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ABSTRACT
An algebraic nonequilibrium wall-stress model for large eddy simulation is discussed. The ordinary differential equation (ODE) derived from
the thin-layer approximated momentum equation, including the temporal, convection, and pressure gradient terms, is considered to form
the wall-stress model. Based on the concept of the analytical wall function (AWF) for Reynolds-averaged turbulence models, the profile of the
subgrid scale (SGS) eddy viscosity inside the wall-adjacent cells is modeled as a two-segment piecewise linear variations. This simplification
makes it possible to analytically integrate the ODE near the wall to algebraically give the wall shear stress as the wall boundary condition for the
momentum equation. By applying such integration to the wall-normal velocity component, the methodology to avoid the log-layer mismatch
is also presented. Coupled with the standard Smagorinsky model, the proposed SGS-AWF shows good performance in turbulent channel
flows at Reτ = 1000–5000 irrespective of the grid resolutions. This SGS-AWF is also confirmed to be superior to the traditional equilibrium
wall-stress model in a turbulent backward-facing step flow.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5099658., s

I. INTRODUCTION

Owing to the recent development and widespread use of high-
performance computing systems, industrial computational fluid
dynamics (CFD) engineers are now able to choose large eddy sim-
ulation (LES) that spatiotemporally resolves grid scale (GS) eddies
for their routine work. However, since physical variables such as
velocities significantly change in turbulent boundary layers, we need
special care for turbulence simulation. Chapman1 estimated the
required numbers of grid points for LES of turbulent boundary
layers with and without wall modeling and emphasized the impor-
tance of wall modeling for LES. Choi and Moin2 revisited this
issue and estimated the required numbers (N) of computational
grid points for direct numerical simulation (DNS), wall-resolved
LES (WRLES), and wall-modeled LES (WMLES) as N ∼ Re37/14,
N ∼ Re13/7, and N ∼ Re, respectively. Tsubokura3 referenced their
work and stated that it was impossible to perform LES for full-
scale industrial flows such as flows around the whole bodies of
road vehicles and urban buildings without wall-modeling even by a

ten-petaflops supercomputer. For this reason, to simulate full-scale
industrial turbulent flows, the WMLES is essential even by the near
future computing facility.

There are two main categories in the WMLES method
such as the hybrid LES/Reynolds-averaged Navier-Stokes (RANS)
method4–6 and the wall-stress model (WSM).7,8 The hybrid
LES/RANS method solves a RANS turbulence model in the near-
wall regions that are embedded in the LES domain, while the WSM
gives wall boundary conditions to the LES that is applied to the
whole flow domain. Since the WSM does not require zoning the
computational domain in principle, it makes the simulation algo-
rithm easier, particularly for flows in complex geometries. The most
classical and simplest WSM gives the wall shear stress algebraically
assuming that the logarithmic law of the velocity9,10 is valid locally
and instantaneously. However, such an assumption is not convinced
when it is applied to complex flows.

Accordingly, the majority of the recently practiced WSMs
assume the thin boundary-layer equation (TBLE) for the wall-
parallel velocity ui as

Phys. Fluids 31, 075109 (2019); doi: 10.1063/1.5099658 31, 075109-1

Published under license by AIP Publishing

https://scitation.org/journal/phf
https://doi.org/10.1063/1.5099658
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/1.5099658
https://crossmark.crossref.org/dialog/?doi=10.1063/1.5099658&domain=pdf&date_stamp=2019-July-29
https://doi.org/10.1063/1.5099658
https://orcid.org/0000-0001-9313-1816
mailto:suga@me.osakafu-u.ac.jp
https://doi.org/10.1063/1.5099658


Physics of Fluids ARTICLE scitation.org/journal/phf

∂ui
∂t

+
∂uiuj
∂xj

+
1
ρ
∂p
∂xi
=

∂

∂y
[(ν + νt)

∂ui
∂y
], (1)

where ρ, p, ν, and νt are the fluid density, pressure, kinematic viscos-
ity, and turbulent viscosity, respectively. For the turbulent viscosity,
the mixing length model (MLM) with a damping function such as

νt/ν = κy+
[1 − exp(−y+

/A+
)]

2 (2)

is usually applied.7,8,11–13 In the above model, κ and A+ are the von
Kármán and model constants, respectively. (Usually, κ = 0.41 and
A+ = 17 are applied.) The wall-normal distance y is normalized
by the viscous scale: y+ = uτy/ν, where uτ is the friction velocity.
Although Eq. (1) includes the temporal, convection, and pressure
gradient terms, the most common WSM is the equilibrium model
that assumes that the lhs of Eq. (1) is zero. The resultant ordinary dif-
ferential equation (ODE) is solved using a 1D finite volume method
over nonuniformly stretched grids between the wall and the first
off-wall node points of the LES mesh.7

