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Abstract 

Mixed-integer linear programming (MILP) methods have been applied widely to 

optimal design of energy supply systems in consideration of multi-period operation.  A 

hierarchical MILP method has been proposed to solve such optimal design problems 

efficiently.  An original problem has been solved by dividing it into a relaxed optimal 

design problem at the upper level and optimal operation problems which are 

independent of one another at the lower level.  In addition, some strategies have been 

proposed to enhance the computation efficiency furthermore.  In this paper, a method 

of reducing model by time aggregation is proposed as a novel strategy to search design 

candidates efficiently in the relaxed optimal design problem at the upper level.  In 
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addition, the previous strategies are modified in accordance with the novel strategy.  

This method is realized only by clustering periods and averaging energy demands for 

clustered periods, while it guarantees to derive the optimal solution.  Thus, it may 

decrease the computation time at the upper level.  Through a case study on the optimal 

design of a gas turbine cogeneration system, it is clarified how the model reduction is 

effective to enhance the computation efficiency in comparison and combination with the 

modified previous strategies. 

 

Keywords:  Energy supply, Optimal design, Mixed-integer linear programming, 

Hierarchical optimization, Model reduction, Time aggregation 

 

 
1. Introduction 

To attain the highest performance of energy supply systems, it is important to 

rationally determine their structures by selecting energy producing and conversion 

equipment from many alternatives so that they match energy demand requirements.  It 

is also important to rationally determine capacities and numbers of selected equipment 

in consideration of their operational strategies such as on/off status of operation and 

load allocation corresponding to seasonal and hourly variations in energy demands.  

One of the ways to rationally determine the aforementioned design and operation items 

of energy supply systems is to use mathematical programming methods, and they have 

been applied increasingly with the development of computation hardware and software.  

Especially, the mixed-integer linear programming (MILP) method has been utilized 

widely.  This is because it can consider discrete characteristics for selection and on/off 
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status of operation of equipment, and can also treat nonlinear performance 

characteristics of equipment by piecewise linear approximations.   

However, the difficulty of optimal design problems depends on the formulation 

using binary and integer variables.  For example, the selection, capacities, numbers, 

and on/off status of operation of equipment can be expressed by binary and integer 

variables.  In this case, the number of binary and integer variables increases with the 

complexity of energy supply systems and the number of periods set to consider seasonal 

and hourly variations in energy demands.  In recent years, since commercial MILP 

solvers have become more efficient, many applications to the optimal design have been 

conducted in consideration of multi-period operation for a large number of periods.  In 

many cases, however, equipment capacities have been treated as parameters or 

continuous variables to solve the optimal design problems relatively easily, and this 

treatment cannot express real situations regarding performance characteristics and 

capital costs of equipment.  For example, only the types of equipment have been 

determined under fixed capacities [1, 2];  the types and numbers of equipment have 

been determined under fixed capacities [3–5];  the types and capacities of equipment 

have been determined, but the capacities have been treated as continuous variables [6–

10];  similar models have been used, but the dependence of performance 

characteristics of equipment on their capacities or part load levels have not been taken 

into account [11, 12].  On the other hand, optimal design methods have been proposed 

in consideration of discreteness of equipment capacities to resolve the aforementioned 

insufficiency of equipment models for performance characteristics and capital costs 

[13–15].  However, since these methods make the optimal design problem more 
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complex, even commercial MILP solvers which are recently available may not derive 

the optimal solution in a practical computation time.   

One approach to solve optimal design problems with large numbers of periods 

efficiently is to derive approximate optimal solutions by reducing the numbers of 

periods as much as possible.  Some approximate solution methods for reducing the 

numbers of periods have been proposed by selecting representative days and 

aggregating periods based on energy demands.  For example, representative days have 

been selected using the k-medoids clustering method [16];  typical periods have been 

selected using the k-means clustering method assisted by the  ! -constraint optimization 

technique [17];  periods have been aggregated using a hierarchical clustering method 

[18];  several aggregation methods including the aforementioned clustering ones have 

been compared [19, 20].  On the other hand, a method of bounding the error in the 

optimal value of the objective function by aggregating periods has been proposed [21], 

and a decomposition method of synthesizing energy systems by evaluating upper and 

lower bounds for the optimal value of the objective function has also been proposed 

[22].  Although these methods are applicable to any optimal design problems 

regardless of MILP solvers, they sacrifice solution exactness and thus affect both design 

and operation solutions.  Thus, it is necessary to investigate how the optimal solutions 

of the optimal design problems with reduced numbers of periods are close to those with 

the original ones.  However, this approach is used because it is difficult to derive the 

optimal solutions of the optimal design problems with the original numbers of periods.    

Another approach to solve optimal design problems with large numbers of periods 

efficiently is to utilize structural features of the optimization problems.  An MILP 

method utilizing the hierarchical relationship between design and operation variables 
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has been proposed to solve optimal design problems efficiently, and has been 

implemented into a commercial MILP solver utilizing its callback functions to solve 

large-scale problems with large numbers of variables [23].  This method has been 

extended to derive not only the optimal design but also suboptimal ones which follow 

the optimal one without any omissions, what are called K-best solutions [24].  For the 

purpose of enhancing the computation efficiency, some strategies have been proposed to 

reduce the number of design candidates generated at the upper level and the number of 

optimal operation problems solved at the lower level as much as possible, and the 

method with these strategies has been applied to the multiobjective optimal design [25].  

