conjugate complex , 2.3

g, =4 gg" g?+4 gf‘ oz £+ conjugate complex ,

q, =4 gg“ gg“ +4—g% %+2 gf:z g§2+con]ugate complex ,

1 1 1
00=0, o, :?‘IOy .”2:741“‘§‘ (1—k)q§,

1 1 1
03 = §QZ_Z (1-k) q041+Z§ (1-3k+2k%) g3,
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04 = 5 @ =g (1=k) (2900, + 1) +75 (1—3k+2k°) giq
@24

—gag (1—6k-+118—6K°) b,

1 1 1
0s = 5 @ (1= k) (o5 +4:02) +55 (1~ 3k +2k%) (gBgz +40g?)
1
3840

- 9% (1—-6k+11k* —6F) g3gs +samr (1 10k -+ 35k% — 50E* +24k*) g5,

and

= Oon- Oon- 0 = s
o P (000, 0 B9 g G, (N=0,12),  @5)

where the adiabatic index 7 is equal to 2+1 and G_N(E) are the complementary functions
which are analytic functions of Z only and should be determined by the appropriate
boundary conditions.

3. Determination of the complementary fumnctions G ~N(&@)

Here we consider the case of a circular cylinder without circulation. We put a
circular cylinder with unit radius normally to the uniform flow of a compressible fluid
whose direction coincides with that of x-axis and whose speed is unit.

We assume

’ U = g+ u M*+u,M*+ --- |
v = v, o M?+o,M* + --- | G.D
¢ =g+ M+ P M A -,

where # and v are the x~ and y-components of the fluid velocity respectively and ¢ is
the stream function. Then the boundary conditions become as follows:

Uy =1, v,=0; un=on=0, (N=1,2,--) at infinity, (3.2)

dn=0, (N=0,1,2 ) on the unit circle. 3.3)

Here the first and the second conditions of (3.2) correspond to the flow of an incom-
pressible fluid.
Now we denote

Fn=7n(z 2) +Gn(2), (3.4
then, if no circulation, 7n(2, 2) are expanded in the form:
IN(2, ) = 2] amn2"2" , (3.5)
: m, "

where @,., is generally complex number.
When the values of 2 and Z on the surface (22=1) are denoted by { and t respec-
tively, we can deform (3.5) in the form:

b

n

(3.6)

!

FRICHED WD

o~

The condition (3.3) can be written in the form:

IGN () = ~Jant, D), 3.7
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where § denotes the imaginary part. It is obvious that the signs of the imaginary parts

of xn(t, 7) do not change by the following transformation :

o (3.8)

*

v D —> =3 Im 5
m 1 n

where &, is the conjugate complex value of @,. Thus the required analytic functions
Gn(Z) which satisfy the condition (3.7) are given in the form:
A

Gn(2) = ——}; g',: ) (3.9)

m 2"

And these procedures are very simple and easy ones.
Now, f, and f, correspond to an incompressible fluid flow under the conditions (3.2)
and (3.3) and it is well known that
1 1

f°=z+-z—, ﬁ,=2+72—. (3.10)

By making use of these fundamental complex velocity potentials, we can proceed the

subsequent evaluations as follows:

e =32 b3,

s =t 1 2 1 1
4XI(t» t) - "t‘3+ t i 3t3+3ty
= 1 1 2 1 1
4G,(8) = mt5z+z gzt
_101. 21
=3zt3 =

and so on. Thus the required integrals fy are given successively from the small number
of the suffix N.

4. Surface velocity

Following the above analysis, we have obtained the complex velocity potential cor-
rect to the order of M!. And the velocity potential and the stream function are also
reduced so far correct to the same order of M. And these results agree with those due
to Imai® to the order of MS,

However, the analytical expressions of the complex velocity potentials: f;, f., fs, fa
and f;; the velocity potentials: ¢,, ¢;, ¢;, ¢, and ¢; and the stream functions: ¢,, ¢,,

‘ ¢s, ¢, and ¢, are all omitted here for the limitation of space. So, in this paper we shall
’5 report the velocity distribution on the cylindrical surface.
Let g be the magnitude of the fluid velocity along the surface of the cylinder and put