Although the equilibrium wall-stress modeling is rather sim-
ple and robust, there is no question that nonequilibrium wall-stress
modeling, which considers some or all of the terms on the lhs
of Eq. (1), is potentially more accurate. Hoffmann and Benocci14

suggested using the pressure gradient and temporal terms for the
wall-stress modeling. Wang and Moin12 systematically examined
the effects of retaining the pressure gradient term and all the terms
of Eq. (1). They confirmed that the RANS-type eddy viscosity in
Eq. (1) should be reduced when the convective terms were retained
to account for the unresolved part of the Reynolds stress. For this
reason, Cabot and Moin11 suggested a dynamically adjusted von
Kármán constant across the inner layer to match the RANS and
LES Reynolds stresses. This practice was followed by Kawai and
Larsson15 and Park and Moin.16

As discussed by Kawai and Larsson,13 modeling the wall stress
using the first off-wall grid point LES data often produces the log-
layer mismatch (LLM) of the mean velocity profile. Although some
earlier studies17–22 tried to remove it by modifying the subgrid scale
(SGS) models, Kawai and Larsson13 pointed out that it came from
the lack of the fine vortex scale information near the walls. Since
the near-wall fine vortices are inevitably unresolved in the WMLES,
the LES velocities at the first off-wall node points are contaminated
by the truncation and SGS modeling errors. Consequently, the inte-
gration using such erroneous outer boundary velocities in the WSM
produces under- or overestimated wall stresses. Their remedy to this
anomaly was to abandon the first off-wall grid point data and use the
data at a little more distant matching locations from the wall for the
wall-stress modeling.

However, Yang et al.23 argued that although the Kawai-Larson
(K-L) treatment was useful for its robustness, ensuring the proper
matching locations was almost impossible at the meshing stage for
complex geometries with unstructured elements. Moreover, they
commented that the K-L treatment unphysically detached the wall
stress from the closest LES velocity, failing to properly account
for sharp turning angles or skewed velocity profiles. Correspond-
ingly, Yang et al.23,24 proposed a local wall-stress model using the
time-filtered information taken from the wall-adjacent LES solution
to remove the LLM. This method introduces an effective under-
relaxation of the velocity used in the wall model.

Although there are several other recent attempts on the wall-
stress modeling,16,25 many of them are not simple enough for imple-
mentation and require to set near-wall modeling layers. Moreover,
to the best of the authors’ knowledge, there has been no recent
attempt to develop an algebraic WSM that does not require to embed
such near-wall layers. However, when we change our concern to
the RANS turbulence modeling, there have been similar attempts to
improve the wall functions (WFs). Note that in the RANS society, a
WSM is equivalent to a wall function (WF). Since the validity of the
logarithmic law becomes ambiguous in complex flows, during the
last two decades, several research groups revisited the wall-function
approach and attempted to develop new schemes.26–30 Among them,
Craft et al.26 proposed a new wall-function strategy that integrated
the simplified TBLE analytically over the control volumes adjacent to
the wall, assuming a near-wall variation of the eddy viscosity. Since
it takes account for the convection and pressure gradient terms, it
is categorized in the nonequilibrium model. The resulting “algebraic
expressions” of the wall shear stress and other quantities are applied
to solving the transport equations. This strategy is called the analyt-
ical wall function (AWF) and has been improved and extended so
that it can be applicable to complex turbulent flow fields.31–35 For
example, the present authors’ group extended the range of capabil-
ity of the model to rough walls31 and high Prandtl/Schmidt number
turbulent scalar fields.32,34

Therefore, this study tries to develop an “algebraic” nonequi-
librium WSM for LES based on the rich experience of RANS
AWFs. We call such an algebraic nonequilibrium model the “SGS-
AWF” hereafter. While we develop the SGS-AWF, we have found
how to avoid the LLM quite easily, and thus, this paper is orga-
nized as follows: in Sec. II, a general description of the numer-
ical scheme and the development of SGS-AWF are given. The
model validation in several high Reynolds number turbulent chan-
nel flows followed by the validation in a turbulent backward-facing
step flow is discussed in Sec. III. Finally, the conclusions are sum-
marized in Sec. IV, followed by the discussion on the LLM in the
Appendix.

II. NUMERICAL SCHEMES
The CFD code used in this study is an in-house finite difference

solver of three-dimensional incompressible filtered Navier-Stokes
equations by the SMAC scheme.36 It applies the second-order cen-
tral differencing to the convection, diffusion, and pressure gradient
terms on a staggered grid and the second-order Adams-Bashforth
method to the temporal term.

