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Abstract

Complex variables and conformal transformations are successfully employed in
the theory of two-dimensional subsonic flow of a compressible fluid past an obstacle,
and so far various formulae have been proposed for calculating the first-order effect
of compressibility upon the complex velocity potential for the flow or similar other
quantities. ’

In this paper a discussion is first made on the relationship between Imai’s and
Tomotika-Tamada’s formulae, and it is shown that the latter formula can be derived
from the former by a suitable choice of complementary functions contained in the
former.

The relationship between Tomotika-Tamada’s formula and another formula due
to Kaplan is also discussed and it is shown that the latter formula can be derived
from ‘the former.

§1. Introduction

As is well known, complex variables and conformal transformations are employed
with success for dealing with the two-dimensional subsonic flow of a compressible fluid
past an obstacle. Thus, using the conjugate complex variables z and Z, Imai has given,
in an earlier paper”, an ingeneous formula useful for obtaining the first-order effect of
compressibility upon the complex velocity potential for the two-dimensional subsonic flow
past an obstacle. However, his method has a drawback that somewhat elabolate artificial
devices are necessary to find complementary functions contained in his formula so as to
satisfy the bhoundary conditions at the surface of the obstacle®** Later on, by modifying
the well-known method due to Poggi, Tomotika and Tamada*> have given another formula
for calculating the first-order effect of compressibility upon the velocity potential for the
two-dimensional subsonic flow past an obstacle. A great merit of their formula lies in
the fact that as in the original Poggi’s method and unlike in Imai’s method, the boundary
conditions at the surface of the obstacle concerned are automatically satisfied and that the
difficult surface integrals in the original Poggi’s method are replaced by contour integrals
whiéh can be evaluated comparatively easily by the use of the theorem of residues.

The main object of the present note is to show that Tomotika-Tamada’s formula can

* Department of Applied Physics, College of Engineering
** It is to be noted however that in later papers,®® Imai himself has improved his method in
such a way that such complementary functions can be determined more easily.
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be derived from Imai’s one by selecting the complementary functions adequately.

On the other hand, starting with the method due to Poggi as in the case of Tomotika
and Tamada’s paper, Kaplan® has also derived a formula useful for finding the first-order
effect of compressibility upon the complex velocity for the two-dimensional subsonic flow
past an obstacle. The difficult surface integrals in the original Poggi’s method have
been replaced, just as in Tomotika-Tamada’s formula, by contour integrals which can be

evaluated by the use of the theorem of residues.
It will be shown later however that Kaplan’s formula can be readily derived from

Tomotika-Tamada’s formula by differentiation.

§2. Proposal of the problem

For reference we shall first give briefly the outlines of Imai’s and Tomotika-Tamada’s
methods. Making, for the sake of convenience, all the quantities non-dimensional, we
transform conformally the physical &~(=&+iy)—plane into the outside region of the unit
circle |z|=1 in the z (=x-+iy)-plane by the transformation :

{=z+— +a2+ 2.1)

Let the density of the fluid at any point in the field of flow be denoted by o and also let
the density of the fluid at infinity be denoted by p~. Then, in terms of the velocity

potential @ and the stream function ¥, the velocity components u,v are given by

_00 __ 0 0¥ 00 Do OF
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We assume that @ and ¥ as well as the complex velocity potential W defined as

W=0+i¥ can be respectively developed in power series of ascending M? as:

0 =0, +M*®, +M0, + -,
v =¥, + MW, + MV, + -,
W = W+ MW, +M*‘W,+ -,

where Wy=0x+i¥y (N=0,1,2,---) and M is the Mach number corresponding to the
state of fluid at infinity. The function W,=0,+:¥, is evidently the complex velocity
potential for incompressible fluid flow.

In the paper already cited", Imai has shown that the function W, can be obtained

by a formula of the form:

i
ACHEP L 4

2.2)
with
Fz) = S(%@@)z(g—z) dz. 2.23)

Here, the bars denote the conjugate complex of the corresponding quantity, and G,(2) is
an arbitrary complementary function of Z alone which should be determined by the

botuindary conditions of the problem concerned.
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When the undisturbed flow at infinity makes an angle ¢ with the positive direction

of the x-axis and there exists a circulation 27x about the obstacle, W, is given by
AT
W, = e~ (z+7) +iklogz. (2.3)

In this case, the above Imai’s formula (2.2) can be rewritten in the form:

1 dW,dz

Wi(z,2) = ——{F (2) +2ixe~® log E}

——}{Wo (&) +ix log z}+61 @, 2.4

where the terms in the brackets are both one-valued. ,

On the other hand, by modifying the well-known method due to Poggi, Tomotika
and Tamada have shown in the paper already cited*’ that the first-order effect of com-
pressibility on the velocity potential can be obtained by a formula of the form :

o.=dal-clerdebf, sofr(E)-ro s a], o

where

1 (dWo dZ) (ZZ+ 1Dt -2z

ED =\ E &) -1 G2 (2. 52)

and F(z) is the same function as that given in (2. 2a). Here, the integration is to be
taken in the counter-clockwise sense round the unit circle with centre at the origin of
the complex #—plane and R means that the real part of complex quantities should be taken.
A great merit of this formula lies in the fact that as in the case of the original Poggi’s
method, the boundary conditions are automatically satisfied, and that the difficult sﬁrface
integrals in the original Poggi’s method are replaced by contour integrals which can be
evaluated comparatively easily by the use of the theorem of residues.

