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Abstract. We consider the problem of determining n4(5, d), the smallest
possible length n for which an [n, 5, d]4 code of minimum distance d over the
field of order 4 exists. We prove the nonexistence of [g4(5, d) + 1, 5, d]4 codes
for d = 31, 47, 48, 59, 60, 61, 62 and the nonexistence of a [g4(5, d), 5, d]4 code
for d = 138 using the geometric method through projective geometries, where
gq(k, d) =

∑k−1
i=0

⌈
d/qi

⌉
. This yields to determine the exact values of n4(5, d)

for these values of d. We also give the updated table for n4(5, d) for all d
except some known cases.

1 Introduction

We denote by Fn
q the vector space of n-tuples over Fq, the field of q elements. An [n, k, d]q

code C is a linear code of length n, dimension k and minimum Hamming weight d over Fq.
The weight of a vector x ∈ Fn

q , denoted by wt(x), is the number of nonzero coordinate
positions in x. The weight distribution of C is the list of numbers Ai which is the number of
codewords of C with weight i. We only consider non-degenerate codes having no coordinate
which is identically zero. A fundamental problem in coding theory is to find nq(k, d), the
minimum length n for which an [n, k, d]q code exists. This problem is sometimes called
the optimal linear codes problem, see [5, 6]. A well-known lower bound on nq(k, d), called
the Griesmer bound, says:

nq(k, d) ≥ gq(k, d) =
k−1∑
i=0

⌈
d/qi

⌉
,

where ⌈x⌉ denotes the smallest integer greater than or equal to x. The values of nq(k, d)
are determined for all d only for some small values of q and k. The optimal linear codes
problem for q = 4 is solved for k ≤ 4 for all d, see [9, 15].

Theorem 1.1. n4(4, d) = g4(4, d) + 1 for d = 3, 4, 7, 8, 13-16, 23-32, 37-44, 77-80 and
n4(4, d) = g4(4, d) for any other d.

As for the case k = 5, the value of n4(5, d) is unknown for 107 values of d, and the
remaining cases look quite difficult because the only progress after the computer-aided
research [1] was the nonexistence of Griesmer codes for d = 287, 288 [10], see also [15]. It
is known that n4(5, d) is equal to g4(5, d)+1 or g4(5, d)+2 for d = 31, 47, 48, 59, 60, 61, 62
and that n4(5, d) is equal to g4(5, d) or g4(5, d) + 1 for d = 138. Our purpose is to prove
the following theorems to determine n4(5, d) for these values of d.

Theorem 1.2. There exists no [g4(5, d) + 1, 5, d]4 code for d = 31, 47, 48, 59, 60, 61, 62.
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Theorem 1.3. There exists no [g4(5, d), 5, d]4 code for d = 138.

We note that our proofs would heavily depend on the extension theorems which are
valid only for linear codes over F4. So, generalizing the nonexistence results to q ≥ 5
seems hopeless. The above theorems determine n4(5, d) for some d as follows.

Corollary 1.4. n4(5, d) = g4(5, d) + 2 for d = 31, 47, 48, 59, 60, 61, 62.

Corollary 1.5. n4(5, d) = g4(5, d) + 1 for d = 138.

For k ≥ 6, we get the following by shortening since gq(k, d) = gq(5, d)+k−5 for k ≥ 6
if d ≤ q5.

Corollary 1.6. n4(k, d) ≥ g4(k, d) + 2 for d = 31, 47, 48, 59, 60, 61, 62 for k ≥ 6.

Corollary 1.7. n4(k, d) ≥ g4(k, d) + 1 for d = 138 for k ≥ 6.

We also give the updated table for n4(5, d) as Table 2. We give the values and bounds
of g = g4(5, d) and n = n4(5, d) for all d except for 249 ≤ d ≤ 256 and for d ≥ 369 which
are the cases satisfying n4(5, d) = g4(5, d). Entries in boldface are given in this paper.

2 Preliminaries

In this section, we give the geometric method through PG(r, q), the projective geometry
of dimension r over Fq, and preliminary results to prove the main results. The 0-flats,
1-flats, 2-flats, 3-flats, (r − 2)-flats and (r − 1)-flats in PG(r, q) are called points, lines,
planes, solids, secundums and hyperplanes, respectively.

Let C be an [n, k, d]q code having no coordinate which is identically zero. The columns
of a generator matrix of C can be considered as a multiset of n points in Σ = PG(k−1, q),
denoted by MC. An i-point is a point of Σ which has multiplicity i in MC. Denote by γ0
the maximum multiplicity of a point from Σ in MC and let Ci be the set of i-points in Σ,
0 ≤ i ≤ γ0. For any subset S of Σ, the multiplicity of S with respect to MC, denoted by
mC(S), is defined as mC(S) =

∑γ0
i=1 i·|S∩Ci|, where |T | denotes the number of elements

in a set T . A line l with t = mC(l) is called a t-line. A t-plane and so on are defined
similarly. Then we obtain the partition Σ =

∪γ0
i=0Ci such that n = mC(Σ) and

n− d = max{mC(π) | π ∈ Fk−2}, (2.1)

where Fj denotes the set of j-flats of Σ. Conversely, such a partition Σ =
∪γ0

i=0 Ci as
above gives an [n, k, d]q code in the natural manner. For an m-flat Π in Σ, we define

γj(Π) = max{mC(∆) | ∆ ⊂ Π, ∆ ∈ Fj} for 0 ≤ j ≤ m.