A. Large eddy simulation
LES decomposes the turbulent flow into grid scale (GS) eddies

that are larger than the grid size and the SGS eddies that are smaller
than the grid size by the filtering operator ⟨⋅⟩. The decomposition of
ui is described as

ui = ⟨ui⟩ + ũi, (3)
where ũi is the SGS velocity. The governing equations of the LES for
an incompressible flow are thus

∂⟨ui⟩
∂xi

= 0, (4)
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∂⟨ui⟩
∂t

+ ⟨uj⟩
∂⟨ui⟩
∂xj

= −
1
ρ
∂⟨p⟩
∂xi

+
∂

∂xj
(ν

∂⟨ui⟩
∂xj
) −

∂τij
∂xj

, (5)

where
τij = ⟨uiuj⟩ − ⟨ui⟩⟨uj⟩. (6)

The SGS stress τij is modeled by the eddy viscosity model as

τij = −2νsgsSij +
2
3
δijksgs, (7)

where νsgs, ksgs, and Sij are the SGS eddy viscosity, the SGS turbulence

energy, and the strain tensor which is Sij = 1
2(

∂⟨ui⟩
∂xj

+ ∂⟨uj⟩
∂xi
). To the

turbulent viscosity, the standard Smagorinsky model37 is applied as

νsgs = (csfsΔ)2√2SijSji, (8)

where fs = 1 − exp(−y+
/As) and Δ = (Δ1Δ2Δ3)

1/3. The grid spac-
ing in the xi direction is Δi, and the model coefficients applied are
cs = 0.1 and As = 25.

B. Algebraic nonequilibrium wall-stress model:
SGS-AWF

TBLE (1) for LES can be rewritten as

∂

∂y
[(ν + νsgs)

∂⟨ui⟩
∂y
] = [

∂⟨ui⟩
∂t

+
∂⟨ui⟩⟨uj⟩

∂xj
+

1
ρ
∂⟨p⟩
∂xi
]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
CUi

. (9)

If the rhs of Eq. (9) can be presumed to be constant in the wall-
normal y-direction inside a wall-adjacent cell, this assumption which
is a common practice in the finite volume method leads to

∂

∂y
[(ν + νsgs)

∂⟨ui⟩
∂y
] = CP

Ui , (10)

where the superscript (or subscript) “P” denotes a value at the first
off-wall node point P. When the near-wall profile of the SGS eddy
viscosity νsgs is modeled as Eq. (2), one can integrate Eq. (10) as an
ordinary differential equation (ODE) to obtain the filtered veloc-
ity profile. However, since the mixing length model of Eq. (2) is
based on the friction velocity, its reliability becomes ambiguous
near stagnation and reattachment points where the friction velocity
vanishes.

In the RANS AWF,26 instead of using the friction velocity, a
one-equation-like expression of the eddy viscosity

νt = cμ
√
kℓε (11)

was applied. In this form, νt , cμ, ℓε, and k are the eddy viscos-
ity, model constant, dissipation length scale, and turbulent kinetic
energy, respectively. Since the dissipation length scale in the bound-
ary layer was modeled38 as ℓε = cℓy,

νt = cμcℓ
√
ky. (12)

With the assumption that k does not change drastically in the
equilibrium boundary layer, the eddy viscosity may be expressed as

νt/ν ≃ cμcℓ
√
kPy/ν = αy∗, (13)

where y∗ = y
√
kP/ν and α = cμcℓ. Accordingly, the RANS AWF

introduces the normalized wall-normal distance y∗ using the square

FIG. 1. Near-wall grid arrangement and the SGS eddy viscosity. The solid
curve represents the actual distribution profile of νsgs, while the red dashed
line represents the linear assumption. The y-intercept of the red linear dashed
line is yv .

root of turbulent kinetic energy as a velocity scale instead of the
friction velocity to avoid anomaly at the stagnation or reattach-
ing points. Then, to consider viscous sublayer effects, instead of
introducing a damping function, the profile of νt was modeled as

νt/ν = max[0,α(y∗ − y∗v )], (14)

where yv corresponds to the viscous sublayer thickness. Note that
in the equilibrium boundary layer, the relations between ℓε and
the mixing length lm and between y+ and y∗ can be derived39 as
ℓε ≃ lmc−3/4

μ and y+
≃ c1/4

μ y∗, respectively. Here, the model coeffi-
cients chosen were cμ = 0.09, cℓ = 2.55, and y∗v = 10.7.

Based on the scale similarity assumption between the GS and
SGS turbulence, νsgs may be also modeled as

νsgs = cμ
√
ksgsℓε. (15)

Then, broadly following the above-described strategy, the profile of
the SGS eddy viscosity inside a wall-adjacent cell is modeled as a two-
segment piecewise linear variations, as shown in Fig. 1, although the
actual profile of the SGS eddy viscosity is not that simple and should
depend on the grid size. The equation for such a modeled SGS eddy
viscosity profile shown in Fig. 1 can be written as

νsgs/ν = max[0,α(y#
− y#

v)], (16)

FIG. 2. Profile of y#
v against the time scale ratio, rT , of the SGS to GS turbulence.
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TABLE I. Geometric parameters of the wall shear stress by Eq. (25).