Furthermore, for the purpose of enhancing the computation efficiency at the lower level, 

parallel computing is adopted to solve multiple optimal operation problems in parallel 

[26].  Especially, the computation efficiency at the lower level has been enhanced 

drastically by the series of work.  

In this paper, as a novel strategy to enhance the computation efficiency at the upper 

level in the aforementioned hierarchical MILP method, a method of reducing model by 

time aggregation is proposed to search design candidates efficiently at the upper level.  

In addition, the previous strategies to enhance the computation efficiency are modified 

in accordance with the novel strategy.  This method is realized only by clustering 

periods and averaging energy demands for clustered periods, while it guarantees to 

derive the optimal solution.  This is because a lower bound for the optimal value of the 

objective function in the reduced problem is smaller than or equal to that in the original 

problem.  This is the most important feature in comparison with the aforementioned 

approximate solution methods for reducing the numbers of periods.  On the one hand, 

the method can decrease the number of design variables and constraints at the upper 
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level, and thus may decrease the computation time at the upper level.  On the other 

hand, the method may increase the numbers of design candidates generated at the upper 

level and optimal operation problems solved at the lower level, and thus the 

computation time at both the levels.  Through a case study on the optimal design of a 

gas turbine cogeneration system, it is investigated how the model reduction is effective 

to enhance the computation efficiency in comparison and combination with the 

modified previous strategies.  

 

 

2. Formulation of optimal design problem 

A formulation for the optimal design of an energy supply system in consideration 

of discrete equipment capacities proposed previously is used in this paper [13].  A 

typical year is divided into M periods to consider seasonal and hourly variations in 

energy demands, and each period is identified by the subscript or argument m 

    (m = 1, 2, !, M ) .  Energy demands y(m) are estimated certainly at each period.  

First, a super structure for an energy supply system, which is composed of all the units 

of equipment considered as candidates for selection, is created to match energy demand 

requirements.  Here, it is assumed that energy storage units are not included in the 

system.  Then, a real structure is designed by selecting some units of equipment from 

the candidates.  Furthermore, some units of equipment are operated to satisfy energy 

demands at each period.  Here, it is assumed that transient characteristics of equipment 

are not considered.  The selection, capacities, and numbers of equipment as well as the 

maximum demands of utilities such as purchased electricity and city gas are considered 

as binary and integer design variables  ! .  The number of equipment at on status of 
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operation, and the load allocation of equipment and consumptions of utilities are 

considered as integer and continuous operation variables,    !(m)  and x(m), respectively.  

The annual total cost is adopted as the objective function to be minimized.  It is 

evaluated as the sum of the annual capital cost of equipment and the annual operational 

cost of utilities.   

Under the aforementioned conditions, the optimal design problem is formulated as 

follows: 
 

 

        

min.     z = f0(!)+ fm("(m), x(m), y(m))!t(m)
m=1

M

!
sub. to  g0(!)" 0
          gm(!, "(m), x(m), y(m))" 0  (m = 1, 2, !, M )
          hm(!, "(m), x(m), y(m)) = 0  (m = 1, 2, !, M )
          ! # "n1

          "(m)# "n2  (m = 1, 2, !, M )
          x(m)# #n3  (m = 1, 2, !, M )

$

%

&&&&&&&&&&&&

'

&&&&&&&&&&&&

 (1) 

where   f0  and  fm  denote the annual capital cost of equipment plus the annual demand 

charge of utilities and the annual energy charge of utilities per hour at each period, 

which are functions with respect to the design and operation variables, respectively, in 

the objective function z, and    !t(m) is the duration per year of each period.    g0  

denotes the inequality constraints for restrictions concerning the selection, capacities, 

and numbers of equipment, which relate the design variables.    gm  and   hm  denote 

the inequality and equality constraints, respectively, for performance characteristics of 

equipment, relationships between maximum demands and consumptions of utilities, and 

energy balance relationships, which relate the design and operation variables.  In 

addition,   n1 ,   n2 , and   n3  are the numbers of the variables in  ! ,    !(m) , and x(m), 

respectively. 



8 

Both the design and operation variables are mixed in the optimal design problem of 

Eq. (1), and the enumeration tree is wide and deep.  This structure of the enumeration 

tree means that a large computation time must be required to obtain the optimal 

solution. 

 

 

3. Solution by hierarchical MILP method 

As shown in Fig. 1, the optimal design problem of Eq. (1) has the hierarchical 

relationship between the design and operation variables.  Namely, if the values of the 

design variables  !  are assumed tentatively, the constraints   gm  and   hm  become 

independent at each period, and the values of the operation variables    !(m)  and x(m) 

can be optimized independently at each period.  Thus, a hierarchical MILP method 

proposed previously is used in this paper [23], as shown in Fig. 2.   