In the following lines we shall show that Imai’s formula (2.2) can be transformed
into Tomotika-Tamada’s formula (2.5) by a suitable selection of the complementary

function G,(3).

§3. Equivalence of the twoe methods

In order to satisfy the condition ¥=0 at the boundary of the obstacle, namely on
the unit circle |z} =1 in the z-plane where 22=1, the complementary function G,(3) in
(2.2) should be taken as:

G,z = — % dg° Z—?{F (—;-) +2iKe18 log z}

+—i—{WO(%) 1-iklog 2}4"!(%) +h(®, B. D

where %(z) is a one-valued function of z alone which is to be determined later on. The
first two terms on the left-hand side are both one-valued in the outside region of the unit

circle so that the sum of these two terms can be expressed in the form:
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na ng @
STH(E) + 25 Zp(D) + > Ch2®, (3.2)
k=1 k=1 p=1 .
where
B =35 Conjgicn;
k _—m=1 (z_ak):; H & ’

(3.2a)
dm m

Br
|
An arbitrary additive constant has been omitted here from the outset, since it has only
trivial meaning in the complex velocity potential.
Further, from the fact that W.(2,%) should be regular in the outside region of the
unit circle |2}=1, it follows immediately that the function %(Z) must be of the form:

nz @
— 21 Zx(2) — 23 Cp2®.
k=1 p=1
Thus, we have ultimatgly

1

o n nz _
s -Fmo-Fald)- Sob oo

=1

Taking the closed contour as shown in Fig. 1, we have, by means of Cauchy’s integral

theorem,

6o-lf § HSme-Fall)-fe b e

The integral taken round the outer circle C, of radius R tends, as
R — oo, to become equal in magnitude to the residue at infinity of

the integrand and can be easily evaluated from (3.2a) as: ‘ C
’ 1

n% g:’% dk:'m

k=l m=1 (— p ™
Thus we have Fig. 1

G=31 S8 dum Lg S
! =1 m=1(— b )" 2mi J =1 551 *
i i i 21) 2 S o oA
*oni lel=1 1%'1 4 i~z om jel=1 p —"Tz 3.5

Further, after some calculations the first contour integral on the right-hand side can

be transformed into the form:

L 1 dt
2ni ltl==1k:2-|1 k(t) .
_ .1 1 QW,Q dz 1 i 1 e
T omi le1=1 4(t'—§)( dz dC)z t{F({> +2ike™" log t}dt Z z (3.62)

while the second and third integrals can be evaluated as:
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Lf Sg (1) _ b HESIS
2mi |z1=1rc=1Z'c t t—E_%l k b ’ . (3.6b)
1 S~ 1dt GGy
i1y PP E-2 T p%ll z?’ (3.6¢)
where S,(1/8,) is the residue at 1/5; on the function Z,(1/#)/(f—2).
Now, from (2.1) and (2.3) we have
aw, dz { zs( _& m) “‘){ _G_ 50 ...}—1
Xt ER L . @D
which is also the regular function in the outside region of the unit circle |2} =1. Hence,

proceeding in a similar manner to the case of deduction of (3.5) from (3.3), we have

dw,dz _ 5 1 dW, dz\ dt_
? ' 1e]= 1( )t z (3‘8)

dz Eg & T omi dz dr

Substltutlon of (3. 5) (3.6) and (3.8) into (2. 2) glves v

W, (2,2) = —ei8 {F(z) +2ire~ Jog z} —~{ W, (2) +ixlog z}

—i5 N7 @ 7 nz P
+%e——+}_}sk(1) *‘%‘}’+“ dpn_
1 e p=1% 1 m=1(-by)
L 1 (dW,dz { (_L_ s L}
o ,“=14(t—§)(dz dC) F t) F(2) +2irelog Lhdt.  (3.9)

Rewriting 2(f) as given by (2.5a) in the form:

W):%(dﬁ?ogg) _1~+_ (dWodz) 22t

dz delz, dz del;o, t(zt—1)7
and substituting ?(tl:é_)(% %g)_ from this relation, the integral in (3.9) is divided
Z7=¢

into three parts as:

Il:%ﬂ.’l‘§]“ 1”(t){ ( ) F(2)+2iked log — }dt

1 12—z (dW,dz 1N o s

L= 5ni¥ a4 t(zt—l)( dz d&); ,{F(t)+2”‘e * log t}dt’ (3.10)
_ 1 1 (2—zt) (AW, dz e B T 3

L= 5§ i 1>( i dc)z t{F(z)+2uce"? logz}dt.

Taking (3.2) and (3.7) into consideration and making use of the theorem of residues, the

second and third integrals I, and I, can be evaluated and we have, after some reductions,

B
L=-fters 5% S5 (1) 55 un
p= k= k=1 m=1 \" Vg
(3.11)

I, = —%e“{F(z} +2i ke~ log E} .