D E

0 ≤ yv ≤ yn y#
v + 1

α ln[1 + α(y#
n − y#

v)] −
y#

n−y
#
v

α −
(y#

v)
2

2 + 1−αy#
v

α2 ln[1 + α(y#
n − y#

v)]

yn ≤ yv y#
n −

(y#
n)

2

2

where y#
= y
√

kP
sgs/ν. Since the normalized value y#

v includes ksgs, it
should depend on the grid size and the instantaneous flow situation,
and it is no longer a constant. It is also affected by how ksgs is esti-
mated when the standard Smagorinsky model37 is applied. In this
study, following Horiuti,40 ksgs is estimated by filtering the velocity
field as

ksgs = Ck

3

∑
i=1
(⟨ui⟩ − ⟨⟨ui⟩⟩)2, (17)

where ⟨⟨ui⟩⟩ is the double-filtered velocity and the model constant
is Ck = 1. The estimation procedure41 for ⟨⟨ui⟩⟩ is based on the
Simpson method, which is expressed as

⟨⟨ui⟩⟩ =
1
2
⟨uP

i ⟩ +
⟨uE

i ⟩ + ⟨uW
i ⟩ + ⟨uN

i ⟩ + ⟨uS
i ⟩ + ⟨uT

i ⟩ + ⟨uB
i ⟩

12
, (18)

where ⟨uE
i ⟩, ⟨u

W
i ⟩, . . . are the velocities of the neighboring nodes of

node P. For the wall-adjacent node P shown in Fig. 1, the present
study simply sets as ⟨uS

i ⟩ = 0. After nonexhaustive numerical
experiments, our empirical attempt has selected the functional pro-
file of y#

v shown in Fig. 2, whose numerical expression is

y#
v = 10.7{3[1 − exp(−rT/125)1.4

] + 1}, (19)

where rT is the time scale ratio of the SGS to GS turbulence:
rT = (ksgs/εsgs)

√
SijSji, with εsgs = k3/2

sgs /Δy. Note that the above for-
mula is purely empirically determined. Although Eq. (17) may not
necessarily estimate correct values, effects of such incorrectness are
considered to be effectively absorbed in the above optimized model
function [Eq. (19)].

When νsgs is described by the linear function of y# as in Eq. (16),
analytical integration of Eq. (10) can be easily performed, if y#

< y#
v ,

d⟨ui⟩
dy# = (C

P#
Ui y

# + AUi)/ν, (20)

⟨ui⟩ =
CP#
Ui

2ν
(y#
)

2 +
AUi

ν
y# + BUi , (21)

and if y#
≥ y#

v ,
d⟨ui⟩
dy# =

CP#
Ui y

# + A′Ui

ν{1 + α(y# − y#
v)}

, (22)

⟨ui⟩ =
CP#
Ui

αν
y# + {

A′Ui

αν
−
CP#
Ui

α2ν
(1 − αy#

v)} ln[1 + α(y#
− y#

v)] + B′Ui ,

(23)
where CP#

Ui = (ν
2
/kP

sgs)CP
Ui . The integration constants AUi ,BUi , etc.,

are determined by applying the nonslip boundary condition at the
wall, yv, and the cell face point, yn. The values at yn are determined by

interpolation between the calculated node values at P and N, while
at y = yv a monotonic distribution condition is imposed by ensuring
that the velocity gradients should be continuous. Hence, BUi = 0,

A′Ui = AUi , and B′Ui =
CP#
Ui

2ν (y
#
v)

2 + AUi
ν y#

v −
CP#
Ui
αν y

#
v are obtained for the

nonslip wall boundary.
The result is that the wall shear stress can be expressed as

τwi = μ
d⟨ui⟩

dy
∣

wall
= μ

√
kP
sgs

ν
d⟨ui⟩
dy# ∣

wall
= ρ

√
kP
sgsAUi

ν
, (24)

where μ is the fluid dynamic viscosity. Accordingly, what we need is
AUi , which is calculated as

AUi =
ν⟨un

i ⟩ + CP#
Ui E

D
. (25)

The geometric parameters D and E are listed in Table I. As dis-
cussed above, from the velocity gradient obtained by the integration
of the TBLE inside the wall-adjacent cell, the role of the SGS-AWF
is to provide the wall stress which is apparently correlated with the
molecular viscosity. However, once the wall stress is given by the
SGS-AWF, the molecular viscosity in Eq. (5) may not be neces-
sary for LES applications in atmospheric boundary layers and ocean
mixed layers where the molecular viscosity effect is negligible.

