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                                      Abstract ' ''' " ' '' ''

         Complex variables and conformal transformations are successfully employed in

     the theory of two-dimensional subs'onic flow of a compressible fiuid past an obstacle,

     and so. far various formulae have been proposed.fQr calculating the first-order effect

     of compressibility upon the complex velocity petential for the flow or similar other

         In this paper a discussion is first made on the relationship between Imai's and

     Tomotika-Tamada's formulae, and it is shown fhat the latter formula can be derived

     iroOr:etrh. e fOrMer bY a SUitable choice of complementary functions contained in the

         The re!ationship between Tomptika-Tamada's formula and another formula due
     to Kaplan is also discussed and it is shown that the latter formula can be derived

     from 'the formeri ' '
gl. Introduction

                                         tt    As is well known, complex variables and conformal transformations are employed

with success for dealing with the two-dimensional subsonic fiow of a compressible fluid
             'past an obstacle. Thus, using the conjugate complex variables 2 and 2, Imai has given,

in an earlier paper'), an ingeneous formula useful for obtaining the first-order effect of

compressibility upon the complex velocity potential for the two-dimensional subsonic fiow

past an obstacle. However, hi$ method has a drawback that somewhat elabolate artificial

devices are necessary tQ find complementary functions contained in his formula so as to

satisfy the boundary conditions at the surface of the obstacle.** Later on, by modifying

the well-known method due to Poggi, Tomotika and Tamada`) have given another formula

for calculating the first-order effect of compressibility upon the velocity potential for the

twQ-dimensional subsonic flow past an obstacle. A great merit of their formula lies in

the fact that as in the original Poggi's method and unlike in Imai's method, the boundary

conditions at the surface of the obstacle concerped are automatically satisfied and that the

diMcult surface integrals in the original Poggi's method are replaced by contour integrals

which can be evaluated comparatively easily by the use of the theorem of residues.

    The main object of the present note is to show that Tomotika-Tamada's formula can
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** It is to be noted however that in later papers,2),3) Imai himself has improved his method in

   such a way that such cornplementary functions can be determined more easily.
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                             '
                                         '
be derived from Tmai's one by selecting the complementary functions adequately.

    On the other hand, starting with the method due to Poggi as in the case of Tombtika

and Tamada's paper, Kaplan5) has also derived a formula ugeful for finding the first-order

effect of compressibility upon the complex velocity for the two-dimensional subsonic flow

past an obstacle. The diMcult surface integrals in the original Poggi's method have

been replaced, just as in Tomotika-Tamada's formula, by contour integrals which can be

evaluated by the use of the theorem of residues.

    It will be shown later however that Kaplan's formula can be readily derived from

Tomotika-Tamada's formula by differentiation.

S2. Proposal of the problem

    For reference we shall first give briefly the outlines of Imai's and Tomotika-Tamada's

methods. Making, for the sake of convenience, all the quantities non-dimensional, we

transform conformaliy the physical e(==6+iv)-･plane into the outside region of the unit

circle kl =1 in the 2(==x+iy)-plane by the transformation:

                               c= z+ {' +{:+ ･･･. (2. 1)

Let the density of the fluid at any point in the field of flow be denoted by p and also let

the density of the fluid at infinity be denoted by pbo. Then, in terms of the velocity

potential O and the stream function V, the velocity components u,v are given by

                                         - o¢ - p. oer                          Oe p. OT
                      U=oe- == -p o-?' Vm La'tt - -Mi atT' '

    We assume that O and V as well as the complex'velocity potential W defined as

W=¢+iV cari be respectively developed in power series of ascending M2 as:

                                                                 '
                         e =¢, +M2¢, +M4¢2 +･･･,
                         v = Y, +M2V, +M4V, + ･･･ ,

                         w = W,+M2W,+M4 W,+ ･･･,

where W"==eN+iYN (N=O,1,2,･･･) and M is the Mach number corresponding to the

state of fiuid at ' infinity. The function Wo =opo+iVe is evidently the complex velocity

potential for incompressible fluid flow.

