Construction of new Griesmer codes of dimension 5

メタデータ	言語：jpn
	出版者：
	公開日：2019－09－20
	キーワード（Ja）：
	キーワード（En）： 作成者：Inoue，Yuto，Maruta，Tatsuya メールアドレス： 所属：
URL	http：／／hdl．handle．net／10466／00016554

Construction of new Griesmer codes of dimension 5

Yuto Inoue, Tatsuya Maruta ${ }^{1}$
Department of Mathematical Sciences, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan

Keywords: linear codes, divisible codes, projective dual, projective geometry

Abstract

We construct Griesmer $[n, 5, d]_{q}$ codes for $2 q^{4}-3 q^{3}+1 \leq d \leq$ $2 q^{4}-3 q^{3}+q^{2}$ and for $3 q^{4}-5 q^{3}+q^{2}+1 \leq d \leq 3 q^{4}-5 q^{3}+2 q^{2}$ for every $q \geq 3$ using some geometric methods such as projective dual and geometric puncturing.

1 Introduction

Let \mathbb{F}_{q}^{n} denote the vector space of n-tuples over \mathbb{F}_{q}, the field of q elements. The weight of a vector $\boldsymbol{x} \in \mathbb{F}_{q}^{n}$, denoted by $w t(\boldsymbol{x})$, is the number of nonzero coordinate positions in \boldsymbol{x}. An $[n, k, d]_{q}$ code \mathcal{C} is a k dimensional subspace of \mathbb{F}_{q}^{n} with minimum weight $d=\min \{w t(\boldsymbol{c})>$ $0 \mid \boldsymbol{c} \in \mathcal{C}\}$ over \mathbb{F}_{q}. The weight distribution of \mathcal{C} is the list of numbers A_{i} which is the number of codewords of \mathcal{C} with weight i. A fundamental problem in coding theory is to find $n_{q}(k, d)$, the minimum length n for which an $[n, k, d]_{q}$ code exists for given q, k, d, see $[5,6]$. The Griesmer bound is a well-known lower bound on the length n :

$$
n \geq g_{q}(k, d)=\sum_{i=0}^{k-1}\left\lceil d / q^{i}\right\rceil
$$

where $\lceil x\rceil$ denotes the smallest integer greater than or equal to $x . \mathcal{C}$ is called Griesmer if it attains the Griesmer bound, i.e., $n=g_{q}(k, d)$. The values of $n_{q}(k, d)$ are determined for all d only for some small values of q and $k[4,14]$. For the case $k=5$, it is known that $n_{q}(5, d)=g_{q}(5, d)$ for $q^{4}-2 q^{2}+1 \leq d \leq q^{4}, 2 q^{4}-2 q^{3}-q^{2}+1 \leq d \leq 2 q^{4}+q^{2}-q$ and $d \geq 3 q^{4}-4 q^{3}+1$ for all $q[9,12]$, see also [3]. The main aim of this paper is to construct new Griesmer codes of dimension 5, which are already known for $q \leq 4$ but not for $q \geq 5$, as follows.

Theorem 1.1. There exist $\left[g_{q}(5, d), 5, d\right]_{q}$ codes for $2 q^{4}-3 q^{3}+1 \leq d \leq 2 q^{4}-3 q^{3}+q^{2}$ for all q.

Theorem 1.2. There exist $\left[g_{q}(5, d), 5, d\right]_{q}$ codes for $3 q^{4}-5 q^{3}+q^{2}+1 \leq d \leq 3 q^{4}-5 q^{3}+2 q^{2}$ for all q.

Corollary 1.3. $n_{q}(5, d)=g_{q}(5, d)$ for $2 q^{4}-3 q^{3}+1 \leq d \leq 2 q^{4}-3 q^{3}+q^{2}$ for all q.
Corollary 1.4. $n_{q}(5, d)=g_{q}(5, d)$ for $3 q^{4}-5 q^{3}+q^{2}+1 \leq d \leq 3 q^{4}-5 q^{3}+2 q^{2}$ for all q.