The important tip is that Eqs. (20) and (22) are also applied
to the boundary condition for the wall-normal velocity component
⟨u2⟩ which is located at y = yP in the staggered grid arrangement as

d⟨u2⟩

dy
∣

yP

= (CP#
U2y

#
P + AU2)

√

kP
sgs, if y#

P < y
#
v (26)

=
(CP#

U2y
#
P + AU2)

√
kP
sgs

{1 + α(y# − y#
v)}

, if y#
P ≥ y

#
v . (27)

Note that to give the above equations (24), (26), and (27),
the nonslip/nonpenetration wall condition is used. However, those
resultant wall-stress boundary conditions are the Neumann-type
conditions and do not necessarily impose the solutions to be non-
slip/nonpenetration at the wall. The WSM gives equivalent wall
stresses to those of nonslip/nonpenetration wall boundaries. In such
a case, the nonpenetration condition is imposed by the wall-normal
convection at the wall.

III. MODEL VALIDATION
A. Turbulent channel flows

For the turbulent channel flows, as shown in Fig. 3, the compu-
tational domain of 4πδ(x) × 2δ(y) × 2πδ(z) is applied. The calculated
cases are for the friction Reynolds numbers Reτ = (uτδ)/ν = 1000,
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FIG. 3. Computational domain of the turbulent channel flows.

TABLE II. Grid spacing for turbulent channel flows.

NY = 20 NY = 40 NY = 60

Reτ Δ+
x Δ+

y Δ+
z Δ+

x Δ+
y Δ+

z Δ+
x Δ+

y Δ+
z

1000 102 100 51 102 50 51 102 34 51
2000 203 200 102 203 100 102 203 67 102
4000 406 400 203 406 200 203 406 133 203
5000 508 500 254 508 250 254 508 166 254

2000, 4000, and 5000 based on the channel half height δ and the
friction velocity. The periodic boundary condition is applied to the
streamwise and spanwise directions. The number of cells distributed
uniformly in the x- and z-directions is 126. Regarding the number
of cells in the y-direction, three cases of NY = 20, 40, and 60, which
correspond to the number of cells distributed uniformly across the
channel height, are tested to evaluate the mesh dependency of the
wall model. In Table II, the resolutions of the cases are listed. Note
that these mesh resolutions for the LES are significantly coarse. The
results processed during more than ten turnover times are compared
with the DNS data for each Reynolds number case.

Figure 4(a) compares the mean velocity profiles by the SGS-
AWF and the DNS of Bernardini et al.42 at Reτ = 2000. The SGS-
AWF integrates the ODE (10) between the wall and the cell face “n”
shown in Fig. 1. Correspondingly, the red dashed line indicates the
obtained velocity profile by the resultant Eqs. (21) and (23). One can
see good agreement between the DNS result and the profile by the
integration of the ODE. This confirms that the assumption in the

SGS-AWF is quite reasonable and the velocity field that is used to
assume the wall shear stress, Eq. (24), is reliable. With such a wall
stress, the LES velocity profile shown with symbols agrees well with
the DNS profile.42 For a wide range of Reynolds numbers, Fig. 4(b)
compares the mean velocity profiles by the SGS-AWF and the DNS
profile. From Reτ = 1000 to 5000, irrespective of Reτ , it is con-
firmed that the velocity profiles produced by the SGS-AWF agree
well with the DNS profile. To see the insensitivity to the grid resolu-
tion, Figs. 5(a) and 5(b) compare the results by three different grid
resolutions at Reτ = 2000 and 4000, respectively. It can be confirmed
that the SGS-AWF can produce reasonably insensitive results to the
grid resolutions.

The notable thing in the above discussion is that although the
plots by the SGS-AWF sometimes slightly deviate from the log-law
line, one cannot see obvious LLM in Figs. 4 and 5. We have found
that this is mainly from the application of Eqs. (26) and (27) to
the boundary condition of the wall-normal velocity component. The
slight offsets with the initial points come from the assumption of the
two-segment distributions for the eddy viscosity shown in Fig. 1. If
one chooses continuous profile of the eddy viscosity like the MLM,
Eq. (2), such offsets are removed. The details of these points are
discussed in the Appendix using the MLM.

Figures 6(a) and 6(b) compare the presently obtained resolved
root mean square (rms) velocity fluctuations and the DNS data42 at
Reτ = 2000 and 4000. Since the grid spacing is large, the resolved
rms velocity fluctuations are not enough to evaluate the Reynolds
stresses. This is common, particularly for the WMLES. Indeed, such
a trend was also seen in previous studies. In the report of Cabot and
Moin,11 the general trend of the rms velocity fluctuations in a tur-
bulent channel flow looked quite similar to that shown in Figs. 6(a)
and 6(b). Their spanwise and wall-normal rms velocity fluctuations
by a nonequilibrium WSM coupled with the dynamic SGS model
were generally lower and became significantly lower than those of
the resolved LES. For the streamwise component, the rms value
rose toward the wall and suddenly dropped at the first off-wall grid
point like in this study. Chung and Pullin43 also indicated the near-
wall drop of the streamwise component by their WSM for their
stretched vortex SGS. Similar near-wall kinks have been also seen
in some other studies.13,25 To make up the difference between the
GS components and the reference data, the SGS components need
considering. However, it is impossible for the Smagorinsky-type SGS
model since ksgs in Eq. (7) is not explicitly calculated. As seen in

FIG. 4. Streamwise mean velocity pro-
files by the SGS-AWF: (a) velocity pro-
files at Reτ = 2000 with the ODE solu-
tion and (b) velocity profiles at different
Reynolds numbers. Grid resolution is NY
= 40.
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FIG. 5. Streamwise mean velocity pro-
files by the SGS-AWF with different grid
resolutions: at (a) Reτ = 2000 and (b)
Reτ = 4000.

