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SingularArcs in Optimal Control of
Continuous-Time Bimodal Switched Linear Systems

Naoyuki Hara,Member, IEEE and Keiji Konishi,Member, IEEE

Abstract—This paper considers a singular problem in optimal relaxed system. When the minimum principle is applied to an
control of continuous-time bimodal switched linear systems. A optimal control problem for the relaxed system, there is a case
relaxed switched system with a continuous-valued switching when a control (relaxed switching signal) cannot be directly

signal is considered and the representations of singular control . C L .
and singular arcs are derived. The similarity in the structure determined from the minimization condition of the associated

between the singular control and a stabilizing switching law Hamiltonian—this is the singular case [8], [9]. When the
is revealed and an approximation of the singular control by singular case happens, an optimal input does not take a value

a well-defined switching signal is addressed. The results arein the discrete set, and no discrete-valued switching signals
demonstrated by numerical simulations. whose switching intervals have a positive lower bound give
Index Terms—Singular arcs, Optimal control, Switched linear an optimal cost value for the optimal control problem for
systems. the original switched system. A few authors have considered
optimal control problems of switched systems involving the
l. INTRODUCTION singular case [10], [11]. In [11], a method for identifying sin-
ular arcs was considered for nonlinear systems with limited

11 121 A switched ; ists of | subsvst 3te dimension. Here a singular arc refers to an extremal
[1], [2]. A switched system consists of several subsyste 3 triplet of admissible state, co-state, and input satisfying

far?]d S EW'FChm? sgnal ;hat choosss an dacnve STbSySte te and co-state differential equations) in the singular case
€ benavior o switched systems depends noF only on e Def. 3.1, [11]). The singular case should be properly
properties of each _subsystem but also on the switching S19%ken into account if an optimal control problem of interest
Ftorblexamgle, ?SW'tChed ts)ystgmtczq_ssgn% of asymptof[tlcE ssibly entails it. This point is important, especially when
siable subsystems may be destabllized by some switc resorts to numerical computation to solve such an optimal

S|gcr)1a:_s ar|1d V'Cf \1ersfa. itched ¢ has b control problem [12], [13]. Even for linear switched systems
pumal control of swilched systems has been one Qly, 5 standard quadratic cost functional, whether or not the
Fhe resear.ch topics [3]'. The source of the- d|ff|cglty arISIngingular case occurs in the optimal control problem has not
n the optimal cc_mtrpl |s.that the.c.ontr.ol_ Input 'nV°|Ve.S %een fully understood, e.g., general conditions that subsystems
discrete-valueagswitching signal. As it is difficult to deal with and cost function satisfy for the existence or no-existence

optimal control problems without any assumptions regardlarfa the singular case have not been provided so far (note

the switchi_ng signal, variou_s .SUCh assumptions are typic t for systems with state dimension up to three, algebraic
made, for instance prespecifying the order and/or number&ﬁwitions have been proposed [11]). Another problem in

switches. In [4], a two-stage opt|m|zat|on.method Was Priactice associated with the singular case is that we need to
posed to compute switching times and continuous-valued in H]tp a well-defined switching signal (i.e., a switching signal

S|gnals_ under the assumption that the or_der ano_l numbe_rté’king discrete values is defined and its switching intervals
the switches among the subsystems are given. Infinite-hori Ne a positive lower bound, see 1.3.3 in [2] for its detailed

optimal control was consllde.re.d by making the assumption tIﬁkfgﬁnition) that approximates the singular control, possibly by
the number of switches is finite and one or more subsysteg@orm of state feedback

are asymptotically stable [5], [6], [7]. In this paper, we focus on a simple switched system, a