[^0]
2 Construction methods through projective geometry

We denote by $\operatorname{PG}(r, q)$ the projective geometry of dimension r over \mathbb{F}_{q}. The 0-flats, 1flats, 2-flats, 3 -flats and $(r-1)$-flats are called points, lines, planes, solids and hyperplanes, respectively. We denote by \mathcal{F}_{j} the set of j-flats of $\mathrm{PG}(r, q)$ and by θ_{j} the number of points in a j-flat, i.e., $\theta_{j}=\left(q^{j+1}-1\right) /(q-1)$.

Let \mathcal{C} be an $[n, k, d]_{q}$ code having no coordinate which is identically zero. Then, the columns of a generator matrix of \mathcal{C} can be considered as a multiset of n points in $\Sigma=$ $\mathrm{PG}(k-1, q)$ denoted by $\mathcal{M}_{\mathcal{C}}$. We see linear codes from this geometrical point of view. An i-point is a point of Σ which has multiplicity i in $\mathcal{M}_{\mathcal{C}}$. Denote by γ_{0} the maximum multiplicity of a point from Σ in $\mathcal{M}_{\mathcal{C}}$. Let C_{i} be the set of i-points in $\Sigma, 0 \leq i \leq \gamma_{0}$, and let $\lambda_{i}=\left|C_{i}\right|$, where $\left|C_{i}\right|$ denotes the number of elements in a set C_{i}. For any subset S of Σ, the multiplicity of S, denoted by $m_{\mathcal{C}}(S)$, is defined as $m_{\mathcal{C}}(S)=\sum_{i=1}^{\gamma_{0}} i \cdot\left|S \cap C_{i}\right|$. Then we obtain the partition $\Sigma=\bigcup_{i=0}^{\gamma_{0}} C_{i}$ such that $n=m_{\mathcal{C}}(\Sigma)$ and

$$
n-d=\max \left\{m_{\mathcal{C}}(\pi) \mid \pi \in \mathcal{F}_{k-2}\right\}
$$

Conversely such a partition $\Sigma=\bigcup_{i=0}^{\gamma_{0}} C_{i}$ as above gives an $[n, k, d]_{q}$ code in the natural manner. A hyperplane H with $t=m_{\mathcal{C}}(H)$ is called a t-hyperplane. A t-line, a t-plane and t-solid are defined similarly. Denote by a_{i} the number of i-hyperplanes in Σ. The list of the values a_{i} is called the spectrum of \mathcal{C}, which can be calculated from the weight distribution by $a_{i}=A_{n-i} /(q-1)$ for $0 \leq i \leq n-d$. An $[n, k, d]_{q}$ code is called m-divisible if all codewords have weights divisible by an integer $m>1$.
Lemma 2.1 ([16]). Let \mathcal{C} be an m-divisible $[n, k, d]_{q}$ code with $q=p^{h}$, p prime, whose spectrum is

$$
\left(a_{n-d-(w-1) m}, a_{n-d-(w-2) m}, \cdots, a_{n-d-m}, a_{n-d}\right)=\left(\alpha_{w-1}, \alpha_{w-2}, \cdots, \alpha_{1}, \alpha_{0}\right),
$$

where $m=p^{r}$ for some $1 \leq r<h(k-2)$ satisfying $\lambda_{0}>0$ and

$$
\bigcap_{H \in \mathcal{F}_{k-2}, m_{\mathcal{C}}(H)<n-d} H=\emptyset .
$$

Then there exists a t-divisible $\left[n^{*}, k, d^{*}\right]_{q}$ code \mathcal{C}^{*} with $t=q^{k-2} / m, n^{*}=\sum_{j=0}^{w-1} j \alpha_{j}=$ $n t q-\frac{d}{m} \theta_{k-1}, d^{*}=((n-d) q-n) t$ whose spectrum is

$$
\left(a_{n^{*}-d^{*}-\gamma_{0}}, a_{n^{*}-d^{*}-\left(\gamma_{0}-1\right) t}, \cdots, a_{n^{*}-d^{*}-t}, a_{n^{*}-d^{*}}\right)=\left(\lambda_{\gamma_{0}}, \lambda_{\gamma_{0}-1}, \cdots, \lambda_{1}, \lambda_{0}\right) .
$$