We denote simply by γj instead of γj(Σ). Then γk−2 = n− d, γk−1 = n. For a Griesmer
[n, k, d]q code, it is known (see [13]) that

γj =

j∑
u=0

⌈
d

qk−1−u

⌉
for 0 ≤ j ≤ k − 1. (2.2)

Let θj be the number of points in a j-flat, i.e., θj = (qj+1 − 1)/(q− 1). An [n, k, d]q code,
which is not necessarily Griesmer, satisfies the following:

γj ≤ γj+1 −
n− γj+1

θk−2−j − 1
, (2.3)
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see [9]. We denote by λs the number of s-points in Σ. When γ0 = 2, we have

λ2 = λ0 + n− θk−1. (2.4)

Denote by ai the number of i-hyperplanes in Σ. The list of ai’s is called the spectrum
of C. We usually use τj’s for the spectrum of a hyperplane of Σ to distinguish from the
spectrum of C. Simple counting arguments yield the following.

Lemma 2.1 ([8]). (a)
n−d∑
i=0

ai = θk−1. (b)
n−d∑
i=1

iai = nθk−2.

(c)
n−d∑
i=2

i(i− 1)ai = n(n− 1)θk−3 + qk−2

γ0∑
s=2

s(s− 1)λs.

When γ0 ≤ 2, the above three equalities yield the following:

n−d−2∑
i=0

(
n− d− i

2

)
ai =

(
n− d

2

)
θk−1 − n(n− d− 1)θk−2

+

(
n

2

)
θk−3 + qk−2λ2. (2.5)

Lemma 2.2 ([16]). Let Π be a w-hyperplane through a t-secundum δ. Then

(a) t ≤ γk−2 − (n− w)/q = (w + qγk−2 − n)/q.

(b) aw = 0 if an [w, k − 1, d0]q code with d0 ≥ w−
⌊
w+qγk−2−n

q

⌋
does not exist, where ⌊x⌋

denotes the largest integer less than or equal to x.

(c) γk−3(Π) =
⌊
w+qγk−2−n

q

⌋
if an [w, k − 1, d1]q code with d1 ≥ w −

⌊
w+qγk−2−n

q

⌋
+ 1 does

not exist.

(d) Let cj be the number of j-hyperplanes through δ other than Π. Then
∑

j cj = q and∑
j

(γk−2 − j)cj = w + qγk−2 − n− qt. (2.6)

(e) For a γk−2-hyperplane Π0 with spectrum (τ0, . . . , τγk−3
), τt > 0 holds if w + qγk−2 −

n− qt < q.

Lemma 2.3 ([7]). Let Π be an i-hyperplane and let CΠ be an [i, k − 1, d0] code generated

by MC(Π). If any γk−2-hyperplane has no t-secundum with t =
⌊
i+qγk−2−n

q

⌋
, then d0 ≥

i− t+ 1.

The code obtained by deleting the same coordinate from each codeword of C is called
a punctured code of C. If there exists an [n+1, k, d+1]q code which gives C as a punctured
code, C is called extendable. It is known that the spectrum of a [49, 4, 36]4 code is either

(a1, a9, a13) = (1, 16, 68) or (a5, a9, a13) = (3, 13, 69)

and that every [48, 4, 35]4 code is extendable [12]. The possible spectra of [48, 4, 35]4 codes
are given as follows.
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Table 1: The spectra of some [n, 4, d]4 codes.
parameters possible spectra reference
[4, 4, 1]4 (a0, a1, a2, a3) = (27, 36, 18, 4) [11]
[5, 4, 2]4 (a0, a1, a2, a3) = (20, 35, 20, 10) [11]
[10, 4, 6]4 (a0, a1, a2, a3, a4) = (5, 20, 15, 20, 25) [3]

(a0, a1, a2, a3, a4) = (6, 16, 21, 16, 26)
[14, 4, 9]4 (a0, a1, a2, a3, a4, a5) = (3, 14, 1, 12, 33, 22) [1]
[15, 4, 10]4 (a0, a1, a3, a4, a5) = (2, 15, 5, 30, 33) [1]
[16, 4, 11]4 (a0, a1, a4, a5) = (1, 16, 20, 48) [1]
[17, 4, 12]4 (a1, a5) = (17, 68) [2]
[23, 4, 16]4 (a3, a7) = (28, 57) [1]

(a1, a3, a5, a7) = (6, 10, 18, 51)
(a1, a3, a5, a7) = (4, 12, 20, 49)

[30, 4, 21]4 (a1, a2, a3, a4, a6, a7, a8, a9) = (1, 2, 4, 2, 11, 12, 22, 31) [1]
(a2, a3, a5, a6, a7, a8, a9) = (4, 4, 4, 5, 12, 28, 28)
(a1, a2, a3, a6, a7, a8, a9) = (1, 1, 7, 6, 23, 14, 33)
(a1, a2, a3, a4, a5, a6, a7, a8, a9) = (1, 2, 4, 2, 2, 7, 12, 26, 29)
(a1, a3, a6, a7, a8, a9) = (1, 8, 9, 20, 12, 35)
(a0, a3, a6, a7, a8, a9) = (1, 8, 5, 24, 15, 32)

[31, 4, 22]4 (a1, a3, a7, a9) = (1, 8, 29, 47) [1]
[48, 4, 35]4 (a0, a9, a12, a13) = (1, 16, 20, 48) Lemma 2.4

(a1, a8, a9, a12, a13) = (1, 3, 13, 18, 50)
(a4, a5, a8, a9, a12, a13) = (1, 2, 1, 12, 19, 50)
(a5, a8, a9, a12, a13) = (3, 3, 10, 18, 51)

Lemma 2.4. The spectrum of a [48, 4, 35]4 code is one of the following:
(a) (a0, a9, a12, a13) = (1, 16, 20, 48)
(b) (a1, a8, a9, a12, a13) = (1, 3, 13, 18, 50)
(c) (a4, a5, a8, a9, a12, a13) = (1, 2, 1, 12, 19, 50)
(d) (a5, a8, a9, a12, a13) = (3, 3, 10, 18, 51).