In addition to the above difficulty, an obscurity in the,qin,ous-time bimodal switched linear system, and give a

optimal_ controllof _contiljuous-time switched systems is, th%%lrtial solution to the issues mentioned above. We provide a
an optimal S\,N'tc,hmg .S|gnal does not. ne.cesganly exist WRethod for identifying singular arcs where the singular control

the se_t_of switching signals whose s_W|tch|r?g intervals ha\(g restricted to a constant, using the Lyapunov equation for a
a positive lower bound. To deal with optimal control of,n ey combination of subsystems. We first relax a discrete-
S‘_N'tChed systems, a dlsgretg '”pl!t set _representmg admlss{;%{ﬁjed switching signal to a continuous-valued signal and find
discrete values for a switching signal is often relaxed 10 if§yqjar arcs for a system with the relaxed switching signal.

convex hull. The system with the relaxed input set is calledg,-o singular controls cannot be realized by a well-defined

Some of the material in this paper was presented at the 54th IEI:SI\{V'tChmg Slgﬂal, we d_e_s_cnbe h_OW_they can b_e approximated
Conference on Decision and Control, Osaka, Japan [14]. by a well-defined stabilizing switching law, which has a form
l\:: Hasra ?nd K.OKorILish}i:arfe v;/ith tﬂe_Depi\rtherll(t Qfgleitric;\ggggglffgrof state feedback.
mation Systems, Osaka Prefecture University, Sakai, Osaka, ap - .
(e-mail: {n-hara,konishi@eis.osakafu-u.ac.jp, Tel/Fax: +81-72-254-9252). “the co_nf[rlbutlons Of_ thef paper fare twofold: )
Manuscript received **xx xx kxik rayiggg *hbkik kx hkx 1) Explicit characterization of singular arcs with constant

Switched systems are a class of hybrid dynamical syste



singularcontrol (Theorems 1 and 2, Section lll); Thenthe minimum principle states that there exists an abso-
2) Clarify the relationship between the singular control arldtely continuous functiom (t) and the following conditions
a well-defined stabilizing switching law (Section 1V). are satisfied.

The paper is organized as follows. In Section I, a(a) x(t) andA(t) are the solution to the following differen-
continuous-time bimodal switched linear system is introduced tial equations:
and singular control problems are discussed. In Section I, 9
we present the main results of this paper. In Section IV, an X(t) = a—/\H(x(t),/\(tLu(t))
approximation of the singular control is presented. In Section — AU())X() )
V, a numerical example is provided. ’

A preliminary version of this paper was presented at a )\(t):—iH(x(t),/\(t),u(t))

ior di iei ianifi ax

conference [14]. The major differences lie in the significantly
improved proof of Theorem 1 (Lemma 1 in the conference = —Qx(t) —AT(u(t)A(t). (6)

version), a newly added algorithm (Algorithm 1), and a new(b) H(X(t), A (t),u(t)) = minH (x(t), A (t), ).
illustrative example. ul)
(c) Theadjoint variableA satisfies the boundary condition

Il. SINGULAR ARCS IN THEOPTIMAL CONTROL PROBLEM A(Ts) = Qsx(Ts). )
OF CONTINUOUS-TIME BIMODAL SWITCHED LINEAR o ] . )
SYSTEMS The Hamiltonian function (4) is rewritten as
. . . . . 1
We consider a bimodal switched linear system; Ut)AT (O)ALX() + AT (1)AX(t) + QXT (HQX(t),
X(t) = AK(t)X(t)a X(O) = Xo, 1) A=A — Ao,

wherex(t) € R" andk((t) € {1,2}. The variable(t) functions andit follows from the condition (b) that the optimal control
as a control input for (1), which chooses the current activgt) < [0,1] is given by the bang-bang control:
subsystem frol{ A1, Ao}. We make the following assumptions

y A Ao} g P 0, AT(t)Awx(t) >0,

for the system (1). u(t) = { - (8)
(Al) Thereexists a stable convex combination &f and L AT (HAX(D) <O.
Ay, i.e., Ja € [0,1] such that This will be the case unlesk' (t)A1ox(t) is identically zero:
A(@):=aA +(1—a)A; AT()AX(t) =0, Wt € [a,b], a<b. 9)
is stable. An extremal(x, A, u) that satisfies (9) is called a singular arc
(A2) For anya € [0,1] that makesA(a) stable,A(a) has (see Def. 3.1 in [11]) and the correspondigndu are called
real eigenvalues. a singular trajectory and a singular control, respectively. Note