The condition " $\bigcap_{H \in \mathcal{F}_{k-2}, m_{\mathcal{C}}(H)<n-d} H=\emptyset$ " is needed to guarantee that \mathcal{C}^{*} has dimension k although it was missing in Lemma 5.1 of [16]. Note that a generator matrix for \mathcal{C}^{*} is given by considering $(n-d-j m)$-hyperplanes as j-points in the dual space Σ^{*} of Σ for $0 \leq j \leq w-1$ [16]. \mathcal{C}^{*} is called a projective dual of \mathcal{C}, see also [2] and [6].
Lemma 2.2 ([13, 15]). Let \mathcal{C} be an $[n, k, d]_{q}$ code and let $\cup_{i=0}^{\gamma_{0}} C_{i}$ be the partition of $\Sigma=\operatorname{PG}(k-1, q)$ obtained from \mathcal{C}. If $\cup_{i \geq 1} C_{i}$ contains a t-flat Δ and if $d>q^{t}$, then there exists an $\left[n-\theta_{t}, k, d^{\prime}\right]_{q}$ code \mathcal{C}^{\prime} with $d^{\prime} \geq d-q^{t}$.
The code \mathcal{C}^{\prime} in Lemma 2.2 can be constructed from \mathcal{C} by removing the t-flat Δ from the multiset $\mathcal{M}_{\mathcal{C}}$. In general, the method for constructing new codes from a given $[n, k, d]_{q}$ code by deleting the coordinates corresponding to some geometric object in $\operatorname{PG}(k-1, q)$ is called geometric puncturing [13].

3 Proof of Theorems

A set S of s points in $\operatorname{PG}(r, q), r \geq 2$, is called an s-arc if no $r+1$ points are on the same hyperplane, see [7] and [8] for arcs. When $q \geq r$, one can take a normal rational curve as a $(q+1)$-arc, see Theorem 27.5.1 in [8]. We first assume $k \geq 4$ and $q \geq k-2$. Let H be a hyperplane of $\Sigma=\operatorname{PG}(k-1, q)$. Take a $(q+1)$-arc $K=\left\{P_{0}, P_{1}, \ldots, P_{q}\right\}$ in H and a line $l_{0}=\left\{P_{0}, Q_{1}, \ldots, Q_{q}\right\}$ of Σ not contained in H meeting H at the point P_{0}. Let l_{i} be the line joining P_{i} and Q_{i} for $1 \leq i \leq q$. Setting $C_{1}=\left(\cup_{i=1}^{q} l_{i}\right) \backslash l_{0}, C_{q-1}=\left\{P_{0}\right\}$, $C_{0}=\Sigma \backslash\left(C_{1} \cup C_{q-1}\right)$, we get the following.
Lemma 3.1. For $k \geq 4, q \geq k-2$, a q-divisible $\left[q^{2}+q-1, k, q^{2}-(k-3) q\right]_{q}$ code exists.
From now on, let $k=5$ and take a normal rational curve as K with

$$
P_{0}(1,0,0,0,0), P_{i}\left(1, \alpha^{i}, \alpha^{2 i}, \alpha^{3 i}, 0\right), P_{q}(0,0,0,1,0)
$$

in $H=[0,0,0,0,1]$ and the line l_{0} with

$$
Q_{i}\left(1,0,0,0, \alpha^{i}\right) \text { for } 1 \leq i \leq q-1, Q_{q}(0,0,0,0,1)
$$