Proof Let C be a Griesmer [48, 4, 35]4 code. Since C is extendable, the spectrum of C
satisfies ai = 0 for i ̸∈ {0, 1, 4, 5, 8, 9, 12, 13} and (2.5) gives

39a0 + 33a1 + 18a4 + 14a5 + 5a8 + 3a9 = 87. (2.7)

Assume that C is extendable to a code with spectrum (a1, a9, a13) = (1, 16, 68). Then,
the spectrum of C satisfies a0 + a1 = 1, a8 + a9 = 16, a12 + a13 = 68. Hence, the
possible solutions for (2.6) are (c9, c13) = (1, 3) and c12 = 4 for (i, t) = (0, 0), and a0 > 0
implies (a). Assume a1 > 0. Since the possible solutions for (2.6) are (c8, c13) = (1, 3)
and (c9, c12, c13) = (1, 1, 2) for (i, t) = (1, 0); (c12, c13) = (1, 3) for (i, t) = (1, 1), we have
a1 = 1, a9 = 16 − a8, a12 = a9 + 5 = 21 − a8, a13 = 68 − a12 = 47 + a8. Hence we get
(b) from (2.7). Assuming that C is extendable to a code with another spectrum, one can
obtain (c) and (d) using (2.6) and (2.7) similarly.

To prove Theorems 1.2 and 1.3, we employ the following results.

Theorem 2.5 ([14]). Let C be an [n, k, d]4 code with odd d, k ≥ 3. Then C is extendable
if Ai = 0 for all i ≡ 2 (mod 4) or if i ≡ −d (mod 4).

Theorem 2.6 ([17]). Let C be an [n, k, d]4 code with k ≥ 3, d ≡ 2 (mod 4) such that
Ai = 0 for all i ≡ 1 (mod 4). Then C is extendable if there is a codeword c ∈ C with
wt(c) ≡ 3 (mod 4).

3 Proof of Theorem 1.2

Lemma 3.1. There exists no [84, 5, 61]4 code.
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Proof Let C be a putative [84, 5, 61]4 code, where 84 = g4(5, 61) + 1. Then, we have
γ0 ≤ 2, γ1 ≤ 3, γ2 ≤ 7, γ3 = 23 from (2.3). Hence λ2 = 0 or 1. Let ∆23 be a 23-solid.
From Table 1, the spectrum of ∆23 is one of

(A) (τ3, τ7) = (28, 57),
(B) (τ1, τ3, τ5, τ7) = (6, 10, 18, 51),
(C) (τ1, τ3, τ5, τ7) = (4, 12, 20, 49).

Hence, there is no 0-solid in Σ = PG(4, 4) since a j-plane on ∆23 satisfies j ∈ {1, 3, 5, 7}.
If there exists a 2-solid, then one can find a 2-plane in the solid. Setting (w, t) = (2, 2),
any solution of (2.6) satisfies c23 > 0, which contradicts the fact that a 23-solid has no
2-plane. If there exists a 3-solid, then one can find a 3-plane there as well. But (2.6) has
no solution for (w, t) = (3, 3), a contradiction. If there exists a 7-solid, then it corresponds
to a [7, 4, 4]4 code by Lemma 2.2 (a), which does not exist by Theorem 1.1. If there exists
a 19-solid, then it corresponds to a [19, 4, 14]4 code by Lemma 2.3, which does not exist
by the Griesmer bound. We can also prove aj = 0 for j = 6, 8-11, 18. Thus, one can
show ai = 0 for all i /∈ {1, 4, 5, 12-17, 20-23} using Lemmas 2.2, 2.3, the Griesmer bound
and Theorem 1.1 since an i-solid ∆i can not meet ∆23 in a t-plane with t ∈ {0, 2, 4, 6}.
We refer to this procedure as the first sieve in the proofs of the nonexistence results.

From (2.5), we get

21∑
i=1

(
23− i

2

)
ai = 64λ2 + 2399. (3.1)

For any w-solid through a t-plane, (2.6) gives∑
j

(23− j)cj = w + 8− 4t (3.2)

with
∑

j cj = 4.

Suppose a1 > 0 and let ∆1 be a 1-solid. Then, the spectrum of ∆1 is (τ0, τ1) = (64, 21),
and we have a1 = 1 and ai = 0 for 1 < i < 14 from (3.2). Setting w = 1, the maximum
possible contributions of cj’s to the LHS of (3.1) are (c17, c22) = (1, 3) for t = 0 since
c23 = 0; (c20, c21, c23) = (1, 1, 2) for t = 1. Estimating the LHS of (3.1) for the spectrum
of ∆1, we get

64λ2 + 2399 ≤ 15τ0 + (3 + 1)τ1 + 231 = 1275,

a contradiction. Hence a1 = 0. One can similarly prove a4 = a5 = 0 using the spectra for
a 4-plane and a 5-plane from Table 1.