    In the paper already cited'), Imai has shown that the function VV, can be obtained

byaformula of the form: '
                                  '                ' ii7i (2, 2) =f ddW,-? [ilci F(2) --ii- rvo (2) +G-i (2) (2･ 2)

with

                      ,･ F(x)=S(ddW-io-)2(S-2c)da. (2.2a)'

IIere, the bars denote the conjugate complex of the corresponding quantity, and G,(2) is

an arbitrary complementary function of 2 alone which should be determined by the

boundary conditions of the problem concerned.
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                                                                     '    When the undistutbed flow at infinity makes an angle 6 with the positive direction

 of the x-axis and there exists a clrculation 2nrc about the obstacle, Wo is given by

                            w, == e-i6(2+eii6)+irc logx. (2. 3)

 In this case, the above Imai's formula (2.2) can be rewritten in the form:

                                '                             tt t                      ii7i(2,2) = t ddW-"'6z- t{t!{F(2) +2irce-`6 log 2}

                            ' -t{ W6 (2) +irc log 2}+G-, (2), (2. 4)

                                                                           '
where the terms in the brackets are both one-valued.

    On the other hand, by modifying the well-known method due to Poggi, Tomotika

and Tamada have shown in the paper already cited`) that the first-order effect of com-

pressibility on the velocity potential can be obtained by a formula of the form :

        Oi == tee[me'-`6(2+-l--) +i･li El;i,]..,g(t){F (-l-) -F(2) +2irce-t,s iog t. }d4 , (2, s>

i

where

                        g(t)=2ii,(d,W,-e,d-i-),.,[.2f--'l;(',--2,Z'-), (2.sa)

and F(2) is the same function as that given in (2.2a). Here, the integration is to be

taken in the counter-clockwise sense round the unit circle with centre at the origin of

the complex t-plane and wt means that the real part of complex quantities should be taken.

A great merit of this formula lies in the fact that as in the case of the original Poggi's

method, the boundary conditions are automatically satisfied, and that the dithcult surface

integrals in the original Poggi's method are replaced by contour integrals which can be

evaluated comparatively easily by the use of the theorem of residues.

       ,    In the following lines we sha!1 show that Imai's formula (2.2) can be transformed

into Tomotika-Tamada's formula (2.5) by a suitable selection of the complementary

function G,(2).

                                                           /g3. Equivalence of the two methods

    In order to satisfy the condition T =O at the boundary of the obstacle, namely on

the unit circle I21=1' in the 2-plane where 22=1, the complementary function G- ,(2) in

                          '(2.2) should be taken as: -
                  Gpti(2) = mt ddWz- O [il4t-h{F (i.I-) +2irce'is log 2}

                          + t{ w, (t. )+irc log 2} 4h(£) + E<2) , ' (3. o

                                                           Lwhere h(2) is a one-valued function of 2 alone which is to be determined later on. The

first two terms on the left-hand side are both one-valued in the outside region of the unit

circle so that the sum of these two terms can be expressed in the ,form:



'

20. ,,. . ' . ,･ . ,K. HlbA,

                         nu nz di , ,,-                         ,];, Hic (2)+,Z.,Zic (2)+.III, Cp2", / , (3. 2)

where
                    '
                       Hic(2) =tesil(,C-ich,M)r-,, laic1<i;

                                                                          (3. 2a)
                       Zic(2).7-tB..ic, (2d-icis I)., ･ 1,bic1>1.

                       '
An arbitrary additive constant has been omitted here from the outset, since it has only

trivial meaning in the complex velocity potential.

    Further, from the fact that iiXi(z,2) should be regular in the outside region of the

unit circle 121=1, it follows immediately that the function h(2) must be of the form:

            ,, nz di                              - Z Z,(2) - Z C.2P .
                                k=1 p==1

Thus, we have ultimately .,                    ttt t
                     G-,(2)=,i.ill",H,(2)-t"=Z,2,(}.)-ttti,c-.t.p, (3.3)

    Taking the closed contour as shown in Fig. 1, ,we have, by means of Cauchy's integral

theorem,
                                                                                '
           G'i (2) = 21i {si,,+ sl,,}{,t;", Hic(2) -,illii, 2ic (rl7) - .Za=,Cpml}i} td-t,.- - (3. 4)

The integral taken round the outer circle Ci of radius R tends, as

R. oo , to become equal in magnitude to the residue at infinity of R
                                                                             ctthe and can be easily evaluated from (3.2a) as:   integrand

                                                                      1
                               gzS d",,..

                               te=1 m-1 (- bic)M

              G"-i(2)=t,i.li,tps.,(4ici,m,.-i.isi,,,..,t"..",Hic(t),d-t,

                     +2-int- fli ,,,=, ,iii3, 2ic (-l-)., !l', +,l, fli .=, .>"[.. :, cpa - i. ,d-`, .