where $\left[a_{0}, a_{1}, \ldots, a_{4}\right]$ stands for the hyperplane in $\operatorname{PG}(4, q)$ defined by the equation $a_{0} x_{0}+$ $a_{1} x_{1}+\cdots+a_{4} x_{4}=0$ and α is a primitive element of \mathbb{F}_{q}. Let $H_{i j}$ be the solid containing l_{i} and l_{j} for $1 \leq i<j \leq q$. Take the point $Q(0,1,0,0,1)$ and the plane $\delta_{0}=\left\langle l_{0}, Q\right\rangle$, where $\left\langle\chi_{1}, \chi_{2}, \cdots\right\rangle$ denotes the smallest flat containing $\chi_{1}, \chi_{2}, \cdots$. For any point $P(a, b, 0,0, c) \in$ δ_{0}, the solid $H_{i q}=\left[0,-\alpha^{i}, 1,0,0\right]$ contains P if and only if $b=0$, i.e., $P \in l_{0}$ for $1 \leq i \leq q-1$. Similarly, the solid $H_{i j}=\left[0, \alpha^{i+j},-\alpha^{i}-\alpha^{j}, 1,0\right]$ contains P if and only if $P \in l_{0}$ for $1 \leq i<j \leq q-1$. Thus, $H_{i j} \cap \delta_{0}=l_{0}$ for $1 \leq i<j \leq q$, and no ($3 q-1$)-solid contains Q. Hence, adding Q as a q-point, we get a q-divisible $\left[\overline{q^{2}}+2 q-1,5, q^{2}-q\right]_{q}$ code, say \mathcal{C}_{1}. The spectrum of \mathcal{C}_{1} can be derived as follows. The ($3 q-1$)-solids consist of the ($\binom{q}{2}$ solids $H_{i j}, 1 \leq i<j \leq q$, the q solids $\left\langle\delta_{0}, l_{i}\right\rangle, 1 \leq i \leq q$, the q^{2} solids through one of the planes $\left\langle Q, l_{i}\right\rangle$ other than $\left\langle\delta_{0}, l_{i}\right\rangle, 1 \leq i \leq q$, and the q^{2} solids through the line $\left\langle Q, P_{0}\right\rangle$ not containing δ_{0}. Hence $a_{3 q-1}=\binom{q}{2}+2 q^{2}+q$. From two equalities $a_{q-1}+a_{2 q-1}+a_{3 q-1}=\theta_{4}$ and $2 a_{q-1}+a_{2 q-1}=2 q^{4}-q^{3}+1$, we get the spectrum of \mathcal{C}_{1} as follows.
Lemma 3.2. There exists a q-divisible $\left[q^{2}+2 q-1,5, q^{2}-q\right]_{q}$ code \mathcal{C}_{1} with spectrum

$$
\left(a_{q-1}, a_{2 q-1}, a_{3 q-1}\right)=\left(\binom{q}{2}+q^{4}-2 q^{3}+q^{2}, 3 q^{3}-3 q^{2}+q+1,\binom{q}{2}+2 q^{2}+q\right)
$$

For a geometrical object S in Σ, we denote by S^{*} the corresponding object in the dual space Σ^{*} of Σ. Considering the $(q-1)$-solids, $(2 q-1)$-solids and $(3 q-1)$-solids in Σ as 2 -points, 1 -points and 0 -points in Σ^{*} respectively, we get the following q^{2}-divisible code \mathcal{C}_{1}^{*} as a projective dual of \mathcal{C}_{1}.

Lemma 3.3. There exists a q^{2}-divisible $\left[2 q^{4}-q^{3}+1,5,2 q^{4}-3 q^{3}+q^{2}\right]_{q}$ code \mathcal{C}_{1}^{*}.
Lemma 3.4. The multiset $\mathcal{M}_{\mathcal{C}_{1}^{*}}$ contains $q-1$ skew lines.