= Gsgo -+ Gs1oM?+ (Gszo+ Gs2i) M* - (gsso+ Qs k- qss k) M°
+ (Gsso+ GoaiR + Gsazk? + Qogak®) MP + (Goso + GssiR 4 Gossk® - Gossh® + g5 k) MY
Ao 4.1
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where 7 and 0 are the polar coordinates, namely z=7¢®® and k is the modified adiabatic
index, namely k=y-—1. Then we have the following formulae:

gsmn = A sin 0 + B sin 30 +C sin 50 + D sin 76 +E sin 90 + F sin 114 , 4.2)
where the coefficients A, B, C, D, E and F are shown in Table 1.
Table 1
sin /8 Coeff. of Coeff. of Coeff. of - Coeff. of Coeff. of | Coeff. of
sin sin 30 sin 50 sin 76 sin 90 sin 110
 Gomn (A) (B) c) (D) (E) (F)
4300 2
2 1
gs10 73 "—2
87 _% 3
sz 40 2 8
23 _u 1
Y5z 120 10 8|
139 _ 2467 9503 37
530 84 1008 6048 96
2813 _2 3441 1591 _2
9331 3360 176800 1680 96
103 __ 57 1 _1
sz 840 280 84 24
25 3657 _ 126 6251 349 1743 _ 17 9777 59
9540 7 2576 20 1600 63 5040 7 2576 128
89 2277 284 6929 351 8521 _15719 15
Zsn 30 2400 50 4000 70 5600 6720 32
15 4567 _ 1103 8 2601 _ 84 2011 39
Gsaz 17 2800 640 5 6448 120 9600 256
1889 _ 601 _95 _ 37 1
843 2 0160 3360 672 576 64
144 2407 | _ 241 8311 911% 362 8569 0591 | 116 6270 1403 | 1285 1477 1543
9850 17 2800 13 9708 8000 19 5592 3200 10 0590 3360 319 3344 2560
40 0014 5887 | _ 499 7183 1509 | 247 6809 7777 80 45}5_ 8_27_1 101 8967 _ 157
9851 3 9916 8000 23 2848 0000 | 10 8662 4000 5 5883 5200 19 7120 192
500 6675 | _ 187 9341 0241 | 270 0651 5257 _ 543 1018 7443 635 0543 | 6173
9552 106 4448 18 6278 4000 26 0789 7600 83 8252 8000 266 1120 1 5360
67 1731 _ 602 4791 183 9553 312 6721 20 6161 _ 323
s33 66 5280 282 2400 88 7040 249 4800 44 3520 3840
4657 _1213 1145 __35 56| _ 1
sse 5 5440 7392 7392 396 1760 160

5. Velocity distribution on the surface for air (y=1.405)

For the air (7=1.405), the distribution of the fluid velocity ¢s on the surface is given

by the following formulae.

we have

Let

gs = gso+qsM* 4+ qe,M* -+ |

gso = 2sinf,

gs; = 2 sin -

1
2

sin 34,

(5.1)
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gsz = 1.0026 250 sin @ gss = 2.0139 415sin @
— 1.1530 417 sin 36 - 3,0459 070 sin 30
+ 0.4256 250 sin 50, + 19762 873 sin 50
— 0.4977 198sin 70,
gs, = 4.8430 097 sin 0 gss = 13.2466 849 sin 0
— 8.8632 869 sin 30 — 27.8026 880 sin 30
+ 7.7674 316 sin 50 + 29.6236 312 sin 50
— 3.5428 827 sin 70 — 18,5731 055 sin 70
+ 0.6768 074 sin 99, + 6.5411 796 sin 96
— 1.0055 818sin 114,
Table 2 The values of gs,,
gs1» gsz, - are shown in
| 4w g1 | dm g8 Zs4 gss Table 2 and Fig. 1.
0| 0 0 0 0 0 0 Next, by using
10 | 034730 | —0.13423 | —0.07637 | —0.12702 | —0.20288 | —0.76483| Table 2 we can eva-
20 | 068404 | —0.20500 | —0.23649 | —0.32269 | —0.64732 | —1.66580 luate the velocity on the
30 | 1.00000 | —0.16667 | —0.43892 | —0.80193 | —1.46343 | —3.11937
40| 128558 | —000449 | — 049966 | —1.52007 | —3.73036 | —s30ag7| Surtace for any Mach
50 | 153200 | 026070 | —0.20842 | —1.75086 | 672866 |—21.64992| number corresponding to
60 | 1.73205 057735 | 049970 | —0.39843 | —5.60085 |—29.39677 each step of approxima-
70 | 1.87939 0.87646 1.44477 2.69099 424297 | —0.33426 tions. Here we shall
80 | 1.96962 1.08955 2.25954 6.06174 | 18.64981 | 62.17342 define the new notations
90 | 2.00000 1.16667 2.58129 7.53386 | 25.69342 | 96.79287
: U,, Uy, U;,-~- by the
following expressions:
9,100 U, = gso, U, = U,+gsM?,
q U, = Uy +¢M*, Uy = Up+qs:M®, ) (5.2)
Ssgo_. U, = Us+gsM?, U,= U, +gssM™.
T The values of U,, U,, U;, U, and U; are
60 given in Table3, Tabled, Table5 and
Table 6 and are shown by Fig.2, Fig. 3,
40 Fig. 4 and Fig. 5 in four cases in which M
% is equal to 0.40, 0.45, 0.50, and 0.55 respec-
tively. The dotted lines in Figs. 2, 3, 4 and
0 — % _ 5 are the curves of the sound velocity on
Qﬂ% / © the surface and consequently their inter-
20 %/q% ) sections with the velocity curves will give
\%55 - the positions of the sonic points on the
40 surface. And from these figures, it will
o 30 60—>¢° 90