Assumption (A1) is a necessary and sufficient condition fépat the optimal control for the system with dimensioe- 1

the quadratic stabilizability of bimodal switched linear systentg €asily found to bei(t) = 2— afgief{qig}Ah 0<t<Ts, where

(Theorem 14, [15]). (A2) is in practice easily checked numep, or A, is at least negative by the assumption (Al). Thus, in

ically because the eigenvalues are continuous with respectige remainder of the paper, we assume 2.

a. The relaxation of the binary input set to the inter{@J1]

The system (1) has an equivalent representation, implies that the switched system is embedded in a larger
v family of systems, and is often used to consider optimal
X(t) = (Au(t) + (1 - u)A)x(1) control problems for switched systems [10], [11], [12]. The

= Au)x(), () reasons for considering the relaxation are summarized as

whereu(t) takes values in the binary sg9,1}. We here relax f0llows. . .
the binary set to the intervdD,1] and consider the relaxed 1) For this class of systems, an optimal control takes the

system (2) wherei(t) is allowed to take values if0,1]. form of bang-bang control unless a singular control
Let us consider the optimal control that minimizes the  appears. In the bang-bang control case, an optimal
following cost functional: control for the relaxed system is also a solution to the
1 T 1 switched system.
J(xo,u(-)) == ,/ X' (t)Qx(t)dt + —xT(Tf)Qfx(Tf), 2) An optimal switching input for the switched system does
2.Jo 2 not exist if a singular control appears, i.e., no optimal
Q, Qi >0, Ty € RuoU{+0oo}. (3) switching signals whose switching intervals have a pos-

itive lower bound exist. Even if this situation occurs, a

Define the Hamiltonian function . X . oo
singular trajectory can be approximated by a switching

H(x(t),A(t),u(t)) == }XT (H)Qx(t) +)\T(t)A(u(t))x(t), (4) control. It should be mentioned that this situation often
2 arises in many randomly generated systems [16] as well
whereA (t) € R" is the adjoint variable. Lai(t) andx(t) be the as in practical control problems such as the control of

optimal control and the corresponding trajectory, respectively.  electrical converters [11].



In this paper, we consider an infinite-horizon control probAssumefurther thatv* and xg are linearly dependent. Then
lem, the equality

T
mln 7/ t)dt, x(0) =xo, (10) V' Pae AV =0 (16)
2 (Arz= A1~ Ay)
s.t.
@) holds.

and consider a way to identify singular arcs on the interval Proof: Sinceg(a,Xp), defined by (13), takes its minimum
[0,00). Note that considering an optimal control problem fovalue in the interior ofw” by the assumption, the equality

the relaxed system (2) means that we try to find a Filippov ag
solution in optimal control for the switched system (1). Er; =0
Note that we can obtain an optimal switching signal numer- (@)
ically by using the computation methods reported by [7], [12]olds. Further,
when the singular case does not occur. A method for creating g
a lookup table for the switching has been reported [7], and 20 = 0
a method for computing an optimal switching signal over a (@v)
finite horizon has been proposed [12]. holds, becausg andv* are assumed to be linearly dependent,

i.e., v* = Bxo for somef € R. The partial derivative ofy can

N, M AIN RESULTS be calculated as follows:

a 7}
In this section, we present a lemma and two theorems. g X(T) <da a>X0
The first theorem (Theorem 1) describes a property of the
Lyapunov equation for the convex combination system, which =xg </ eAT(cz)thA(a)tdt) Xo
plays a key role in the proof of the second theorem. da
Lemma 1:Define the set :xg{ /°° <0eAT(a)t> Qe@tgt
o \da
o ={ael0,1] | 3P, > 0:AT(a)P; +PyA(a)+Q=0}.
(11) +/ e (@ tQ< eAla )dt}
Assume that there exists a solution to the optimization problem :2)%{/ A (a)tQ (eA(DOt) dt} (17)
Op > min g(a,Xo) (12)
acd T The integral term in (17) is further computed as
9(a,%0) = Xo PaXo, (13)
o)t
and leta* be the solution ofp. Thenu(t) = a* minimizes / e Q( M )dt
(10) among the set of constant inputs. A 1 PA
Proof: As the matrix A(a) is stable for anya € </, :/ C th/ et tel DA drdt  (18)

© T (t
ff(())ll)(;w(s)QX( )dt with a constant input can be computed aBy using the formula (Fact 11.14.3, [17]):

1
® ° N M+aN 1-17)(M+aN
/ XT(t)QX(t)dt:*/ X" (t) (AT (a)Py + PaA(ar) ) x(t)dt @eMM :/O gfMHaN)Ngl-DM+aN) g,
0 0
> d YM,N € R™",
:_/ — (T ()Pax(1)) dit | | |
o dt We pre- and post-multiply the equation (18) width= a* by

= X" (0)Pax(0) v*T andVv*, respectively. Then the equation

T
= %o PaXo. (14) T /°° eAT(a*)tQ/l A A el - DA@ gty
Since the objective function of (12) is equivalent to (14) and 0o 0
a* is the minimizer for (12) by the assumption(t) = a* _ / ST / AN A e (- Tty
minimizes (10) among the set of constant inputs. ]
_Note that u(t) = a_* is also _the solution for initial states / eZS*t\ﬁTQ/ ~STA tdTdtv* (19)
given by scalar multiples aofg, i.e., Bxo (VB € R).

The following theorem shows a property of the Lyapunopé obtained. By using the relation " Q = —v*TP,- (A(a*) +

equation for the convex combination system. 1), (19) is written as
Theoem 1:Let a* be the solution of/, and assume that
a* ¢ {0,1}. Let v* be the eigenvector corresponding to an_ e25*t\f*T )+5*) t/ ST G rdtApv*
eigenvalues® of A(a*) = Ay + a*Ag2 and letPy+ > 0 be the 0
solution to the Lyapunov equation: — v TP (A@*) +51) / / &5 Ml AE ) S DTG Tt ALV

AT(a*)Pg- +PyA(a*) +Q=0. (15) (20)



Now we compute the double integral in (20). The change @ first and second time derivatives are calculated as follows:
variablestt = g, gives d <0H

0 Jo

By reversing the order of integration, (21) is computed as
follows:

/w/wezgtemm*)*s*')"dtdo:/w/mezgktdtéA(“*)*g')oda
0 Jo 0 Jo

_ 1 [P asogna-shogy

) = AT Apox+ AT Agox

D) = (—Qx—AT(U)A)TArx+A T ArA(u)x

= —XTQA12X— A T [A(U),Alz]X

= —x"QAX— A T[Ag, Aga]x (27)

@ (oH
dt2 \ du

28 0 _ T/ AT

_ L [T gmesog =—X' (A" (U)QA12+ QA12A(U))X

Tk ” ’ — (—Qx=AT(WA) T[AU), Ar2]x— A T[A(U), Al A(u)x
1

= ?(A(a*)+s*|)*1, =C(x,A) +uD(x,A) (28)

Thus the equation (20) is equal to where

C(x,A) := —x" (A} Q— QA)A1ox — 2xT QA1 2AxX

— VTP (A(@*) +5°1) - 1 (A(@*) +s1) " TAv*

1 g +/\T[A2, [Az,Alz]]X
= _g\fkTP“*Alzv*’ D(x,A) == —{X" (Al3Q + QA12)A1ox— AT [A12, [Ag, A2] X} .