Proof. Recall that the 0 -points for \mathcal{C}_{1}^{*} are the $(3 q-1)$-solids for \mathcal{C}_{1}. Since l_{0} is contained in $H_{i j}$ and δ_{0} in Σ, the plane l_{0}^{*} contains exactly $\binom{q}{2}+q 0$-points in Σ^{*} corresponding to the solids $H_{i j}, 1 \leq i<j \leq q$, and the solids $\left\langle\delta_{0}, l_{i}\right\rangle, 1 \leq i \leq q$. Hence the number of i-points with $i \geq 1$ on l_{0}^{*} is $\theta_{2}-\binom{q}{2}-q \geq q-1$. On the other hand, the plane l_{0}^{*} is contained in the solids P_{0}^{*} and $Q_{1}^{*}, \ldots, Q_{q}^{*}$ in Σ^{*}, and the 0-points in Σ^{*} corresponding to the q^{2} solids through the line $\left\langle Q, P_{0}\right\rangle$ not containing δ_{0} in Σ are contained in P_{0}^{*}. Since the set of 0 -points in Σ^{*} corresponding to the q^{2} solids through one of the planes $\left\langle Q, l_{i}\right\rangle$ other than $\left\langle\delta_{0}, l_{i}\right\rangle, 1 \leq i \leq q$, in Σ meets Q_{i}^{*} in a line on the plane l_{i}^{*}, one can take $q-1$ skew lines in the solid Q_{1}^{*} containing no 0 -point in Σ^{*}.

Next, we construct another q-divisible code from the first assumption: H is a hyperplane of $\Sigma=\mathrm{PG}(k-1, q)$ with $k \geq 4, q \geq k-2, K=\left\{P_{0}, P_{1}, \ldots, P_{q}\right\}$ is a $(q+1)$ arc in $H, l_{0}=\left\{P_{0}, Q_{1}, \ldots, Q_{q}\right\}$ is a line of Σ not contained in H meeting H at the point P_{0}, and $l_{i}=\left\langle P_{i}, Q_{i}\right\rangle, 1 \leq i \leq q$. Setting $C_{1}=\left(\cup_{i=1}^{q-1} l_{i}\right) \backslash l_{0}, C_{q-1}=\left\{P_{0}, Q_{q}\right\}$, $C_{q}=\left\{P_{q}\right\}, C_{0}=\Sigma \backslash\left(C_{1} \cup C_{q-1} \cup C_{q}\right)$, we get the following.

Lemma 3.5. For $k \geq 4, q \geq k-2$, a q-divisible $\left[q^{2}+2 q-2, k, q^{2}-(k-3) q\right]_{q}$ code exists.
Let $k=5$ again and take the $(q+1)$-arc and the line l_{0} as for \mathcal{C}_{1}. Similarly to the situation for constructing \mathcal{C}_{1}, no $(4 q-2)$-solid contains δ_{0}. Hence, we get a q-divisible $\left[q^{2}+3 q-2,5, q^{2}-q\right]_{q}$ code by adding Q as a q-point, say \mathcal{C}_{2}. The $(4 q-2)$-solids consist of the $\binom{q}{2}$ solids $H_{i j}, 1 \leq i<j \leq q$, the q solids $\left\langle\delta_{0}, l_{i}\right\rangle, 1 \leq i \leq q$, the $q-1$ solids $\left\langle P_{q}, Q, l_{i}\right\rangle$ with $1 \leq i \leq q-1$, the q solids through the plane $\left\langle Q, l_{q}\right\rangle$ not containing l_{0}, and the q solids through the plane $\left\langle Q, P_{0}, P_{q}\right\rangle$ not containing l_{0}. Hence $a_{4 q-2}=\binom{q}{2}+4 q-1$. The ($3 q-2$)-solids consist of the q solids through the plane $\left\langle l_{0}, l_{i}\right\rangle$ not containing Q and any other $l_{j} \neq l_{i}$ for $1 \leq i \leq q$, the solid through δ_{0} not containing $l_{i}, 1 \leq i \leq q$, the $q^{2}-q$ solids through the line $\left\langle P_{0}, P_{q}\right\rangle$ not containing Q and Q_{q}, the $q^{2}-q$ solids through the line $\left\langle P_{0}, Q\right\rangle$ not containing l_{0} and P_{q}, the $q^{2}-q$ solids through the line l_{q} not containing Q and P_{0}, the $q^{2}-q$ solids through the line $\left\langle Q, Q_{q}\right\rangle$ not containing l_{0} and P_{q}, the $(q-1)^{2}$ solids through the plane $\left\langle P_{q}, l_{i}\right\rangle$ not containing Q and $Q_{q}, 1 \leq i \leq q-1$, the $(q-1)^{2}$ solids through the plane $\left\langle Q, l_{i}\right\rangle$ not containing l_{0} and $P_{q}, 1 \leq i \leq q-1$, and the $(q-1)^{2}$ solids through the plane $\left\langle Q, P_{q}, Q_{i}\right\rangle$ not containing l_{0} and $l_{i}, 1 \leq i \leq q-1$. Hence $a_{3 q-2}=7 q^{2}-9 q+4$. From two equalities $a_{q-2}+a_{2 q-2}+a_{3 q-2}+a_{4 q-2}=\theta_{4}$ and $3 a_{q-2}+2 a_{2 q-2}+a_{3 q-2}=3 q^{4}-2 q^{3}+1$, we get the following.
Lemma 3.6. There exists a q-divisible $\left[q^{2}+3 q-2,5, q^{2}-q\right]_{q}$ code \mathcal{C}_{2} with spectrum