Figs. 6(c) and 6(d), the contribution from the SGS part becomes
significant toward the wall and becomes comparable with the GS
component. Hence, the near-wall decrease of the resolved rms values
takes place. Note that the SGS component can be correctly evaluated
for the shear stress. Furthermore, the distribution of the normalized
anisotropic Reynolds stress tensor [aij = 2u′iu′j/u′ku′k − (2/3)δij]
shown in Fig. 7 indicates that the behaviour toward the wall does
not show such a steep drop for any normal component, aii. Corre-
spondingly, although the steep drop in the streamwise rms compo-
nent may look curious, we consider that it is simply from the wall
boundary.

For the Reynolds shear stress, the SGS and molecular stresses
are also plotted along with the resolved GS stress in Figs. 6(c) and
6(d). We see that although the resolved GS stress is rather smaller

near the wall for both Reτ cases, the agreement between the DNS
data and the GS plus SGS stresses becomes satisfactory. The linear
profile of the total stress (the sum of the GS, SGS, and molecu-
lar stresses) corresponds to the fully developed velocity field in the
channel.

B. Backward-facing step flow
The backward-facing step is a typical flow geometry for sepa-

rating, recirculating, and reattaching flows. These typical flow char-
acteristics can be seen in numerous engineering applications, such
as flows around buildings, inside combustors, etc. Hence, it is very
important to investigate the performance of the WSM in such a
geometry. The main feature of the backward-facing step flow is

FIG. 6. Resolved velocity fluctuations
and Reynolds stress profiles in turbulent
channel flows by the SGS-AWF: (a) rms
velocities at Reτ = 2000, (b) rms veloc-
ities at Reτ = 4000, (c) shear stresses
at Reτ = 2000, and (d) shear stresses at
Reτ = 4000. Grid resolution is NY = 40.
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FIG. 7. Resolved anisotropic Reynolds stress profiles in turbulent channel flows by
the SGS-AWF at Reτ = 4000. aij = 2u′ iu′ j/u′ku′k − (2/3)δij. Grid resolution is
NY = 40.

that due to the sudden expansion of the geometry, the flow sepa-
rates from the step edge forming a shear layer and eventually reat-
taches to the bottom surface. The case simulated consists of a flow
inside a channel with a one-sided sudden expansion, with the expan-
sion ratio ER = 1.25. Figure 8 shows an overview of the geome-
try. The Reynolds number Re = UCH/ν, based on the step height
H and the inlet mean centerline velocity UC, is set as 28 000. The
expansion ratio and the Reynolds number correspond to those of
the classical experiments conducted by Vogel and Eaton.44 Cabot
and Moin11 also simulated this backward-facing step flow and they
applied WSMs only to the bottom wall after the step, while this
study applies the WSM to all wall boundaries. For the inlet boundary
condition, an auxiliary simulation of a periodic turbulent channel
flow is conducted and velocity and pressure data on a vertical plane
are extracted and used to define time-dependent Dirichlet boundary
conditions at the inlet plane. As the outlet boundary condition, the
Sommerfeld radiation condition45

∂ϕ
∂t

+ C
∂ϕ
∂x
= 0 (28)

is applied at the outlet plane, where C in Eq. (28) is the “convec-
tion velocity of vortex structures.” The bulk velocity at the outlet
plane is used as the convection velocity of vortex structures in this
study. The periodic boundary condition is used for the spanwise
boundary condition. As for the coordinate axes, x, y, and z indi-
cate the streamwise, vertical, and spanwise directions, respectively.

FIG. 8. Computational domain of the turbulent backward-facing step flow.

TABLE III. Grid resolution for turbulent backward-facing step flow.

Δy/H Δx/H Δz/H

Grid 1 0.10 0.07–1.16 0.20
Grid 2 0.067 0.07–1.16 0.20

The origin of the coordinate system is located at the bottom of the
step. The spanwise length of the computational domain is set as 2πH,
which is longer than that recommended by Le46 in which 4H was
adequate to tail the two-point correlations for u, v, and w near the
wall. The size of the computational domain in the streamwise direc-
tion is 56H (6H for the upstream region of the step, while 50H for
the downstream region). To investigate the mesh dependency, two
kinds of grids are used. The numbers of grid points for each grid are
212(x) × 50(y) × 63(z) and 212(x) × 75(y) × 63(z), respectively, for
Grid 1 and Grid 2. The grid resolution is summarized in Table III.
Note that uniform spacings are applied in the y- and z-directions,
while nonuniform spacings are used for the x-direction. The sta-
tistical results are obtained by processing the data for ten turnover
times.