and we have In (28), the inputu appears explicitly (see Appendix A for

P the detailed calculation), which means that the problem order

0= 29 of the singular control problem (Def. 3.2 in [11]) is one.
00 (g ) Substitutingu(t) = a*, A*(t) = Py=x*(t), andx*(t) = € xg
_9 <—lv*TPa*A12\f*) . (X0 = V*) into (26) results in
2st
oH = X7 Pys ApoX*

We hence obtain the equality (16). n u ) = a+ Ar2

Notethat Theorem 1 holds only for a real eigenvaiiésee _ ost AT
the assumption (A2)), and never holds for a complex eigen- ==V P AV (72 0)
value: this is because the requirement of linear dependence of =0,

v* andxg, the latter of which is the state and always a regly . the equality (16) in Theorem 1 is used. Note ®at
vector. Theorem 2 beIQW_ShOWS that "?‘?'”9“'?“ cqntrol OCCYESthe solution of the Lyapunov equation (15), and the adjoint
if the initial statexy satisfies the conditions given in Lemma, - t) = Py (t) satisfies the differential equation (6). Thus
1 and Theorem 1. It also provides an explicit representau?Qk(t)’A*(t)’u*m) is a singular arc, i.e., the equality (9) holds

of the singular control and singular arcs. for [0,). The quadratic cost in (10) is computed g Py-Xo
Theorem 2:Assume that the conditions given in Lemma Jusing the relation (14) witlr = a*

and Theorem 1 hold. Then, D(x*,A*) is calculated as
(X*(t), A (1), U (1)) = (6% X0, Py=X*(t),0*), t > 0 D(X*, A*) = D(x0, A* (1)) = 51X, (29)

is a singular arc, and the quadratic cost in (10) is given by 54 x is non-zero by the assumption, which shows that the
arc order (Def. 3.3 in [11]) is one. When the arc order

(22)

1y
EXOP"*XO' (23) is one, the necessary condition for the optimality of the
Further. when the condition singular control is given by the generalized Legendre—Clebsch
’ condition (Theorem 3.6 in [11], [9]):
Ty(aT 7 0 0 & (oM 0, vtel0 30
X 1= —v*T{(AL,Q+ QA12) A1z — P [Az, [Ag, Ar2]| IV sude \ g ) <0 VE0.). (30)

holds, where[-, ] is defined by[M,N] := MN —NM for any  From (28), the left-hand side of (30) is calculatedl¥,A)
square matriced!,N € R™", the necessary condition for theand thus the necessary condition for the optimality is given

optimality of the singular control is given by

X < 0. (25)

Proof: The partial derivative of the Hamiltonian (4) is

H
L =A TA12X.

Em (26)

by
D(x*,A*) =e®'X <0, ¥t € [0,)
)

X <0.



Remarkl: The condition (24) ensures that the arc orddyecause of the requirement of a large amount of computation
for the considered singular arc is one. X = 0, higher time, this drawback could be alleviated by adjusting the
time derivatives of (26) are required to obtain the necessagsidding resolution adaptively. Since we only want to identify
condition. the statesq satisfying the linear dependency condition, the

gridding resolution can be low over the state-space regions

Remark 2:For a nonlinear affine system with state diwhere the linear dependency level is relatively low and should
mension up to three, determinant-based algebraic conditidyes high where the linear dependency level is relatively high.
to compute singular arcs have been proposed [11]. In tlBased on this observation, we could use the following gridding
paper, Theorem 2 provides the explicit characterization sfrategy. First we use a uniform coarse gridding, and find
the singular control and singular arcs where the singuldre state-space regions where the linear dependency level is
control is restricted to a constant for a bimodal switched lineeglatively high. Then only for such regions we increase the
system with arbitrary system dimension. Although the singulegsolution of the gridding, and evaluate the linear dependency
control is given by a constant for two-dimensional systemevel. We further increase the gridding resolution only for the
[16], note that, for a system with state dimension higher thaagions where linear dependency level is relatively high, and
two, not all the possible singular controls are representegpeat this procedure until a prescribe level of accuracy is
by a constant as in Theorem 2. Our results assume the ractieve.
eigenvalue condition. If the assumption does not hold, one can
use the algebraic conditions [11] for systems with dimensiol. RELATIONSHIP TO THE STABILIZING SWITCHING LAW
up to three to identify the singular arcs; note that the explicit \ve show that the singular control and a well-defined sta-
characterization of the singular arcs was not provided. pjlizing switching signal have similar features. We propose a