    Further, after some calculations the first contour integral on the right-hand

be transformed into the form: .., .･
                                             '
            -21iS],,,..,,"z.".,H,(t)3.ts ', ,

            = 21'i･f,,,=, 4(ti-- m (diMilil-e- -dd-tig-)i..,{F(-it-) +2irce-is iQg t}dt+ t e-,.`S ,

while the second and third integrals can be evaluated as:

C2

1

  (3. 5)

side can

  (3. 6a)

F
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                                           '          ' '' 21iSl,,,=,t"--Z,2ic(-l-)t-d.-t-2=t/ll.il,si(-il2),'' . (3.6b)

                  ' 21iS;,,,..,t/l.I,ep-l7fitd-t2=-t/£.l,S-s.p, (3,6c)

where Sic(1/bic) is the residue･ at 1/bic pn the function Zic(1!t)/(t-2).

    Now, from (2.1) and (2.3) we have -

                 ddli!f'V. Sclt; == {ei6(i-e-z.2 S)--1.frc}{i-$.;-2!:.zg- ･･･}"', . . (3.7)

which is also the regular function in the outside region of the unit circle I21 ==1. Hence,

proceeding in a similar manner to the case of deduction of (3.5) trom (3.3), we have

                       ddW-2odd-g.==e`sLi.if,,,..,(dd"W--'20Stfli-)tdLt2. (3.s)

substitution of (3.s), (3.6) ana (3.s) into (2.2) giv'es' ' '' '

 ,
      tui (2, 2) == teiS {F(2) +2irce-iS iog 2} - t{ W, (z) +irc log 2}

                .tef6+tmp.,et(i)-tg.,g.s-+t"-mz,tv.,,g-icif,'

  . +2i.ifi,i..,4(ti.z-)(ddWz-OSec-2)i=,{F(-l-)-F(2) +2irce-isiog t. }dt. (3.g)

Rewriting g(t) as given by (2.5a) in the form: ,

                g(t)=-ll-(ddW"M2-oSli;).=,tl2+-e-(ddW-2-o'Zi･-),..,t(2.t-iti)"

and substituting 2(tl-z-)(ddWt-OSi;)i=, from this relation, the integral in (3.9) is divided

into three parts as:

    ' li :41.isi],i=,g(t){F(-}-)-F(2)+2irce-i61ogt}dt,

           i2 = 2iziEPi,i=,t t((2Silti) (ddWt-e ddLi-).--m, {jF (-l-) +2irce'di6 iog t}dt, (3. io)

           I3 -- nt2irriS e,t..,-l ;(2z7iti)) (ddM-Z2O SIc;),--, {F(2) +2irce-i6 iog 2}dt .

Taking (3. 2) and (3. 7) into consideration and making use of the theorem of residues, the

second and third integrals I2 and I3 can be evaluated and we have, after some reductions,

                i, : -,l.i eis+ .xa=,sl;-- tn--z, s, (-zl) - ,i.lill, ･.tL;', ,{lics,-,.,

                                                                          (3. 11)
                I3 = -leiS{F(2) +2irce-iS log 2} .

    Thus, we have ultimately

    ,                   '



                                                                      ,

･-

 ' . ii7i(2,2) =-1{-edS6(2+Li-It)+i･li.sir,:=,g(t){F(-}-)-F(2)+2ine-iSiogf. dt                                                                      }}

                 +[" -ll-(eli;S -edz.`S) -tirc log 22 - t"--.Zl ls,(-ilt,) - s-ic(-i-l;, )}

                 +tg.,(k--e-s-)-Y.,tF.,{,-dics,-,.-,-d-ic-,･,-,.}]. . . ,,.,,,

                                                                   '         '
The terms in the square bracket are evidently all purely imaginary and therefore they

contribute nothing to the velocity potential, Hence, we arrive at the formula:

                                      '
      ¢i := ew[Jlf,(2, 2)] ,
         =! tee['e'-iS(2+1!2) +i･liEFi,,..,g(t){F(11t) -F(2) +2iKe-i6 log (tk)}dt] ,

which is nothing but Tomotika-Tamada's formula (2.5).

                                                                '
g4. Relationship between Tomotika-Tamada'g and Kaplan's formulae

    Starting with the method due to Poggi as in Tomotika-Tamada's paper and using

the complex variables 2 and 2, Kaplan has also derived another formula for calculating

the first-order effect of compressibility upon the two-dimensional subsonic flow past an

obstacle.