Suppose that a14 > 0 and let ∆14 be a 14-solid. Then, the spectrum of ∆14 is
(τ0, τ1, τ2, τ3, τ4, τ5) = (3, 14, 1, 12, 33, 22) from Table 1. Setting w = 14, the maximum
possible contributions of cj’s to the LHS of (3.1) are (c12, c14, c22) = (1, 1, 2) for t = 0;
(c12, c16, c23) = (1, 1, 2) for t = 1; (c12, c22) = (1, 3) for t = 2; (c13, c23) = (1, 3) for t = 3;
(c20, c22) = (1, 3) for t = 4; (c21, c23) = (1, 3) for t = 5 since we have c23 = 0 when t is
even. Estimating the LHS of (3.1) for the spectrum of ∆14, we get

64λ2 + 2399 ≤ (55 + 36)τ0 + (55 + 21)τ1 + 55τ2 + 45τ3 + 3τ4 + τ5 + 36 = 2089,

a contradiction. Hence a14 = 0.
Next, we suppose a12 > 0 and let ∆12 be a 12-solid. Then, ∆12 corresponds to a

[12, 4, 7]4 code. It is known from [1] that there are exactly 275 inequivalent such codes
and 53 possible spectra (τ0, τ1, τ2, τ3, τ4, τ5) for ∆12. We omit the list of them to save
space in this paper, which is available from the author upon request. Setting w = 12, the
maximum possible contributions of cj’s to the LHS of (3.1) are (c12, c16, c22) = (1, 1, 2) for
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t = 0; (c13, c17, c23) = (1, 1, 2) for t = 1; (c15, c21, c22) = (1, 1, 2) for t = 2; (c15, c23) = (1, 3)
for t = 3; c22 = 4 for t = 4; c23 = 4 for t = 5 since we have c23 = 0 when t is even.
Estimating the LHS of (3.1) for the possible spectra of ∆12, we get

64λ2 + 2399 ≤ (55 + 21)τ0 + (45 + 15)τ1 + (28 + 1)τ2 + 28τ3 + 0τ4 + 0τ5 + 55 ≤ 2351,

a contradiction. Hence a12 = 0.
Thus, ai > 0 implies i ∈ {13, 15, 16, 17, 20, 21, 22, 23}. Setting w = 23, the maximum

possible contributions of cj’s to the LHS of (3.1) are (c13, c16, c23) = (2, 1, 1) for t = 1;
(c13, c15, c22, c23) = (1, 1, 1, 1) for t = 3; (c13, c22, c23) = (1, 1, 2) for t = 5; (c20, c23) = (1, 3)
for t = 7. Estimating the LHS of (3.1) for the possible spectra (A)-(C) for ∆23, we get

64λ2 + 2399 ≤ (45 · 2 + 21)τ1 + (45 + 28)τ3 + 45τ5 + 3τ7 ≤ 2367,

giving a contradiction. This completes the proof.

Lemma 3.2. There exists no [82, 5, 60]4 code.

Proof Let C be a putative [82, 5, 60]4 code, where 82 = g4(5, 60) + 1. Note that γ1 ≤ 3
and γ0 ≤ 2 from (2.3). Hence we have λ2 = 0 or 1. By the first sieve, we have ai = 0 for
all i /∈ {0, 1, 2, 10, 14-18, 22}. For any w-solid through a t-plane, (2.6) gives∑

j

(22− j)cj = w + 6− 4t (3.3)

with
∑

j cj = 4. For (i, t) = (1, 1), (15, 5), (16, 5), (17, 5), the equation (3.3) has no

solution. Thus, a1 = a15 = a16 = a17 = 0. Then, for (i, t) = (0, 0), the equation (3.3) has
no solution again. Hence a0 = 0. From the three equalities in Lemma 2.1, we get

190a2 + 66a10 + 28a14 + 6a18 = 2142 + 64λ2. (3.4)

Suppose a2 > 0 and let ∆2 be a 2-solid. Then, the spectrum of ∆2 is (τ0, τ1, τ2) =
(48, 32, 5), and we have a2 = 1 and a10 = 0 from (3.3). Setting w = 2 in (3.3), the
maximum possible contributions of cj’s to the LHS of (3.4) are (c14, c22) = (1, 3) for t = 0;
(c18, c22) = (1, 3) for t = 1; c22 = 4 for t = 2. Estimating the LHS of (3.4) for the spectrum
of ∆2, we get

2142 + 64λ2 ≤ 28τ0 + 6τ1 + 190 = 1726,

a contradiction. Hence a2 = 0. One can prove a10 = a14 = 0 similarly using the spectra
for a 10-plane and a 14-plane from Table 1. Note that we need to rule out a possible
14-plane before showing that a10 = 0. Now, we have ai = 0 for all i ̸∈ {18, 22}. Then,
from the three equalities in Lemma 2.1, we get a18 = 153, a22 = 231, λ2 = 61905/64, a
contradiction. This completes the proof.

Lemma 3.3. There exists no [81, 5, 59]4 code.