At the upper level, the binary and integer design variables  !  are selected as 

branching variables in prior to the integer operation variables    !(m) , and their values 

are assumed tentatively.  Then, a design candidate is generated.  This process is 

conducted by searching a feasible solution in the following relaxed optimal design 

problem: 
 

 

        

min.     z = f0(!)+ fm("(m), x(m), y(m))!t(m)
m=1

M

!
sub. to  g0(!)" 0
          gm(!, "(m), x(m), y(m))" 0  (m = 1, 2, !, M )
          hm(!, "(m), x(m), y(m)) = 0  (m = 1, 2, !, M )
          ! # "n1

          "(m)# #n2  (m = 1, 2, !, M )
          x(m)# #n3  (m = 1, 2, !, M )

$

%

&&&&&&&&&&&&

'

&&&&&&&&&&&&

 (2) 



9 

where the integer operation variables    !(m)  are relaxed to continuous ones.  Under 

the values of the design variables  ! , the values of the operation variables    !(m)  and 

x(m) can be determined at the lower level by solving the following optimal operation 

problems: 
 

 

       

min.      fm(!(m), x(m), y(m))
sub. to  gm(", !(m), x(m), y(m))! 0
          hm(", !(m), x(m), y(m)) = 0
          !(m)" !n2

          x(m)" "n3

#

$

%%%%%%%

&

%%%%%%%

 (m = 1, 2, #, M )  (3) 

The value of the objective function z is assessed based on the values of   f0  and  fm , 

which are evaluated based on the values of the design and operation variables assumed 

tentatively and determined optimally, respectively.  A design candidate can be an 

incumbent solution, and the corresponding value of the objective function can be an 

upper bound for the optimal value of the objective function.  Thus, it is used for the 

bounding procedure in searching other design candidates. 

Figure 3 shows the enumeration tree for these optimization problems related 

hierarchically.  The branches show the selection of values of the binary and integer 

design variables at the upper level as well as the integer operation variables at the lower 

level.  The design and operation variables are separated, and the enumeration tree is 

narrow and shallow.  This structure of the enumeration tree means that a short 

computation time may be required to obtain the optimal solution. 

 

 

4. Model reduction by time aggregation 

A method of reducing the optimization model by aggregating periods and the 
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corresponding optimal operation problems is proposed here.  Generally, the periods 

may be divided into clusters in any way.  However, the periods are divided into 

clusters with the same number of periods in the order of time series here, for simplicity.  

Concretely, M periods are divided into L clusters each of which includes N periods, i.e., 

L = M/N.  Then, the set which includes the indices for periods in each cluster is 

defined as follows:   
 

 
    
Al = (l !1)N + 1, (l !1)N + 2, !, lN{ }    (l = 1, 2, !, L) (4) 

In addition, energy demands in each cluster are averaged as follows:   
 

 
        
y'(l) = y(m)!t(m)

m!Al

" !t(m)
m!Al

"    (l = 1, 2, !, L)  (5) 

In accordance with this clustering, only the relaxed optimal design problem of Eq. 

(2) at the upper level is reduced to  
 

 

         

min.     z = f0(!)+ f' l("'(l), x'(l), y'(l))
l=1

L

! !t(m)
m"Al

!
sub. to  g0(!)# 0
          g' l(!, "'(l), x'(l), y'(l))# 0  (l = 1, 2, !, L)
          h' l(!, "'(l), x'(l), y'(l)) = 0  (l = 1, 2, !, L)
          ! " "n1

          "'(l)" #n2  (l = 1, 2, !, L)
          x'(l)" #n3  (l = 1, 2, !, L)

$

%

&&&&&&&&&&&&

'

&&&&&&&&&&&&

 (6) 

where ( )' denotes the variables, objective function, and constraints after model 

reduction by time aggregation.  The optimal operation problems of Eq. (3) at the lower 

level are used in combination with Eq. (6) in place of Eq. (2).  By this model reduction, 

the numbers of the operation variables     !'(l)  and     x'(l) , and the constraints    g' l  and 
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   h' l  decrease with an increase in N or a decrease in L.  Thus, this may enhance the 

computation efficiency at the upper level. 

The purpose of the relaxed optimal design problem of Eq. (2) is not to find the 

optimal solution and evaluate the optimal value of the objective function, but to search 

design candidates and evaluate lower bounds for the optimal value of the objective 

function.  Even the reduced optimal design problem of Eq. (6) is effective for this 

purpose as follows.  At each branching node in the branch and bound method, where 

part of the values of the design variables  !  are fixed, a continuous relaxation or linear 

programming (LP) problem of Eq. (2) or (6) is considered.  Parameters such as energy 

demands on the right side of constraints in a LP problem affect an objective function as 

shown in Fig. 4, i.e., the objective function changes piecewise linearly and its gradient 

increases with an increase in the value of a parameter.  Thus, even if energy demands 

with small differences are averaged, Eq. (6) may give the same lower bound as Eq. (2).  

If energy demands with large differences are averaged, Eq. (6) may give a lower bound 

smaller than Eq. (2).  However, this smaller lower bound obtained by Eq. (6) is also 

used as a lower bound for Eq. (2).  This feature is proved mathematically in appendix 

A.  Thus, the reduced optimal design problem of Eq. (6) never cut the optimal design 

solution off, and the proposed method guarantees to derive the optimal solution.  

Smaller lower bounds increase the numbers of design candidates generated at the upper 

level and optimal operation problems solved at the lower level.  Thus, this may 

deteriorate the computation efficiency at both the levels.   

It is difficult to judge whether the computation efficiency at the upper level is 

enhanced or deteriorated as a result of the model reduction by time aggregation.  It 

should be judged through case studies. 
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5. Modification of previous strategies 

Several strategies have been proposed previously to enhance the computation 

efficiency at both the levels [23, 25].  However, they have to be modified in 

accordance with the aforementioned model reduction at the upper level. 