$$
\begin{aligned}
& \left(a_{q-2}, a_{2 q-2}, a_{3 q-2}, a_{4 q-2}\right)=\left(q^{4}-4 q^{3}+6 q^{2}-4 q+1,\right. \\
& \left.\quad 5 q^{3}-12 q^{2}+10 q-3-\binom{q}{2}, 7 q^{2}-9 q+4,\binom{q}{2}+4 q-1\right) .
\end{aligned}
$$

Considering the $((4-j) q-2)$-solids in Σ as j-points in Σ^{*} for $j=0,1,2,3$, we get the following q^{2}-divisible code \mathcal{C}_{2}^{*} as a projective dual of \mathcal{C}_{2}.

Lemma 3.7. There exists a q^{2}-divisible $\left[3 q^{4}-2 q^{3}+1,5,3 q^{4}-5 q^{3}+2 q^{2}\right]_{q}$ code \mathcal{C}_{2}^{*}.
Lemma 3.8. The multiset $\mathcal{M}_{\mathcal{C}_{2}^{*}}$ contains $q-1$ skew lines.

Proof. Note that the 0 -points for \mathcal{C}_{2}^{*} are the $(4 q-2)$-solids for \mathcal{C}_{2}. From the same argument with that in the proof of Lemma 3.4, the plane l_{0}^{*} contains exactly $\binom{q}{2}+q 0$-points in Σ^{*}, and the number of i-points with $i \geq 1$ on l_{0}^{*} is $\theta_{2}-\binom{q}{2}-q \geq q-1$. Recall that the plane l_{0}^{*} is contained in the solids P_{0}^{*} and $Q_{1}^{*}, \ldots, Q_{q}^{*}$ in Σ^{*}. The 0 -points in Σ^{*} corresponding to the q solids through the plane $\left\langle Q, P_{0}, P_{q}\right\rangle$ not containing l_{0} in Σ are contained in P_{0}^{*}, and the 0 -points in Σ^{*} corresponding to the q solids through the plane $\left\langle Q, l_{q}\right\rangle$ not containing l_{0} in Σ are contained in Q_{q}^{*}. Since the set of 0 -points in Σ^{*} corresponding to the $q-1$ solids $\left\langle P_{q}, Q, l_{i}\right\rangle$ with $1 \leq i \leq q-1$ in Σ meets Q_{i}^{*} in a point on the plane l_{i}^{*}, one can take $q-1$ skew lines in the solid Q_{1}^{*} containing no 0 -point in Σ^{*}.

It follows from Lemmas 3.4 and 3.8 that applying Lemma 2.2 repeatedly (for $t=1$), starting with the code \mathcal{C}_{1}^{*} or \mathcal{C}_{2}^{*}, we get the following.