Proof Let C be a putative [81, 5, 59]4 code, where 81 = g4(5, 59) + 1. We get γ1 ≤ 3 and
γ0 ≤ 2 from (2.3), whence λ2 = 0 or 1. By the first sieve, we have ai = 0 for all i /∈ {0, 1,
2, 5, 9, 10, 13-18, 21, 22}. For any w-solid through a t-plane, (2.6) gives∑

j

(22− j)cj = w + 7− 4t (3.5)
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with
∑

j cj = 4. From (2.5), we get

18∑
i=0

(
22− i

2

)
ai = 2226 + 64λ2. (3.6)

Setting w = t = 0 in (3.5), the maximum possible contributions of cj’s to the LHS of (3.6)
are (c15, c22) = (1, 3). Estimating the LHS of (3.6) for the spectrum of a 0-solid, we get

2226 + 64λ2 ≤ 21τ0 + 231 = 2016,

a contradiction. Hence a0 = 0. We can show that a1 = 0, similarly.
Next, suppose a16 > 0 and let ∆16 be a 16-solid. From Table 1, ∆16 has spectrum

(τ0, τ1, τ4, τ5) = (1, 16, 20, 48). We also suppose that a5 > 0 and let ∆5 be a 5-solid. Then,
a5 = 1 and aj = 0 for other j < 10 from (3.5). Note that ∆5 and ∆16 meets in a 0-plane
or a 1-plane. Assume that ∆5 ∩∆16 is a 1-plane. Setting w = 16 in (3.5), the maximum
possible contributions of cj’s to the LHS of (3.6) are (c10, c13, c21) = (1, 1, 2) for t = 0;
(c5, c21, c22) = (1, 2, 1) if c5 > 0 for t = 1; (c10, c15, c22) = (1, 1, 2) if c5 = 0 for t = 1;
(c15, c22) = (1, 3) for t = 4; (c21, c22) = (3, 1) for t = 5. Estimating the LHS of (3.6) for
the spectrum of ∆16, we get

2226 + 64λ2 ≤ 102τ0 + 136 + 87(τ1 − 1) + 21τ4 + 15 = 1978,

a contradiction. Assuming that ∆5∩∆16 is a 0-plane, one can get a contradiction as well.
Hence a16 > 0 implies a5 = 0. Similarly, one can show that a16 > 0 implies a2 = 0. Setting
w = 16 in (3.5) again, the maximum possible contributions of cj’s to the LHS of (3.6) are
(c9, c13, c21, c22) = (1, 1, 1, 1) for t = 0; (c9, c16, c22) = (1, 1, 2) for t = 1; (c15, c22) = (1, 3)
for t = 4; (c21, c22) = (3, 1) for t = 5. Estimating the LHS of (3.6) for the spectrum of
∆16, we get

2226 + 64λ2 ≤ 114τ0 + 93τ1 + 21τ4 + 15 = 2037,

a contradiction. Thus, a16 = 0.
Hence, C has no codeword whose weight is congruent to 1 mod 4. Then, C is extendable

by Theorem 2.5, which contradicts Lemma 3.2. This completes the proof.

It is known that there are exactly 20 inequivalent [18, 4, 12]4 codes [1]. We need the
following information from [1] about such codes.

Lemma 3.4. Every [18, 4, 12]4 code with a0 = a1 = 0 has spectrum (a2, a4, a6) = (21, 24, 40).

Lemma 3.5. There exists no [66, 5, 48]4 code.

Proof Let C be a putative [66, 5, 48]4 code, where 66 = g4(5, 48) + 1. Since γ1 ≤ 3 and
γ0 ≤ 2 from (2.3), we have λ2 = 0 or 1. We obtain ai = 0 for all i /∈ {0, 1, 2, 10, 14-18}
by the first sieve. For any w-solid through a t-plane, (2.6) gives∑

j

(18− j)cj = w + 6− 4t (3.7)

with
∑

j cj = 4. From (2.5), we get

16∑
i=0

(
18− i

2

)
ai = 1848 + 64λ2. (3.8)
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Suppose a0 > 0 and let ∆0 be a 0-solid. Then, the spectrum of ∆0 is τ0 = 85, and we
have a0 = 1 and aj = 0 for other j < 14 from (3.7). Setting w = t = 0 in (3.7), the
maximum possible contributions of cj’s to the LHS of (3.8) are (c14, c16, c18) = (1, 1, 2) for
t = 0. Estimating the LHS of (3.8) for the spectrum of ∆0, we get

1848 + 64λ2 ≤ 7τ0 + 153 = 748,

a contradiction. Hence a0 = 0. One can prove a1 = a2 = a10 = 0 similarly. Now, we have
ai = 0 for all i ̸∈ {14, 15, . . . , 18}. Let ∆ be a 18-solid. Setting w = 18, the equation (3.7)
has no solution for t = 0, 1. Hence, ∆ has spectrum (τ2, τ4, τ6) = (21, 24, 40) by Lemma
3.4. Setting w = 18 in (3.7), the maximum possible contributions of cj’s to the LHS of
(3.8) are c14 = 4 for t = 2; (c14, c18) = (2, 2) for t = 4; c18 = 4 for t = 6. Estimating the
LHS of (3.8) for the spectrum of ∆, we get

1848 + 64λ2 ≤ 24τ2 + 12τ4 = 792,

a contradiction. This completes the proof.

Lemma 3.6. There exists no [65, 5, 47]4 code.