 

5.1. Bounding at lower level 

The first strategy to enhance the computation efficiency is bounding at the lower 

level.  The bounding procedure is conducted automatically in solving each optimal 

operation problem by an MILP solver.  However, since each optimal operation 

problem is solved independently, the bounding procedure cannot be conducted 

automatically in solving all the optimal operation problems sequentially.  Thus, the 

self-made bounding procedure is introduced outside the MILP solver.  It is assumed 

here that optimal operation problems are solved sequentially in a specified order of 

clusters set for the model reduction at the upper level, and that they are also solved 

sequentially in their specified order in each cluster.  Before solving an optimal 

operation problem in a target cluster, a lower bound for the optimal value of the 

objective function is evaluated as follows: 
 

 

      

!
z = f0 + fm!t(m)

m!Al

"
l!CS

" + max(
!
f' lC !t(m)

m!Al

" , 
!
fmO!t(m)

m!Al

" )
l!CU

"

     + fm!t(m)
m!PS

" +
!
fmO!t(m)

m!PU

"
 (7) 

where   CS  and   CU  are the sets of indices for the clusters where all the optimal 

operation problems are solved and not solved, respectively,   PS  and   PU  are the sets of 
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indices for the optimal operation problems which are solved and not solved, 

respectively, in the target cluster, 
    !
f' lC  is the value of   f' l  evaluated in the reduced 

optimal design problem at the upper level, and 
   !
fmO  is the value of  fm  evaluated in the 

critical operation problems, which have been proposed to evaluate an alternative lower 

bound [23].  This lower bound is used for the bounding procedure.  In accordance 

with Eq. (7), an upper bound for the optimal value of  fk  for the kth optimal operation 

problem can be evaluated as follows: 
 

 

      

!fk = !z ! f0 + fm!t(m)
m"Al

#
l"CS

# + max(
!
f' lC !t(m)

m"Al

# , 
!
fmO!t(m)

m"Al

# )
l"CU

#
$

%

&&&&&

'
(
)))

*
)))

       + fm!t(m)
m"PS

# +
!
fmO!t(m)

m"PU \{k}
#

+

,

------

.
/
)))

0
)))
!t(k)

 (8) 

This strategy is expected to reduce the number of solved optimal operation problems 

and enhance the computation efficiency at the lower level. 

 

5.2. Bounding at upper level 

The second strategy to enhance the computation efficiency is bounding at the 

upper level.  The bounding procedure is conducted automatically in solving the 

reduced optimal design problem by an MILP solver.  If the lower bounds obtained not 

only by the reduced optimal design problem but also by the critical design and operation 

problems are used, a lower bound for the optimal value of the objective function is 

evaluated as follows:  
 

 
      
!
z = max(

!
f

 0
C, 
!
f

 0
D)+ max(

!
f' lC !t(m)

m!Al

" , 
!
fmO!t(m)

m!Al

" )
l=1

L

"  (9) 
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where 
   !
f

 0
C  and 

    !
f' lC  are the values of   f0  and   f' l , respectively, evaluated by the 

optimal solution of the continuous relaxation problem at each branching node in the 

reduced optimal design problem at the upper level, and 
   !
f

 0
D  is the value of   f0  

evaluated in the critical design problems, which have also been proposed to evaluate an 

alternative lower bound [23].  This strategy is expected to reduce the number of 

generated design candidates and enhance the computation efficiency at the upper level. 

 

5.3. Ordering of optimal operation problems 

The third strategy to enhance the computation efficiency is ordering of optimal 

operation problems at the lower level.  As the optimal operation problems are solved 

sequentially in the specified order of clusters, the lower bound of Eq. (7) increases.  

This is because after the optimal operation problems in the lth cluster are solved, 

      max(
!
f' lC !t(m)m!Al" , 

!
fmO!t(m)m!Al" )  of the third term is replaced with 

    fm!t(m)m!Al"  of the second term on the right side of Eq. (7).  This means that the 

value of   !
z  increases by 

      fm!t(m)m!Al" #max(
!
f' lC !t(m)m!Al" , 

!
fmO!t(m)m!Al" ) .  

On the other hand, as the optimal operation problems are solved sequentially in their 

specified order in each cluster, the lower bound of Eq. (7) also increases.  This is 

because after the mth optimal operation problem in the cluster is solved, 
    !
fmO!t(m)  of 

the fifth term is replaced with    fm!t(m) of the fourth term on the right side of Eq. (7).  

This means that the value of   !
z  increases by 

     (fm ! !
fmO)!t(m) .  Thus, as the optimal 

operation problems are solved sequentially, the possibility of conducting the bounding 

procedure increases.  Therefore, if the clusters for optimal operation problems and the 

optimal operation problems in each cluster are solved in the descending order of 

      fm!t(m)m!Al" #max(
!
f' lC !t(m)m!Al" , 

!
fmO!t(m)m!Al" )  and 

     (fm ! !
fmO)!t(m) , 
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respectively, the possibility of conducting the bounding procedure increases faster.  