Lemma 3.9. There exist $\left[2 q^{4}-q^{3}+1-s(q+1), 5,2 q^{4}-3 q^{3}+q^{2}-s q\right]_{q}$ codes for $1 \leq s \leq q-1$.
Lemma 3.10. There exist $\left[3 q^{4}-2 q^{3}+1-s(q+1), 5,3 q^{4}-5 q^{3}+2 q^{2}-s q\right]_{q}$ codes for $1 \leq s \leq q-1$.

Lemmas 3.9 and 3.10 provide the codes needed in Theorems 1.1 and 1.2 respectively, when d is divisible by q. The rest of the codes required for the theorem can be obtained by puncturing these divisible codes.

Remark 1. As the projective duals of the q-divisible codes in Lemmas 3.1 and 3.5, one can obtain q^{k-3}-divisible Griesmer codes of dimension k with minimum weights $d=$ $(k-3) q^{k-1}-2 q^{k-2}+q^{k-3}$ and $(k-2) q^{k-1}-4 q^{k-2}+2 q^{k-3}$. Griesmer codes with the same parameters are known to exist, see [1], [11] for $k=4$ and [10] for $k \geq 5$.

Acknowledgments

The research of the second author is partially supported by JSPS KAKENHI Grant Number JP16K05256.

References

[1] N. Bono, T. Maruta, Some new 4-dimensional linear codes, in: Proc. 8th Intern. Workshop on Optimal Codes and Related Topics, Sofia, Bulgaria, 2017, pp. 37-42.
[2] A.E. Brouwer, M. van Eupen, The correspondence between projective codes and 2weight codes, Des. Codes Cryptogr. 11 (1997) 261-266.
[3] E.J. Cheon, T. Kato, S.J. Kim, On the minimum length of some linear codes of dimension 5, Des. Codes Cryptogr. 37 (2005) 421-434.
[4] M. Grassl, Tables of linear codes and quantum codes (electronic table, online). http://www.codetables.de/.
[5] R. Hill, Optimal linear codes, in: Mitchell C. (ed.) Cryptography and Coding II, pp. 75-104. Oxford Univ. Press, Oxford, 1992.
[6] R. Hill, E. Kolev, A survey of recent results on optimal linear codes, in: Holroyd F.C. et al (ed.) Combinatorial Designs and their Applications, pp.127-152. Chapman and Hall/CRC Press Research Notes in Mathematics CRC Press. Boca Raton, 1999.
[7] J.W.P. Hirschfeld, Projective Geometries over Finite Fields, Second edition, Clarendon Press, Oxford, 1998.
[8] J.W.P. Hirschfeld, J.A. Thas, General Galois Geometries, Clarendon Press, Oxford, 1991.
[9] Y. Kageyama, T. Maruta, On the construction of Griesmer codes of dimension 5, Des. Codes Cryptogr. 75 (2015) 277-280.
[10] Y. Kageyama, T. Maruta, On the geometric constructions of optimal linear codes, Des. Codes Cryptogr. 81 (2016) 469-480.
[11] T. Maruta, On the minimum length of q-ary linear codes of dimension four, Discrete Math. 208/209 (1999) 427-435.
[12] T. Maruta, On the nonexistence of q-ary linear codes of dimension five, Des. Codes Cryptogr. 22 (2001) 165-177.
[13] T. Maruta, Construction of optimal linear codes by geometric puncturing, Serdica J. Computing 7 (2013) 73-80.
[14] T. Maruta, Griesmer bound for linear codes over finite fields, http://www.mi.s.osakafu-u.ac.jp/~maruta/griesmer/.
[15] T. Maruta, Y. Oya, On optimal ternary linear codes of dimension 6, Adv. Math. Commun. 5 (2011) 505-520.
[16] M. Takenaka, K. Okamoto, T. Maruta, On optimal non-projective ternary linear codes, Discrete Math. 308 (2008) 842-854.

[^0]: ${ }^{1}$ Corresponding author.
 E-mail addresses: syb01016@edu.osakafu-u.ac.jp (Y. Inoue), maruta@mi.s.osakafu-u.ac.jp (T. Maruta)