. ) method for approximating the singular control by a discrete-

Remark 3:We considered only bimodal systems and nQfyjyed switching signal whose switching intervals have a
multi-mode systems with more than two subsystems. Thigsitive lower bound, which shows that for any finite interval
limitation comes from the adopted technique in the prqof %J)] (a < b) the number of switching times is finite. This
Theorem 1 where we used the formula related to the de”Vat%’\ﬁ/itching signal is a well-defined switching signal (see 1.3.3

of matrix exponential functions with single variable (Facf, [2] for the detailed definition of well-definedness).
11.14.3, [17]). When we consider the multi-mode systems, we| gt o+ ¢ {0,1} be singular control, and define

need a similar formula for multi variables, which we are not
sure if there exists. Although our results are only for bi-modal Mi = Al Py + P A, 1 = 1,2,
systems, it does not mean that this is too restrictive becaySgnsider the following well-defined stabilizing switching law
there are some practical applications that can be represe @Hap. 3.4, [2]):
bi-modal systems, such as DC-DC converters ([2], [16], [18])
and wheeled mobile robots (Example 1.3, [2]). tirn = inf {t >t X7 ()M X()
> —lX (DQX(M) } .1 € (0,1),
Using the above results, singular arcs are identified ag - K(tr1) =arg  min {X" (t1)Mix(tes) b, 31)
follows. For the states on a unitary semisphere in the state->"" (1.2}
. . unitary Ph = Stale k=1,2,...
space, we find the states satisfying the conditions mentioned in K(0) :ard 7min7 {x(T)M-xo}
Lemma 1 and Theorem 1. Scalar multiples of such vectors are ie{1,2} 1791
candidate singular trajectories. Then we check whether e oo . : o oo
candidate singular trajectory satisfies the optimality conditiglrﬁpI $ switching law is obtained by modifying a switching law
in Theorem 2. Note that the optimization problem for each K(t)=arg min {xT(t)Mix(t)} (32)
statexg in Lemma 1 can be solved using a general nonlinear Ie{1,2}
programming solver such aninbnd in MATLAB. The so that the resulting switching intervdls1 —tx (k=1,2,...)
linear dependency condition for and xg in Theorem 1 is have a positive lower bound. Now, notice that the equation
easily checked by computing their inner product. (32) can be further rewritten as
Note that the method mentioned above requires to solve K(t)=arg min {XT(I)M'X(I)}
the optimization problem (12) with the states on the unitary ie{1,2} !

semisphere where the state-space gridding (on the unitary —arg min {XT(I)(A,'TPG*—&—P(;*Ai)X(t)}

semisphere) is necessary for computation. Thus it requires i€{1,2}

more computational effort when the system dimension be-

comes higher. The state-space gridding-based method has been =arg min {ZxT (t)Pa*Aix(t)} (33)
X X R i€{1,2}

used in other optimal control literature (e.g., [6], [7], [11]), and T

a method for generating the gridding points on the unitary :{ 1, XT(t)Pa*(Al—AZ)X(t) <0, (34)

semisphere has been reported (APPENDIX B in [6]). Note 2, X (t)Pa(Ar—A2)x(t) > 0.