Proof Let C be a putative [65, 5, 47]4 code, where 65 = g4(5, 47) + 1. We get γ1 ≤ 3 and
γ0 ≤ 2 from (2.3), whence λ2 = 0 or 1. We have ai = 0 for all i /∈ {0, 1, 2, 5, 9, 10, 13-18}
by the first sieve. For any w-solid through a t-plane, (2.6) gives∑

j

(22− j)cj = w + 7− 4t (3.9)

with
∑

j cj = 4. From (2.5), we get

16∑
i=0

(
18− i

2

)
ai = 1928 + 64λ2. (3.10)

Setting w = t = 0 in (3.9), the maximum possible contributions of cj’s to the LHS of
(3.10) are (c13, c16, c18) = (1, 1, 2). Estimating the LHS of (3.10) for the spectrum of a
0-solid, we get

1928 + 64λ2 ≤ 11τ0 + 153 = 1088,

a contradiction. Hence a0 = 0. We can show that a2 = 0, similarly.
Next, suppose a15 > 0 and let ∆15 be a 15-solid. From Table 1, ∆15 has spectrum

(τ0, τ1, τ3, τ4, τ5) = (2, 15, 5, 30, 33). We also suppose that a1 > 0 and let ∆1 be a 1-solid.
Then, a1 = 1 and aj = 0 for other j < 10 from (3.9). Note that ∆1 and ∆15 meets in a
0-plane or a 1-plane. Assume that ∆1 ∩ ∆15 is a 0-plane. Setting w = 15 in (3.9), the
maximum possible contributions of cj’s to the LHS of (3.10) are (c1, c13, c18) = (1, 1, 2) if
c1 > 0 for t = 0; (c10, c13, c17) = (2, 1, 1) if c1 = 0 for t = 0; (c10, c16, c18) = (2, 1, 1) for
t = 1; (c10, c16, c18) = (1, 1, 2) for t = 3; (c13, c17, c18) = (1, 1, 2) for t = 4; (c16, c18) = (1, 3)
for t = 5. Estimating the LHS of (3.10) for the spectrum of ∆15, we get

1928 + 64λ2 ≤ 146 + 66(τ0 − 1) + 57τ1 + 29τ3 + 10τ4 + τ5 + 3 = 1548,

a contradiction. Assuming that ∆1∩∆15 is a 1-plane, one can get a contradiction as well.
Hence a15 > 0 implies a1 = 0. Similarly, one can show that a15 > 0 implies a5 = 0. Setting
w = 15 in (3.9) again, the maximum possible contributions of cj’s to the LHS of (3.10)
are (c9, c14, c18) = (2, 1, 1) for t = 0; (c9, c18) = (2, 2) for t = 1; (c9, c17, c18) = (1, 1, 2) for
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t = 3; (c13, c17, c18) = (1, 1, 2) for t = 4; (c16, c18) = (1, 3) for t = 5. Estimating the LHS
of (3.10) for the spectrum of ∆15, we get

1928 + 64λ2 ≤ 78τ0 + 72τ1 + 36τ3 + 10τ4 + τ5 + 3 = 1752,

a contradiction. Thus, a15 = 0.
Hence, C has no codeword whose weight is congruent to 1 mod 4. Then, C is extendable

by Theorem 2.5, which contradicts Lemma 3.5. This completes the proof.

The following result is known, see [4].

Lemma 3.7. There exists no [45, 5, 32]4 code.

Lemma 3.8. There exists no [44, 5, 31]4 code.

Proof Let C be a putative [44, 5, 31]4 code. It follows from Theorem 1.1 that ai = 0 for
all i /∈ {0, 1, 2, 4, 5, 8, 9, 10, 12, 13} by the first sieve. This implies that C has no codeword
whose weight is congruent to 1 mod 4. Hence, C is extendable by Theorem 2.5, which
contradicts Lemma 3.7.

Now, Theorem 1.2 follows from Lemmas 3.1-3.8.

4 Proof of Theorem 1.3

Theorem 4.1 ([12]). There exists no [187, 5, 139]4 code.

Since n4(5, 138) = 186, Theorem 1.3 follows from the following.

Lemma 4.2. There exists no [186, 5, 138]4 code.

Proof Let C be a putative Griesmer [186, 5, 138]4 code. We have γ0 = 1, γ1 = 4, γ2 = 13,
γ3 = 48 from (2.2). Let ∆ be a 48-solid. From Lemma 2.4, the spectrum of ∆ is one of

(A) (τ0, τ9, τ12, τ13) = (1, 16, 20, 48),
(B) (τ1, τ8, τ9, τ12, τ13) = (1, 3, 13, 18, 50),
(C) (τ4, τ5, τ8, τ9, τ12, τ13) = (1, 2, 1, 12, 19, 50),
(D) (τ5, τ8, τ9, τ12, τ13) = (3, 3, 10, 18, 51).