The best order of the clusters for the optimal operation problems to be solved 

    l1 ! l2 !!! lL  is expressed as 
 

 

      

fm!t(m)
m!Al1

" #max(
!
f' l1

C !t(m)
m!Al1

" , 
!
fmO!t(m)

m!Al1

" )

     $ fm!t(m)
m!Al2

" #max(
!
f' l2

C !t(m)
m!Al2

" , 
!
fmO!t(m)

m!Al2

" )$"

     $ fm!t(m)
m!AlL

" #max(
!
f' lL

C !t(m)
m!AlL

" , 
!
fmO!t(m)

m!AlL

" )

 (10) 

In addition, the best order of the optimal operation problems to be solved in each claster 

    m1 ! m2 !!! mN  is expressed as 
 

 
     (fm1
!
!
fm1

O)!t(m1)" (fm2
!
!
fm2

O)!t(m2)"" " (fmN
!
!
fmN

O)!t(mN )  (11) 

However, the values of 
      fm!t(m)m!Al" #max(

!
f' lC !t(m)m!Al" , 

!
fmO!t(m)m!Al" )  

and 
     (fm ! !

fmO)!t(m)  cannot be compared with one another until all the optimal 

operation problems are solved.  In this paper, approximate values of 

      fm!t(m)m!Al" #max(
!
f' lC !t(m)m!Al" , 

!
fmO!t(m)m!Al" )  and 

     (fm ! !
fmO)!t(m)  are 

evaluated based on their values of the newest incumbent solution.  This strategy is 

expected to reduce the number of solved optimal operation problems and enhance the 

computation efficiency at the lower level. 

 

 

6. Case study 

6.1. Input data 

A gas turbine cogeneration system for district energy supply shown in Fig. 5 is 
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investigated in a case study.  The super structure for the cogeneration system is defined 

for the optimal design.  It is composed of four gas turbine generators (GT), four waste 

heat recovery boilers (BW), four gas-fired auxiliary boilers (BG), four electric 

compression refrigerators (RE), four steam absorption refrigerators (RS), a device for 

receiving electricity (EP).  Pumps for supplying cold water (PC) are common to all the 

possible structures, and only their power consumption is considered.  Data on the 

capacities, performance characteristic values, and capital costs of candidates of 

equipment for selection as well as the unit costs for demand and energy charges of 

electricity and city gas are shown in Tables 1 and 2, respectively [13]. 

Two hotels and four office buildings with the total floor area of 383.7×103 m2 are 

selected as the buildings which are supplied with electricity, cold water, and steam by 

the cogeneration system.  To take account of seasonal and hourly variations in energy 

demands, a typical year is divided into three representative days in winter, mid-season, 

and summer whose numbers of days per year are set at 122, 121, and 122 d/y, 

respectively, and each day is further divided into 24 sampling time intervals of 1 h.  

Thus, the year is divided into M = 72 periods.  Figure 6 shows the hourly variations in 

electricity, cold water, and steam demands on the representative day in summer as an 

example.  Figure 6 (a) shows the original energy demands, and Figs. 6 (b) to (d) show 

the energy demands averaged for model reduction by setting the number of periods per 

cluster at N = 2, 3, and 4, respectively.  As a result, the original optimal design 

problem has 22 binary design variables, 24 integer design variables, 288 integer 

operation variables, 4476 continuous operation variables, and 14820 constraints.  

The optimization calculations by the hierarchical MILP method are conducted 

using each and combinations of the modified previous strategies and the novel strategy.  
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These strategies are defined as follows: 
 

Strategy A: bounding at lower level in section 5.1 

Strategy B: bounding at upper level in section 5.2 

Strategy C: ordering of optimal operation problems in section 5.3 

Strategy D: model reduction by time aggregation in chapter 4 
 

The names of cases mean combinations of these strategies, and case R denotes the 

reference case without strategies A to D.  When strategy D is used, the number of 

periods per cluster N is changed as a parameter. 

All the optimization calculations are conducted using a commercial MILP solver 

IBM ILOG CPLEX Optimization Studio Ver. 12.6.1 on a MacBook Pro with Intel Core 

i7 processor (4 cores and 2.4 GHz) [27].  To confirm the effectiveness of the 

hierarchical MILP method, the conventional optimization calculation is also conducted 

using a commercial MILP solver GAMS/CPLEX Ver. 12.6.0 on the same computer 

[28].   

 

6.2. Results and discussion 

Figures 7 (a) and (b) show changes in upper and lower bounds for the optimal 

value of the objective function in relation to the computation time obtained by the 

conventional optimization calculation, and the hierarchical MILP method in cases ABC 

and ABCD, respectively.  In the latter case, the number of periods per cluster is set at 

N = 4.  In the conventional optimization calculation, the upper and lower bounds 

approach each other quickly, but a relative gap of 0.73 % is remaining even if 1000 s 

are used for computation, and it seems that the upper and lower bounds do not coincide 
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with each other even with a longer computation time.  Thus, the direct use of the 

commercial MILP solver is not so efficient to solve the optimal design problem under 

consideration.  In the hierarchical MILP method, the strategies for enhancing the 

computation efficiency and the number of periods per cluster affect the computation 

efficiency.  The combination of strategies A to C completes the optimization 

calculation in 63.4 s.  The addition of strategy D to strategies A to C reduces the 

computation time drastically, and completes the optimization calculation only in 12.6 s.  

Thus, it turns out that strategy D is very effective to enhance the computation efficiency 

in the hierarchical MILP method.   

Figure 8 shows the effect of the number of periods per cluster on the computation 

time in cases D, AD, BD, CD, and ABCD (N ≥ 2) in comparison with cases R, A, B, C, 

and ABC (N = 1), respectively.  The computation time tends to decrease with an 

increase in the number of periods per cluster N.   When the number of periods per 

cluster is set at N = 3, the computation time tends to increase in cases D, AD, BD, and 

CD.  It seems that the division of periods into clusters is not suitable.  When only 

strategy D is used, it hardly affects the computation time and is hardly effective to 

enhance the computation efficiency.  However, when strategy D is combined with 

strategy A, B, or C, it comes to affect the computation time.  Especially, when strategy 

D is combined with strategy A or B, it affects the computation time more effectively.  