here that the computation of our method is performed offince the regionQ where the singular control occurs is
line, and the applicability of the method should be evaluateglcluded in

in terms of a tolerable off-line computation time. Although _ nT
the method may not be viable for higher dimensional systems Qswi= {x € R"x Py+ (AL — Ag)x =0} ,



Algorithm 1 Computation ofr1,ry in (31). where
1: Seta desired relative error leved > 0, an initial value

r* € (0,1), and a sufficiently large evaluation tinte> 0. R:A'R+PRA+Q=0, (36)
2: For an initial statexy on the singular trajectory of interest, Py AN TP +PLAN) + Q=10 (AA) = AA1 + A2A0)

compute the quadratic cadt by (23). Choose a perturbed (37)

initial statexg. L(x)=arg min X7 P, X, (38)
3: loop AeNt (M)
4. Compute a quadratic codtof the well-defined stabiliz-  AT(M) = {{A1,A2} : A1+ A2 =1,A1,A2 >0,

ing law (31) withxp = %o andry =r =r* over [0t;]. P, > 0,max(eig(Py)) <M},M > 0.
5. if 35X < ¢ then ’ -0
J (39)

6: break.
7. else The objective function in (35) can be computed as
8: e« CAL
o endif - X" (P, —R)Ax = x"Py Aix—x" BAX

. 1
10: end loop =x"P,Ax— =x" (RA +AR)x
11: Setry =rp=r*. 2

1
:xTPAAix+§xTQx

the singular control is approximated by the switching lawhen,since the termx" Qx does not affect the minimization,
Sitab in the neighborhood ofQ if Qg is attractive. The 1(x) becomes

switching law only gives a larger cost valud, than the .
g 1awSsap only g g I(x)=arg min X P,AX

optimal cost,J*, obtained by the singular control. However, ie{1,2}, AeL(x)
the level of approximation can be adjusted by the parameter . T _
ri € (0,1) in (31). If we choose a larger value close to 1, _argie'ﬂf?}x Prog X (40)

the switching intervaldy,; —tx become small and the state

trajectory becomes close to the singular trajectory. We givi etrell\l*(X)foLr(\X)' t?ssummgfL(x) IS a3§|ngleto?tﬁe;[.thThe |
a simple algorithm, Algorithm 1, to obtain the parameter%on rol law (40) has the same form as (33) except that the solu-

ri and rp such that the resulting state response satisfig n of the Lyapunov equatioﬁ,\*(x) in (40) is state-dependent

a prescribed level of approximation. Note that a perturb ereas the one in (33) is fixed. The two control laws give the

initial state xg is used on line 4 in Algorithm 1, because>ame switching signal when the statés in the neighborhood

T T : . of the singular trajectory of interest. Note that the control law
XgM1xg = X3 M2xg holds in theory for an initial statg on a : S .
singular trajectory and the initial switching signal0) in (31) (40) requw:;a; to SO!VG th(faﬂ_optlmlian_ont_probkfam1§38) on||tnhe,
cannot be determined. In practice, however, the exact equay%(tgereas (33) requires offline optimization of (12) over the

does not hold in numerical computation, and replacement tes (qn the unitary semisphere) to obtain t.he ﬂ%edlft_he
state is in the neighborhood of a different singular trajectory,

with X may not be necessary. . : :
X X . y y Lo . the control law (33) with the fixedP,+ does not necessarily
Remark4: The way of the approximating the singular . . o : ) o
. 7 I . ield an optimal one for this singular trajectory; optimality
control in the stabilizing switching law (31) is done b)y . . .
. . s . Joss in this case depends on the difference of the two sets
introducing a hysteresis in (32). Construction of the approx5 . . .
. . L X : ; . Qe (below (34)) with two differenP,- corresponding to two
mating discrete-valued switching signal itself is not new; for. . . .
L : ' different singular trajectories.
example, a feedback switching law with a parameter adjusting
the switching frequency has been reported in [18] and a
frequency modulation method for creating a discrete-valued V. ILLUSTRATIVE EXAMPLE
signal over a time interval has been used in [19]. In this e consider the bimodal switched system [12] (see also
section, however, we pointed out the relationship between they).
well-known switching law and the singular control, which we