be seen that the potential flow may exist up
to M=0.50.
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Table 3. M=040 Table 4. M=045
1st 2nd 3rd 4th 5th 1st 2nd 3rd 4th 5th
6° | Approx.| Approx.| Approx.| Approx.| Approx. 6° | Approx.| Approx.| Approx.| Approx.| Approx.
1 2 3 4 5 1 2 US 4 5
00 0 0 0 0 00 0 0 0 0
10 | 03258 | 03239 | 0.3233 | 03232 | 0.3231 10 | 03201 | 03170 | 03159 | 0.3154 | 0.3152
20 | 0.6512 | 0.6452 | 0.6439 | 0.6434 | 0.6433 20 | 0.6425 | 0.6328 | 0.6301 | 0.6291 | 0.6285
30 | 09733 | 09621 | 09588 | 0.9579 | 0.9575 30 | 09662 | 09483 | 09416 | 09391 | 09381
40 | 1.2849 1.‘2721 1.2658 | 1.2634 | 1.2625 40 | 1.2847 | 1.2642 | 1.2515 | 1.2452 | 1.2423
50 | 1.5738 | 1.5685 | 1.5613 | 1.5569 | 1.5546 50 | 15849 | 1.5763 | 1.5618 | 1.5505 | 1.5431
60 | 1.8244 | 1.8372 | 1.8356 | 1.8319 | 1.8288 60 | 1.8490 | 1.8695 | 1.8661 | 1.8567 | 1.8467
70 | 2.0196 | 2.0566 | 2.0676 | 2.0704 | 2.0704 70 | 20569 | 2.1161 | 2.1385 | 2.1456 | ©.1455
80 | 2.1439 | 2.2018 | 2.2266 | 2.2388 | 2.2454 80 | 2.1903 | 2.2829 | 2.3332 | 2.3646 | 2.3858
90 | 2.1867 | 2.2527 | 2.2836 | 2.3004 | 2.3106 90 | 2.2363 | 2.3421 | 2.4047 | 2.4479 | 2.4808
Table 5. M=0.50 Table 6. M=0.55 »
1st | 2nd | 3rd ‘ 4th | 5th 1t | 20nd | 3d | 4th | 5th
6° | Approx.| Approx.| Approx.| Approx.| Approx. 6° | Approx.| Approx. Approx.| Approx.| Approx.
i 2 US 4 5 i 2 3 4 5
0|0 0 0 0 0 00 0 0 0 0
10 | 0.3137 | 0.3090 | 0.3070 | 0.3058 | 0.3051 10 | 0.3067 | 0.2997 | 0.2962 | 0.2937 | 0.2918
20 | 06328 | 0.6180 | 0.6130 | 0.6104 | 0.6088 20 | 0.6220 | 0.6004 | 05915 | 0.5860 | 0.5818
30 | 09583 | 09309 | 09184 | 09127 | 0.9096 30 | 09496 | 09094 | 0.8872 | 0.8750 | 0.8671
40 | 1.2845 | 1.2532 | 1.2293 | 1.2148 | 1.2066 40 | 1.2842 | 1.2385 | 1.1962 | 1.1649 | 1.1437
50 | 1.5973 | 1.5842 | 1.5569 | 1.5306 | 1.5095 50 | 1.6110 | 1.5919 | 15434 | 1.4871 | 1.4322
60 | 1.8764 | 1.9076 | 1.9014 | 1.8795 | 1.8508 60 | 1.9067 | 1.9524 | 1.9414 | 1.8945 | 1.8200
70 | 20985 | 2.1888 | 2.2308 | 2.2474 | 2.2471 | 70 | 2.1445 | 2.2767 | 2.3512 | 2.3867 | 2.3859
80 | 2.2420 | 23832 | 24779 | 25508 | 2.6115 80 | 2.2992 | 25060 | 2.6738 | 2.8200 | 2.9874
90 | 2.2917 | 24530 | 2.5707 | 2.6711 | 2.7656 90 | 2.3529 | 25891 | 2.7977 | 3.0128 | 3.2580
*
(v
]\ ....... Sonic Veloc iy
2.0
- A
) / /
03 - /
/ M= 0.40
04
o H
0 30 €0 0920 o 30 60 —G° 90
Fig. 2 Fig. 3
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6. Critical Mach number for air