Thus, a j-plane on ∆ satisfies j ∈ {0, 1, 4, 5, 8, 9, 12, 13}. By the first sieve, we have ai = 0
for all i /∈ {0, 1, 10, 14-17, 26-28, 30, 31, 42-44, 46-48}. From (2.5), we get

46∑
i=0

(
48− i

2

)
ai = 2883. (4.1)

For any w-solid through a t-plane, (2.6) gives∑
j

(48− j)cj = w + 6− 4t (4.2)

with
∑

j cj = 4.
Suppose a0 > 0 and let ∆0 be a 0-solid. Then, the spectrum of ∆0 is τ0 = 85, and we

have a0 = 1 and ai = 0 for 0 < i < 42 from (4.2). Setting w = 0, the maximum possible
contributions of cj’s to the LHS of (4.1) are (c42, c48) = (1, 3) for t = 0. Estimating the
LHS of (4.1) for the spectrum of ∆0, we get

2883 ≤ 15τ0 + 1128 = 2403,

9



a contradiction. Hence a0 = 0. One can prove a1 = a10 = a14 = 0 similarly, see Table 1
for the possible spectra for a 10-solid and a 14-solid.

Suppose a30 > 0 and let ∆30 be a 30-solid. Then, the spectrum (τ0, τ1, . . . , τ9) of
∆30 is one of the six spectra in Table 1 for [30, 4, 21]4. Setting w = 30, the maximum
possible contributions of cj’s to the LHS of (4.1) are (c15, c46, c47, c48) = (1, 1, 1, 1) for
t = 0; (c16, c48) = (1, 3) for t = 1; (c26, c44, c47) = (1, 1, 2) for t = 2; (c27, c47) = (1, 3) for
t = 3; (c28, c48) = (1, 3) for t = 4; (c42, c44, c48) = (2, 1, 1) for t = 5; (c42, c44, c47) = (1, 1, 2)
for t = 6; (c43, c47) = (1, 3) for t = 7; (c44, c48) = (1, 3) for t = 8 and c48 = 4 for t = 9 since
we have c48 = 0 when t = 2, 3, 6, 7. Estimating the LHS of (4.1) for each of the possible
spectra of ∆30, we get

2883 ≤ (528 + 1)τ0 + 496τ1 + (231 + 6)τ2 + 210τ3 + 190τ4
+(30 + 6)τ5 + (15 + 6)τ6 + 10τ7 + 6τ8 + 153 ≤ 2838,

a contradiction. Hence a30 = 0.
Next, we suppose a17 > 0 and let ∆17 be a 17-solid. Then, the spectrum of ∆17 is

(τ1, τ5) = (17, 68) from Table 1. Setting w = 17, the maximum possible contributions of
cj’s to the LHS of (4.1) are (c31, c46, c48) = (1, 1, 2) for t = 1; (c46, c47, c48) = (1, 1, 2) for
t = 5. Estimating the LHS of (4.1) for the spectrum of ∆17, we get

2883 ≤ (136 + 1)τ1 + τ5 + 465 = 2862,

a contradiction again. Hence a17 = 0.
Thus, ai > 0 implies i ∈ {15, 16, 26, 27, 28, 31, 42, 43, 44, 46, 47, 48}, which implies that

Ai = 0 for all i ≡ 1 (mod 4). Since C is not extendable by Theorem 4.1, we have Ai = 0
for all i ≡ 3 (mod 4) by Theorem 2.6, whence ai = 0 for all odd i. Therefore, ai = 0 for
all i /∈ {16, 26, 28, 42, 44, 46, 48}.

Suppose a16 > 0 and let ∆16 be a 16-solid. Then, the spectrum of ∆16 is (τ0, τ1, τ4, τ5) =
(1, 16, 20, 48) from Table 1. Setting w = 16, the maximum possible contributions of
cj’s to the LHS of (4.1) are (c26, c48) = (1, 3) for t = 0; (c42, c48) = (3, 1) for t = 1;
(c42, c48) = (1, 3) for t = 4; (c46, c48) = (1, 3) for t = 5. Estimating the LHS of (4.1) for
the spectrum of ∆16, we get

2883 ≤ 231τ0 + 45τ1 + 15τ4 + τ5 + 496 = 1795,

a contradiction. Hence a16 = 0.
Finally, setting w = 48, the maximum possible contributions of cj’s to the LHS of (4.1)

are (c26, c42, c44) = (2, 1, 1) for t = 0; (c26, c42, c48) = (2, 1, 1) for t = 1; (c28, c42) = (1, 3)
for t = 4; (c26, c42, c48) = (1, 2, 1) for t = 5; (c26, c48) = (1, 3) for t = 8; (c42, c48) = (3, 1)
for t = 9; (c42, c48) = (1, 3) for t = 12; (c46, c48) = (1, 3) for t = 13. Estimating the LHS
of (4.1) for the possible spectra (A)-(D) for ∆48, we get

2883 ≤ (462 + 15 + 6)τ0 + (462 + 15)τ1 + (190 + 45)τ4 + (231 + 30)τ5
+231τ8 + 45τ9 + 15τ12 + τ13 ≤ 2247,

giving a contradiction. This completes the proof.
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Table 2. Values and bounds for n = n4(5, d) with g = g4(5, d)