The predicted reattachment length by the SGS-AWF is XR/H
= 6.7, while the modified MLM (mMLM) predicts XR/H = 6.8 with
both grids. (Compared with Grid 1, the predicted values of XR/H
with Grid 2 become slightly shorter.) Here, the mMLM is a version
of the MLM with the modified wall-normal boundary treatment dis-
cussed in the Appendix. As shown in the Appendix, the mMLM
does not produce the LLM at all. Although both WSMs show
good accuracy for predicting the recirculation as the experimental

FIG. 9. Comparison of mean velocities of the turbulent backward-facing step flow:
(a) by Grid 1 and (b) by Grid 2.
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FIG. 10. Comparison of wall-normal cell
heights and the friction coefficients: (a)
distribution of the normalized wall-normal
cell heights and (b) distribution of the
friction coefficients.

reattachment length44 was XR/H = 6.7, the SGS-AWF produces
slightly better results than the mMLM.

Figure 9 compares the streamwise mean velocity profiles by the
SGS-AWF and the mMLM. It is seen that the discrepancies between
the two WSMs are very slight, and irrespective of the grid resolu-
tions, both models predict virtually the same velocity profiles which
agree well with the experimental data. When we look at the normal-
ized sizes of the wall-adjacent cells Δ+

y1 in Fig. 10(a), the difference
in the grid resolutions of two grids is large. This implies that the
general flow field predicted by those WSMs seems not very sensi-
tive to the wall-normal grid resolution. However, the reverse flow at
x/XR = 0.33 is slightly overpredicted with Grid 2. The similar trend
is seen in the previous LES by Rouhi and Piomelli.47 They also pre-
dicted a little stronger reverse flow than the experiments with a
similar wall-normal grid resolution.

Although the improvement of predicting the recirculation is
not very large to claim the superiority of the SGS-AWF, the pro-
file of the friction coefficient Cf = 2τw/(ρU2

C) by the SGS-AWF is
clearly better than that by the mMLM as shown in Fig. 10(b). While
the mMLM underestimates the overall friction coefficient, the SGS-
AWF shows better agreement with the experimental data by both
grid resolutions. Since the SGS-AWF is a nonequilibrium WSM con-
sidering the influence of the pressure gradient, convection, and time
derivative terms, it can represent better wall stresses under the pres-
ence of large pressure gradients after the step. These results are con-
sistent with those reported by Cabot and Moin11 who compared the
equilibrium and nonequilibrium WSMs. Another good point with
the SGS-AWF is that its grid dependency on the prediction looks
much milder than that of the mMLM. Indeed, as the change in the
grid resolution (Grid 1 → Grid 2), the predicted Cf by the mMLM
changes significantly, while the SGS-AWF produces nearly the same
profiles.

IV. CONCLUSIONS
A new algebraic nonequilibrium wall-stress model for large

eddy simulation is developed. Based on the concept of the ana-
lytical wall function for Reynolds-averaged turbulence models, the
profile of the subgrid scale eddy viscosity inside the wall-adjacent
cells is modeled as a two-segment piecewise linear variation. By
this simplification, analytical integration of the ordinary differen-
tial equation that is the thin-layer approximated momentum equa-
tion, which includes the temporal, convection, and pressure gradient

terms, is performed over the wall-adjacent cells to give the wall shear
stress algebraically as the wall boundary condition for the momen-
tum equation. The model coefficient of this SGS-AWF is expressed
dynamically with the time scale ratio of the SGS to GS motions. By
applying the same strategy to the wall-normal direction, it is shown
that the log-layer mismatch can be suppressed. This implies that the
main reason for the log-layer mismatch is the inconsistent bound-
ary treatment between the wall-parallel and wall-normal velocity
components. Coupled with the standard Smagorinsky model, the
proposed SGS-AWF shows good performance in turbulent chan-
nel flows at Reτ = 1000–5000 irrespective of the grid resolutions.
The SGS-AWF is also confirmed to be better and less grid sensi-
tive than the traditional equilibrium wall-stress model in a turbulent
backward-facing step flow where nonequilibrium flow effects are
important.
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APPENDIX: REMEDY FOR THE LOG-LAYER MISMATCH
As discussed by Kawai and Larsson,13 modeling the wall stress

using the wall-adjacent node point produces the LLM of the mean
velocity profile due to the lack of the fine vortex scale information
near the walls. Since the near-wall fine vortices are inevitably unre-
solved in the WMLES, they claimed that the near-wall LES velocities
were contaminated by the truncation and SGS modeling errors, and
thus, the integration using such erroneous outer boundary veloci-
ties produced inaccurate wall stresses. In fact, Fig. 11(a) shows the
LLM in the mean velocities of turbulent channel flows reproduced
by the MLM, Eq. (2), in the equilibrium WSM. Although the first
off-wall grid points are reasonably on the log-law line, clear LLM
can be seen from the second off-wall grid points at any Reynolds
number.