 . For simplicity we here assume that the fluid flows in the x-direction and there is no

circulation about the'obstacle. Let w denote the complex velocity in the physical c-plane

and let it be developed in a power series of ascending M2 as:

                          w= (wo +M2w,+ ･･･) (d21dc) . (4. 1)

The function wo is evidently the complex velocity for incompressible fiow past the body

concerned, and remembering that 6==O and rc=O in the present case, it is derived from

                             wo =dWo/d2=1-lk2. (4. 2)
Kaplan has shown that the function wi expressing the first-order effect of compressibility

upon the complex velocity is given by a formula of the form:

             w, = -il- [S(2) --l.i, si(f) -il7,F-(-il- , 2)]+tF(2, z'-) -t(1- i,) , (4. 3)

                     F(2,2)=wgfoeS2EdtZc'--+d-d.(woS2ic)Sdio2Si-dz', (4.3a)

and S(2) is the sum of tesidues of the function 1/(t-2)･F(t,1/t) at the poles lying

inside the unit circle Itl =1 in the t--plane. Also, S(lk) and F(1/2,2) can be obtained

respectively from S- (2) and F-(2,'2) by replacing E by 1!2.

    In the following lines we shal! show that the above Kaplan's formula can be derived

from Tomotika-Tamada's formula (2.5), which, in the present case in which D= O and

rc=O, may,be written in the form:

'
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                 2¢i = -l [- (a -F -2i--) + ii}i fll i,i.. ,g (t) {"i7 (-l-) - F(2) }dt

 . ', . -(2-tt)Tinsl,,,..,g(Z){F-(})-F-(2)}d}]. (4.4)

                                                 .
Also, the function g(t) can be resolved into partial fractions as :

                      g(t) = m2i-(toott(')i.., (tl2-?+t='!iT.)･ '' (4･5)

                  '                                                                       '
    From the definition of tv, in (4. 1) it is easily seen that

                                W, =2(OO,/02). (4. 6)
 .

Thus, retaining only those terms depending on 2, we have

                       Wi = {}[(-･1+},) +o-O.(Ji +Ji +lk)], ･ (4. 7)

where
                                   '
                     JTI=tliS;,,,..,(dioddLi")i=,i±(ii//t.)dt, ' (4.7a)

                     J2 = -' t"iS;i,i=, (wo SZ/)...I Fi(in1 1.t) d7, (4. 7b)

          ' 13 = '-Frm:f･ )'S,i..S(t)dt+conjugate complex. (4. 7c)

                 '
    Now, when G(2) is a rational functiop having no singular points on the circumference

of the unit circle l21=1 in the 2-plane, it can be proved that

                      fz{21i El;eei..i tG-`:' d`} =: .li :l;:ti..i9'-(Z' dt '

Making use of this relation and taking (2.2a) and (4.2) into account, we have, after

                  '                   3/i;i == -,l,･ ,(O,{t) --t, ,},S;i,i..,F-,(l･,}-lt) dt･ (4. s)

The last integral can be evaluated by calculating the residues of the integrand at its

poles inside the unit circle ltl =1 in the t-plane. Thus, it is easily found that

                         gJ.i--f,{Sne (t)+X (I,2)}. (4. g)

    Next, O,Tb!02 can be evaluated in the same way as in the case of Oll/02. Since,

however, l21>1 for points in the region of fluid flow, it is found that

                                  OJ> -
                                      mS(2). (4. 10)                                  Oz

    Lastly, the value of J, can be evaluated conveniently by reversing the sense of

integration along the contour ltl=1. In doing this, we make use of the fact that the

function g(t) given by (4.5) has only one pole at t=2 in the outside of the unit circle

                                              .
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Itl=1 and moreover, as is easily assured, its residue at infinity is zero.'Then, differen-

tiating the resulting value of .lh with respect to 2, we have

                3-;:- b- = (wo2 dfc)(di,[IiZc'--) +il.(woS{) ltho2 -StL,d-c = F(2･ 2)1 (4･ ii)

    Thus, subs.tituting (4.9), (4. 10) and (4. 11) into (4.7), we have ultimately

             w, = -il- [(-i+- ,) - i, {g(-ll;)+vF (-l;- , 2)}+s(z) + ,F (2, 2)] ,

and this is just the formula due to Kaplan.

                             '    In conclusion the writer wishes to express his cordial thank$ of Professor S. Tomotika

                                                                          'for his coritinual guidance and his kind inspection of the manuscript. The writer's cordial

thanks are also due to Dr. K., Tamada for suggesting the present problem, and to

Professor T. Simasaki for his useful discu3sions.
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