d g n d g n d g n
1 5 5 41 57 58-59 81 111 111-112
2 6 6 42 58 59-60 82 112 112-113
3 7 8 43 59 60-61 83 113 113-114
4 8 9 44 60 61-62 84 114 114-115
5 10 10 45 62 63-64 85 116 117
6 11 11 46 63 64-65 86 117 118
7 12 13 47 64 66 87 118 119
8 13 14 48 65 67 88 119 120
9 15 16 49 68 69 89 121 122-123
10 16 17 50 69 70 90 122 123-124
11 17 19 51 70 71 91 123 124-125
12 18 20 52 71 72 92 124 125-126
13 20 21 53 73 74 93 126 127-128
14 21 22 54 74 75 94 127 128-129
15 22 23 55 75 76 95 128 129-130
16 23 24 56 76 77 96 129 130-131
17 26 27 57 78 79-80 97 132 133-134
18 27 28 58 79 80-81 98 133 134-135
19 28 29 59 80 82 99 134 135-136
20 29 30 60 81 83 100 135 136-137
21 31 32 61 83 85 101 137 138
22 32 33 62 84 86 102 138 139-140
23 33 34 63 85 87 103 139 140-141
24 34 35 64 86 88 104 140 141-142
25 36 37 65 90 90-91 105 142 143-144
26 37 38 66 91 91-92 106 143 144-145
27 38 39 67 92 92-93 107 144 145-146
28 39 40 68 93 93-94 108 145 146-147
29 41 42 69 95 95-96 109 147 148-149
30 42 43 70 96 96-97 110 148 149-150
31 43 45 71 97 98 111 149 150-151
32 44 46 72 98 99 112 150 151-152
33 47 48 73 100 101 113 153 154
34 48 49 74 101 102 114 154 155
35 49 50 75 102 103-104 115 155 156-157
36 50 51 76 103 104-105 116 156 157-158
37 52 53 77 105 106 117 158 159
38 53 54 78 106 107 118 159 160
39 54 55 79 107 108 119 160 161
40 55 56 80 108 109 120 161 162
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Table 2 (continued)

d g n d g n d g n
121 163 164 161 217 218 201 270 270
122 164 165 162 218 219 202 271 271
123 165 166-167 163 219 220 203 272 272
124 166 167-168 164 220 221 204 273 273
125 168 169 165 222 223 205 275 276
126 169 170 166 223 224 206 276 277
127 170 171 167 224 225 207 277 278
128 171 172 168 225 226 208 278 279
129 175 175-176 169 227 228 209 281 281
130 176 176-177 170 228 229 210 282 282
131 177 177-178 171 229 230 211 283 283
132 178 178-179 172 230 231 212 284 284
133 180 180-181 173 232 233 213 286 286
134 181 181-182 174 233 234 214 287 287
135 182 182-183 175 234 235 215 288 289
136 183 183-184 176 235 236 216 289 290
137 185 185-186 177 238 239 217 291 292
138 186 187 178 239 240 218 292 293
139 187 188 179 240 241 219 293 294
140 188 189 180 241 242 220 294 295
141 190 191 181 243 244 221 296 297
142 191 192 182 244 245 222 297 298
143 192 193 183 245 246 223 298 299
144 193 194 184 246 247 224 299 300
145 196 197 185 248 249 225 302 302
146 197 198 186 249 250 226 303 303
147 198 199 187 250 251 227 304 304
148 199 200 188 251 252 228 305 305
149 201 202 189 253 253 229 307 307
150 202 203 190 254 254 230 308 308
151 203 204 191 255 255 231 309 309
152 204 205 192 256 256 232 310 310
153 206 207 193 260 260 233 312 312
154 207 208 194 261 261 234 313 313
155 208 209 195 262 262 235 314 314
156 209 210 196 263 263 236 315 315
157 211 212 197 265 265 237 317 317
158 212 213 198 266 266 238 318 318
159 213 214 199 267 267 239 319 319
160 214 215 200 268 268 240 320 320
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Table 2 (continued)

d g n d g n d g n
241 323 323 289 388 388-389 329 441 441-442
242 324 324 290 389 389-390 330 442 442-443
243 325 325 291 390 390-391 331 443 443-444
244 326 326 292 391 391-392 332 444 444-445
245 328 328 293 393 393-394 333 446 446-447
246 329 329 294 394 394-395 334 447 447-448
247 330 330 295 395 395-396 335 448 449
248 331 331 296 396 396-397 336 449 450
257 346 346 297 398 399 337 452 452-453
258 347 347 298 399 400 338 453 453-454
259 348 348 299 400 401 339 454 454-455
260 349 349 300 401 402 340 455 455-456
261 351 351 301 403 404 341 457 457-458
262 352 352 302 404 405 342 458 458-459
263 353 353 303 405 406 343 459 459-460
264 354 354 304 406 407 344 460 460-461
265 356 356 305 409 410 345 462 462-463
266 357 357 306 410 411 346 463 463-464
267 358 358 307 411 412 347 464 465
268 359 359 308 412 413 348 465 466
269 361 361 309 414 415 349 467 468
270 362 362 310 415 416 350 468 469
271 363 363 311 416 417 351 469 470
272 364 364 312 417 418 352 470 471
273 367 367-368 313 419 420 353 473 473-474
274 368 368-369 314 420 421 354 474 474-475
275 369 369-370 315 421 422 355 475 476
276 370 370-371 316 422 423 356 476 477
277 372 372-373 317 424 425 357 478 479
278 373 373-374 318 425 426 358 479 480
279 374 374-375 319 426 427 359 480 481
280 375 375-376 320 427 428 360 481 482
281 377 377-378 321 431 431-432 361 483 484
282 378 378-379 322 432 432-433 362 484 485
283 379 379-380 323 433 433-434 363 485 486
284 380 380-381 324 434 434-435 364 486 487
285 382 382-383 325 436 436-437 365 488 489
286 383 383-384 326 437 437-438 366 489 490
287 384 385 327 438 438-439 367 490 491
288 385 386 328 439 439-440 368 491 492
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