Thus, we have ultimately
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W@ = e (er )i e@{F(F)-Fe+2ine-10g Lar }

[ X194
{35 -F) s - 2ls(5)-5(3))
G 2-EalES] 612

The terms in the square bracket are evidently all purely imaginary and therefore they

contribute nothing to the velocity potential, Hence, we arrive at the formula:
0, = %[ W3]
= ir[-ewGrip+ il  eo{Fam-F@ it g tn}ar]
which is nothing but Tomotika-Tamada’s formula (2.5).

$4. Relationship between Tomotika-Tamada’s and Kaplan’s formulae

Starting with the method due to Poggi as in Tomotika-Tamada’s paper and using
the complex variables z and Z, Kaplan has also derived another formula for calculating
the first-order effect of compressibility upon the two-dimensional subsonic flow past an
obstacle. ‘

For simplicity we here assume that the fluid flows in the x—direction and there is no
circulation about the obstacle. Let w denote the complex velocity in the physical ¢-plane

and let it be developed in a power series of ascending M? as:
w = (w,+M?w,+ ---)(dz/de) . 4.1

The function w, is evidently the complex velocity for incompressible flow past the body

concerned, and remembering that =0 and x==0 in the present case, it is derived from

W, given by (2.3) as: )
w, =dW,/dz=1-1]z2°. (4.2)

Kaplan has shown that the function w, expressing the first-order effect of compressibility
upon the complex velocity is given by a formula of the form :

= i[so-3s(d)- ekl dran-30-2). o
where
F(z, )_wow,,g;‘gz jz( OZ‘Z)S—gZZd- (4.3a)

and S(2) is the sum of residues of the function 1/(f—2)+-F(%, 1/t) at the poles lying
inside the unit circle |¢|=1 in the f-plane. Also, S(1/2) and F(1/2z,2) can be obtained
respectively from S(Z) and F(Z,2) by replacing z by 1/z.

In the following lines we shall show that VtAhe above Kaplan’s formula can be derived
from Tomotika-Tamada’s formula (2.5), which, in the present case in which ¢=0 and

£=0, may be written in the form:
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o0, 1[-fer 2o, _seofe()-reofa

v (), e@{F(3)-Fala] @9

-4 (2.3

Also, the function £(#) can be resolved into partial fractions as:

oty = L@, %) (-2t '
EO=5\Wgz) 37 TS (4.5)
From the definition of w, in (4.1) it is easily seen that
w, = 2(09,/02) . (4.6)

Thus, retaining only those terms depending on z, we have

1 1 0
Wy :Z[(_"]‘—*"‘z_z) +a—z(]1+]2+]3)], 4.7
where

_ 1 dz F(1/p
]1 T~ 2m 1e1 1( dc)z Lt ]_/z dt (4. 78)

—_1 dz\ FQ/b ;
Je = 2nid =1 (wodC)Fj t—2z dt, (4.7b)
J.= "Fé‘? 1g’(l‘)dl‘+conjugate complex. (4.7¢)

1t1= ;

Now, when G(2) is a rational function having no singular points on the circumference
of the unit circle |z]=1 in the z-plane, it can be proved that
i{ 1 § G }_ 1 G'(t)
dz 2rt 1t1=1 t—2 dt 27'L'Z 1t]=1 t—2z dt .
Making use of this relation and taking (2.2a) and (4.2) into account, we have, after

some reductions,

a5, 1 aJ, 11 F(t 1/6)

0z —  ZFoQln _?Qﬁ o=l £—1/2

dt. (4.8)

The last integral can be evaluated by calculating the residues of the integrand at its

poles inside the unit circle !#]=1 in the /~plane. Thus, it is easily found that

= L{s(2) P ()

Next, 8],/0z can be evaluated in the same way as in the case of 0J,/0z. Since,

however, |2|>>1 for points in the region of fluid flow, it is found that
0: = 502) . (4.10)

Lastly, the value of J, can be evaluated conveniently by reversing the sense of
integration along the contour |#]=1. In doing this, we make use of the fact that the
function g(#) given by (4.5) has only one pole at =2 in the outside of the unit circle
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1t!=1 and moreover, as is easily assured, its residue at infinity is zero. Then, differen-
tiating the resulting value of J, _wikth respect to 2z, we have
- i K
0 _ ( 2dz)(— 5@) i( @) S—z‘f? 7 — 3
éé = wOa—C woda +d2.’ wodc wodde-— F(z,z) . (4. 11)
Thus, substituting (4.9), (4.10) and (4. 11) into (4.7), we have ultimately
o= (-5 553 F (5 s iren],

22

and this is just the formula due to Kaplan.

In conclusion the writer wishes to express his cordial thanks of Professor S. Tomotika
for his continual guidance and his kind inspection of the manuscript. The writer’s cordial
thanks are also due to Dr. K. Tamada for suggesting the present problem, and to
Professor T. Simasaki for his useful discussions.
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