Owing to Taylor’s®® and Imai’s*»® results, the potential flow round a cylindrical
obstacle seems to have its maximum fluid velocity on the surface of the obstacle. And

such characteristic features have been also verified by numerical calculations. So, the

critical Mach number which indicates the first appearance of the sonic point in the entire

region of the flow, may reasonably bé given from the maximum velocity gm.x on the

surface by making use of the well-known relation:

1 k+2 k
m =3 4§1ax—§ . (6)
Here My, is the so-called critical Mach number which

is usually regarded as a very important factor to esti-
mate the compressible effects in the aerodynamics.

Table 7

Degrée of Maximum velocity |Critical Mach number
approx. Gmox %

0 2£)000 0.4659

1 2.2064 0.4206

2 2.2673 0.4090

3 2.2926 0.4043

4 2.3053 ' 0.4020

5 2.3120 0.4008

e 2252
o
M, A Gmacs
e
Ty A !
0461+ — 224
I“ /,/
(R
(O
L
04— 16
¥
A
A
042~ 208
H k'S
B \‘IL\_‘
040} Bk s
6 1t 2 5 a4 529

—= "Degree of approx
Fig. 6
gmax: ——F-~ My —-@--
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For the value of ¢,.x We have used the present results to the order of M*® and evaluated
it for each step of approximations. The maximum velocity as well as the critical Mach
number My are shown in Table 7 and Fig. 6, where the dotted lines are drawn merely
to estimate the convergency of approximations. From Fig. 6, it will be seen that the
critical Mach number seems to converge to 0.40 and also that the convergency of the
flow velocity is good when M=0.40.

7. Local and critical sound velocity for air

According to the results of the preceding paragraph, the critical Mach number My
is nearly equal to 0.40, so that the flows for M=0.45, 050 and 0.55 may contain the
so-called sonic lines which separate the flow field into subsonic and supersonic regions.
And the starting points of such sonic lines are given by the intersections of the curve
of the local sound velocity and the curve of the fluid velocity on the surface. For this

purpose, we used the well-known relation:
1 k& k ,

2 —_= 4 7T
C—Mz+2 2q' (7

.

where C is the local sound velocity. If ¢ is taken to the order of M'°, then the values
of C on the cylindrical surface are obtained for M=0.40, 0.45, 0.50 and 0.55, and they' are
given in Table 8 and plotted in Figs. 2, 3,4 and 5 by the dotted lines as already cited.

By using (7), we have also calcu-

Table 8. Local sound velocity (C) lated the values of C to which the fluid

on the cylindrical surface.

Mach velocity ¢ on the cylindrical surface is
w 040 045 050 055 equal in the above four cases. Here we
6° shall call it the critical sound velocity
0 25402 | 2.2673 | 20500 | 1.8730 Cx and its values are shown in Table 9.
10 25360 | 22629 | 2.0454 | 1.8684
20 25236 | 22496 | 20316 | 1.8547 Table 9. Critical sound velocity (Cy).
30 2.5038 | 2.2277 | 2.0087 | 1.8319
40 24758 2.1971 1.9768 1.8009 Mach X}lmber Critical éound vel.
50 2.4419 | 21584 | 19342 | 1.7444 *
60 24032 | 21098 | 1.8732 | 1.6845 0.40 2.3164
70 2.3632 | 2.0500 | 1.7840 | 1.56371 045 2.0676
80 2.3307 | 1.9970 | 1.6797 | 1.3043 0.50 1.8694
90 2.3176 | 19734 | 1.6290 | 1.1657 0.55 1.7081

8. Conclusions

We have calculated the complex velocity potential to the order of M by the
M?—expansion method of Imai. For the air (y=1.405), the numerical values of velocity
on the circular cylinder surface are obtained for M=0.40, 0.45, 0.50 and 0.55. From these
results, it has been concluded that the limiting Mach number for the potential flow seems
to be near 0.50 and the critical Mach number to be near 0.40. Therefore, it is suggested
that the so-called Taylor’s mixed region may exist in the range of M between 0,40 and 0,50,
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The convergency of the M’-expansion series will be discussed more fully in the

following report.

In conclusion, the author expresses his hearty thanks to Prof. Susumu Tomotika for

his continuous encouragement and his kind inspection of this manuscript. The author's
thanks are also indebted to Prof. Isao Imai and to Prof. K6 Tamada for their helpful
suggesions and valuable discussions. Finally, the author’s thanks are also due to the
Ministry of Education for financial support.
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