As aforementioned, when strategy D is combined with strategies A to C, it affects the 

computation time drastically and is very effective to enhance the computation efficiency.  

However, when the number of periods per cluster is set at N = 6, the computation time 

increases drastically.  For example, the computation time is 646.9 s in case ABCD.  

This is because energy demands with much larger differences are averaged, Eq. (6) 
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gives a lower bound much smaller than Eq. (2), and the numbers of design candidates 

generated at the upper level and optimal operation problems solved at the lower level 

increase drastically. 

Figure 9 shows the difference between the lower bounds for the value of objective 

function evaluated for design candidates generated in solving the following two 

problems:  one is the original relaxed optimal design problem of Eq. (2) in case ABC, 

and the other is the relaxed optimal design problem of Eq. (6) reduced by time 

aggregation in case ABCD with N = 2, 3, 4, and 6.  Since design candidates of both the 

problems do not necessarily coincide with each other, only the design candidates 

common to both the problems are selected here.  Although the differences in the lower 

bound with N = 2 and 4 are small, those with N = 3 are larger, and those with N = 6 are 

much larger.  These results correspond to the results shown in Fig. 8.  Thus, when N 

= 2 and 4, the computation time decreases significantly with an increase in N.  

However, when N = 3, as aforementioned, the computation time tends to increase in 

cases D, AD, BD, and CD.  In addition, when N = 6, as aforementioned, the 

computation time becomes too long.  When N = 3 and 6, it turns out the division of 

periods into clusters is not suitable in terms of the differences in the lower bound.  

From these results, it turns out that the differences in the lower bound are the important 

criteria to evaluate the computation efficiency.  In other words, it should be necessary 

to divide periods into clusters so that the differences in the lower bound are minimized 

to enhance the computation efficiency.   

Figures 10 (a) to (c) show the effect of each and combinations of the strategies for 

enhancing the computation efficiency on some evaluation criteria, i.e., the number of 

design candidates generated at the upper level, the number of optimal operation 
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problems solved at the lower level, and the computation time.  Here, the number of 

periods per cluster is set at N = 4.  The generated design candidates are composed of 

those rejected before the lower level, those rejected at the lower level, and incumbent 

solutions.  The computation time is composed of those at the upper and lower levels.  

According to Fig. 10 (a), strategies A and C do not affect the number of generated 

design candidates, because they are strategies to enhance the computation efficiency 

only at the lower level.  Strategy B is effective to reduce the number of generated 

design candidates, because it increases lower bounds evaluated by Eq. (9), while 

strategy D increases the number of generated design candidates, because it decreases 

lower bounds evaluated by Eq. (9).  As a result, the number of generated design 

candidates in case ABCD is larger than that in case ABC.  According to Fig. 10 (b), 

strategies A and C are effective to reduce the number of solved optimal operation 

problems directly.  Especially, strategy A is very effective.  In addition, strategy B is 

effective to reduce the number of solved optimal operation problems indirectly by 

reducing the number of generated design candidates.  However, strategy D increases 

the number of solved optimal operation problems by increasing the number of generated 

design candidates.  As a result, the number of solved optimal operation problems in 

case ABCD is also larger than that in case ABC.  According to Fig. 10 (c), strategies A 

and C are effective to reduce the computation time only at the lower level.  Although 

strategy B is effective to reduce the computation times at both the upper and lower 

levels, the effectiveness is very limited.  Although strategy D increases the 

computation time at the lower level, it is very effective to reduce the computation time 

at the upper level.  These results show that the combination of strategies A and D is 

very effective to reduce the total computation time.  As a result, the total computation 
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time in case ABCD is much shorter than that in case ABC.   

The values of the design and operation variables for the optimal design obtained by 

the hierarchical MILP method are the same in all the cases regardless of using each or 

any combination of strategies A to D, and the values of the design variables are shown 

in Table 3.   

 

 

7. Conclusions 

For the purpose of enhancing the computation efficiency in the hierarchical MILP 

method for the optimal design of energy supply systems, a method of reducing model 

by time aggregation has been proposed as a novel strategy to search design candidates 

efficiently in the relaxed optimal design problem at the upper level.  In addition, the 

strategies proposed previously to enhance the computation efficiency have been 

modified in accordance with the novel strategy.  This method has been realized only 

by clustering periods and averaging energy demands for clustered periods.  The 

method has the advantages that it guarantees to derive the optimal solution, and that it 

can decrease the number of design variables and constraints at the upper level, and thus 

may lead to a decrease in the computation time at the upper level.  On the other hand, 

the method has the disadvantages that it increases the numbers of design candidates 

generated at the upper level and optimal operation problems solved at the lower level, 

and thus may lead to an increase in the computation time at both the levels.  Through a 

case study on the optimal design of a gas turbine cogeneration system, it has been 

investigated how the model reduction is effective to enhance the computation efficiency 

in comparison and combination with the modified previous strategies.  The following 
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are the main results obtained through the case study. 

   • Although the novel strategy increases the numbers of design candidates generated 

at the upper level and optimal operation problems solved at the lower level, it 

decreases the computation time at the upper level drastically.  

   • Even if the novel strategy is used alone, it is not effective to enhance the 

computation efficiency.  However, if it is used in combination with the modified 

previous strategies, it is very effective to enhance the computation efficiency. 