The scheme of the standard equilibrium WSM may be reviewed
below. With the eddy viscosity, Eq. (2), to obtain the wall shear stress
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FIG. 11. Streamwise mean velocity distri-
bution by the mixing length-based WSM:
(a) LLM profiles by the standard equi-
librium WSM and (b) corrected profiles
by the modified scheme. Grid resolution
is NY = 40. Note that Kawai-Larsson’s
treatment13 is not applied. The values at
all node points are plotted.

for the wall-parallel velocity components, we integrate

∂

∂y
[(ν + νt)

∂⟨ui⟩
∂y
] = 0 (A1)

from the wall to the cell face “n” shown in Fig. 1. Although to inte-
grate the above one-dimensional ODE, the finite difference/volume
method on a submesh embedded into the wall-adjacent cell may
be usually applied with the wall boundary condition, we apply an
alternative scheme as follows. With the integration constant Ci, the
integrated form of Eq. (A1) is

[⟨ui⟩]yn
0 = ∫

yn

0

Ci

(ν + νt)
dy. (A2)

When the nonslip wall boundary condition is applied, the integra-
tion constant can be obtained as

Ci =
⟨un

i ⟩

∫
yn

0
dy
ν+νt

. (A3)

If the denominator of Eq. (A3) cannot be analytically integrated, one
may apply the numerical integration using the trapezoidal rule on
the submesh. In this study, for example, we applied a 1D submesh
embedded between the wall and cell face n with nonuniformly dis-
tributed 200 nodes. By applying the obtained integration constant

Ci, one can give the boundary condition as a Neumann boundary
condition for the velocity ⟨ui⟩ at the wall as

d⟨ui⟩
dy
∣

wall
=

Ci

(ν + νt)
∣

wall
, (A4)

which is related to the wall shear stress when ⟨ui⟩ is the wall-parallel
velocity. However, to calculate the wall-normal velocity component
of the LES part, the nonpenetration boundary condition ⟨u2⟩ = 0 is
simply applied to the central difference in the diffusion terms.

During the present study, we have found that when one also
applies Eq. (A4) as the boundary condition for ⟨u2⟩ at yP,

d⟨u2⟩

dy
∣

yP

=
C2

(ν + νt)
∣

yP

, (A5)

the LLM is totally suppressed, as shown in Fig. 11(b). Note that
although the nonpenetration condition at the wall is used to obtain
the integration constant C2, the WSM itself does not necessarily
impose the solution to satisfy the nonpenetration wall condition.
It gives the wall stresses that are equivalent to those at the non-
penetration wall. (The nonpenetration condition is imposed by the
wall-normal convection at the wall.) The MLM with this treatment is
called the modified MLM (mMLM). Compared with the SGS-AWF
in Fig. 4(b), the velocity plots by the mMLM in Fig. 11(b) beautifully

FIG. 12. Instantaneous distribution of the near-wall gradient
of the wall-normal velocity component in the central plane
by Eqs. (A4) and (A5) at Reτ = 4000.
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FIG. 13. Comparison of resolved velocity
fluctuations and Reynolds stress profiles
in turbulent channel flows: (a) rms veloci-
ties at Reτ = 4000 and (b) shear stresses
at Reτ = 4000. Grid resolution is NY = 40.

collapse on the log-law line. This may be because the MLM, Eq. (2),
is a continuous single function, while the eddy viscosity of the
SGS-AWF, Eq. (16), is a two-segment function.

As pointed out by Bae et al.,25 since the “filtered velocity” is dif-
ferent from the unfiltered velocity, the filtered wall-normal velocity
and its gradient at the wall are not necessarily zero instantaneously.
Moreover, from the continuity, although the nonslip wall condi-
tion requires d⟨u2⟩

dy ∣wall
= 0, ⟨u1⟩= ⟨u3⟩= 0 at the wall is not always

the case by the WSM as commented above. Accordingly, as shown
in Fig. 12, d⟨v⟩

dy by Eq. (A4) has nonzero instantaneous values at the
wall. Figure 12 also shows the significant difference between the lev-
els of d⟨v⟩

dy ∣yP
by Eq. (A5) and by the central difference. Hence, we

see that the central difference with ⟨v⟩ = 0 does not necessarily pro-
duce a reliable value. This implies that the main reason for the LLM
is the inconsistent boundary treatment between the wall-parallel and
wall-normal velocity components.

Figure 13 compares the resolved rms velocity fluctuations and
Reynolds shear stress profiles by the MLM and mMLM. It is clear
that the proposed LLM free boundary treatment does not contribute
to improve those profiles significantly.
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