   • The computation efficiency is enhanced with a moderate increase in the number of 

periods per cluster.  However, an excessive increase in the number of periods per 

cluster may deteriorate the computation efficiency drastically. 

Although the periods have been divided into clusters with the same number of 

periods in the order of time series in this paper, for simplicity, the periods may generally 

be divided into clusters in any way.  Thus, it is necessary to establish a method of 

clustering the periods so that the computation efficiency is enhanced as much as 

possible.  In addition, although the proposed method has been applied only to a limited 

optimal design problem in this paper, it is necessary to apply it to optimal design 

problems of different types and scales.  These are subsequent important subjects. 
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Appendix A 

It is proved here that the optimal value of the objective function in Eq. (6) is 

smaller or equal to that in Eq. (2) for arbitrary values of the design variables  ! .  The 

optimization problem at each period composed of the second term of the objective 

function and the second and third constraints in Eq. (2) or Eq. (6) is a LP problem.   

Let us consider the following LP problems at two periods for Eq. (2): 
 

 

      

(P1)
min.      d1 = cTu1!t1
sub. to  Au1 = b1
          u1 ! 0
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#

$$$$
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(P2)
min.      d2 = cTu2!t2
sub. to  Au2 = b2
          u2 ! 0
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#

$$$$

%
$$$$

 (A2) 

where d is the objective function to be minimized,      u ! !n5  is a vector composed of 

variables,      A ! !n4"n5 ,      b ! !n4 , and      c ! !n5  are matrix and vectors composed of 

coefficients,   !t  is the duration of period, and subscripts 1 and 2 denote different 

periods.  Here,   n4  and   n5  are the numbers of constraints and variables, respectively. 

Let us also consider the following LP problem at the aggregated period for Eq. (6): 
 

 

      

(P3)
min.      d3 = cTu3(!t1 +!t2)
sub. to  Au3 = (b1!t1 +b2!t2)/(!t1 +!t2)
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#
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%
$$$$
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where   b1  and   b2  in Eqs. (A1) and (A2), respectively, are averaged in consideration of 

the durations of periods.  

The dual problem of  (P1)  is expressed as follows: 
 

 
      
(D1)

max.      e1 = b1
Tv1!t1

sub. to  ATv1 ! c

"
#
$$$

%
$$$

 (A4) 

where e is the objective function to be maximized, and      v ! !n4  is a vector composed 

of dual variables.  Introducing slack variables and converting free variables into 

nonnegative ones, Eq. (A4) is transformed into 
 

 

      

(D̂1)
max.      e1 = b̂1

Tw1!t1
sub. to  Âw1 = c
            w1 ! 0

"

#

$$$$

%
$$$$

 (A5) 

where      ̂A ! !n5"(2n4+n5)  is a matrix composed of A and a unit matrix,      ̂b ! !(2n4+n5)  is 

a vector composed of b and a zero vector, and      w ! !(2n4+n5)  is a vector composed of 

the slack variables and nonnegative variables.  The value of the objective function for 

a basic feasible solution B is expressed as follows: 
 

      e1 = b̂1B
T ÂB

!1c!t1  (A6) 

where      ÂB ! !
n5"n5  is a basic matrix, and      b̂B ! !

n5  is a part for the basis of   ̂b .  

Thus, the optimal value of the objective function is obtained as follows: 
 

 
     
e1

* = b̂1B1
*

T  ÂB1
*
!1c!t1 = max

B
b̂1B

T ÂB
!1c!t1  (A7) 

where ( )* means the optimal solution. 
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The same procedure is applied to  (P2)  and  (P3).  The feasible region for the 

dual problems of  (P2)  and  (P3) are the same with that for   (D̂1) .  Thus, the optimal 

value of the objective function for the dual problem of  (P2)  is obtained as follows: 
 

 
     
e2

* = b̂2B2
*

T  ÂB2
*
!1c!t2 = max

B
b̂2B

T ÂB
!1c!t2  (A8) 

Similarly, the optimal value of the objective function for the dual problems of  (P3) is 

obtained as follows: 
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T  ÂB1
*
!1c!t1 + b̂2B2

*
T  ÂB2
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where the equality is satisfied in case that    B3
* = B1

* = B2
* .  According to the duality 

theorem,    d1
* = e1

* ,    d2
* = e2

* , and    d3
* = e3

* .  Therefore, it is concluded that 

   d3
* ! d1

* + d2
* . 

 

 

Nomenclature 

 A : set for indices of periods in cluster 

 A : matrix for coefficients of constraints in primary problem 

 B :  basic solution 

 b : vector for coefficients of constraints in primary problem 

 C :  set for indices of clusters for optimal operation problems 

 c : vector for coefficients of objective function in primary problem 

 (D) :  dual problem 
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 d :  objective function in primary problem 

 e :  objective function in dual problem 

 f : part of objective function  yen/y, yen/h 

 g : vector for inequality constraints 

 h : vector for equality constraints 

 L :  number of clusters for periods 

 M :  total number of periods 

 N :  number of periods per cluster 

 P :  set for indices of optimal operation problems in cluster 

 (P) : primary problem 

   !t  : duration per year of period  h/y 

 u : vector for variables in primary problem 

 v : vector for variables in dual problem 

 w : vector for variables in transformed dual problem 

 x : vector for continuous operation variables 

 y : vector for energy demands 

 z :  objective function, or annual total cost  yen/y 

  !  :  vector for integer operation variables 

   !  :  vector for binary and integer design variables 

   (! )  : upper bound 

   (!
 )  : lower bound 

   (̂ )  : transformed dual problem 

 ( )' : reduced optimal design problem 

  ( )
*  : optimal solution 
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Subscripts and arguments 

 k, m : indices of periods in part related with operation 

 l : index of clusters for periods 

 S :  solved optimal operation problems 

 U :  unsolved optimal operation problems 

 0 :  part related with design 

 1, 2 : periods 1 and 2 

 3 :  aggregated period 

 

Superscripts 

 C :  continuous relaxation problem 

 D :  critical design problem 

  n1 ,   n2 ,   n3 :  numbers of variables in  ! ,  ! , and x, respectively 

  n4 ,   n5 :  numbers of constraints and variables in LP problem, respectively 

 O :  critical operation problem 

 

Equipment symbols 

 BG : gas-fired auxiliary boiler 

 BW : waste heat recovery boiler 

 EP : device for receiving electricity 

 GT : gas turbine generator 

 PC : pump 

 RE : electric compression refrigerator 
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 RS : steam absorption refrigerator 
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 Fig. 10 Effect of strategies for enhancing computation efficiency on evaluation 



33 

criteria (N = 4) 

 (a) Number of generated design candidates 

 (b) Number of solved optimal operation problems 

 (c) Computation time 
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Table 1  Capacities and performance characteristic values of candidates of equipment 

for selection 

 

 

  

Equipment Capacity    /    performance* Candidate
# 1 2 3 4

Max. power output  MW 1.29 1.60 2.00 2.40
Max. steam output  MW 5.69 3.34 4.10 4.57
Power generating efficiency 0.140 0.173 0.169 0.179
Heat recovery efficiency 0.617 0.362 0.347 0.341

# 5 6 7 8
Gas turbine Max. power output  MW 2.93 3.50 3.54 4.36
cogeneration Max. steam output  MW 6.44 6.97 6.89 8.92
unit Power generating efficiency 0.256 0.271 0.273 0.273

Heat recovery efficiency 0.563 0.540 0.531 0.559
# 9 10

Max. power output  MW 5.23 5.32
Max. steam output  MW 8.91 9.05
Power generating efficiency 0.301 0.306
Heat recovery efficiency 0.513 0.521

Gas-fired # 1 2 3 4
auxiliary Max. steam output  MW 5.24 6.55 7.86 9.82
boiler Thermal efficiency 0.92 0.92 0.92 0.92
Electric # 1 2 3 4
compression Max. cooling output  MW 2.82 3.52 4.22 5.28
refrigerator Coefficient of performance 4.57 4.73 4.76 5.04
Steam # 1 2 3 4
absorption Max. cooling output  MW 3.46 5.18 6.91 8.64
refrigerator Coefficient of performance 1.20 1.20 1.20 1.20
* At rated load status
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Table 2  Capital unit costs of equipment, and unit costs for demand and energy charges 

of utilities 

 

 

  

Equipment/utility Unit cost
Gas turbine generator 230.0   yen/kW
Waste heat recovery boiler 9.6   yen/kW
Gas-fired auxiliary boiler 6.6   yen/kW
Electric compression refrigerator 34.4   yen/kW
Steam absorption refrigerator 30.1   yen/kW
Receiving device 56.3   yen/kW

Demand charge
Electricity Energy charge

1740  yen/(kW·month)
10.77  yen/kWh (Summer)

9.79  yen/kWh (Other seasons)
Natural gas Demand charge

Energy charge
2033  yen/( /h·month)

30.88  yen/

×103

×103

×103

×103

×103

×103

m3

m3
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Table 3  Optimal values of capacities and numbers of equipment, and maximum 

demands of utilities 

 

 
  

Equipment/utility Candidate Number Capacity 
Gas turbine cogeneration unit #10 3 15.96 MW 
Gas-fired auxiliary boiler #2 1 6.55 MW 
Electric compression refrigerator #1 1 2.82 MW 
Steam absorption refrigerator #4 4 34.56 MW 
Receiving device – – 9.00 MW 
Electricity maximum demand – – 9.00 MW 
City gas maximum demand – – 5.00 103 m3/h 
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Fig. 1  Hierarchical relationship between design and operation of energy supply system 
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Fig. 2  Solution process by hierarchical MILP method 
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Fig. 3  Enumeration tree for optimization problems related hierarchically 
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Fig. 4  Influence of right side parameter on objective function in LP problem 
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Fig. 5  Configuration of gas turbine cogeneration system 
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(a) Original 

 

 
(b) Averaged (N = 2) 

 

Fig. 6  Energy demands in summer 
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(c) Averaged (N = 3) 

 

 
(d) Averaged (N = 4) 

 

Fig. 6  Energy demands in summer 
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  (a) Conventional optimization calculation 

 

 
  (b) Hierarchical MILP method 

 

Fig. 7  Changes in upper and lower bounds for optimal value of objective function 
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Fig. 8  Effect of number of periods per cluster on computation time 
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Fig. 9  Decrease in lower bound for value of objective function (Case ABCD) 
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(a) Number of generated design candidates 

 

 
(b) Number of solved optimal operation problems 

 

Fig. 10  Effect of strategies for enhancing computation efficiency on evaluation criteria 

(N = 4) 
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(c) Computation time 

 

Fig. 10  Effect of strategies for enhancing computation efficiency on evaluation criteria 

(N = 4) 
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