think has not been explicitly addressed so far. X(t) = AcX(t), K (t) € {1,2}

o . . A{—lo S]A{s 1]
A state-feedback switching law for linear switched systems 1= 3 20717 —20|"
has been proposed based on the min-type Lyapunov function . i .
in [16] and it is shown that the switching law gives a good "€ Subsysterd, is stable and; is unstable (eigenvalues
approximate optimal control with respect to the infinite horf™ * {_11567_8’__0'4322}’ A {3'30047_203_0042’)- The
zon quadratic cost. We here discuss the relationship betw&@FVex combinationA(a) = aAr + (1 —a)A; is stable for
this switching law and (32). The switching law presented iff - 0-2975< a < 1. We choose the weighting matr@ =

Theorem 6 in [16] for the bimodal case with the state weigifi291,1) in (10). In the following, we find the singular arcs
Q1=Q, = Q>0 is given by using the main results (Lemma 1, Theorem 1 and Theorem 2),

and also demonstrate how singular control is approximated by
i"(x) € I(x) = ar min  x"(P,—R)Ax (35) thewell-defined stabilizing switching law addressed in Section
ie{1,2},A€L(x) \VA
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Fig. 1. Singular trajectories. Fig. 3. Singular and approximate state-space trajectories.
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Fig. 2. Singular control and approximate stabilizing switching signals.  Fig. 4. Singular and approximate state responses.

We first find singular trajectories using Lemma 1 andn approximating parametar and r, in (31) to attain a
Theorem 1. Among the points= [cosf,sinf]" (0< 6 < m), prescribed approximation level. Now we choose a relative
we found vectors that are linearly dependent with an eigeerror levele = 0.01 (1%), an initial approximating parameter
vectorv* of A(a*) (a* =argminy g(a,x)). The optimization r* = 0.5, and evaluation timé; = 2.0. Algorithm 1 is then
problem (12) was solved usirfgninbnd in MATLAB. Two performed and the approximating paramatge r, = 0.875
points satisfying the described condition were found and tlire the well-defined stabilizing switching law (31) is obtained.
correspondinga* values are @912 and 07733. The scalar The responses with; =r, = 0.5 and 0875 are shown in
multiples of the points constitute singular trajectories, arfégs. 2, 3, and 4. We see that more frequent switching occurs
they are plotted in Fig. 1. The optimality condition (24) irin the control law with larger;, and the corresponding state
Theorem 2 is satisfied witlk = —10038 (a* = 0.6912) and responses are closer to the singular trajectory than those with
X =-4263 (a* =0.7733). smallerr;. The quadratic costs for the stabilizing switching

We compare the singular control with the well-definethw with r1 =r, = 0.5 and 0875 areJ = 2.5266 and 2309,
stabilizing switching law addressed in Section IV. For theespectively (relative error: 2% and 078%, respectively).
initial condition Xo = [3.76793.2868] on the singular tra-  Note that when the initial conditioxy is not on the singular
jectory (a), the singular control isi(t) = 0.6912 k(t) = trajectory, a kind of backward integration is used to compute
2—u(t) = 1.3088), and the corresponding state trajectories non-singular arc segment (Proposition 4.2, [11]). Let us
and time responses are plotted in Figs. 2, 3, and 4 (black sdlldstrate this point. For an initial conditiory = [1,6]", the
curves). The quadratic cost is computedJas= %xg Py«Xo = state trajectories are plotted in Fig. 5: the subsystenis
2.3129. Although the approximate stabilizing switching laviirst used, and then the switching signal turns into the singular
(31) only achieves a larger cost value thEnwe can compute control. The trajectory resembles the one for a finite-horizon
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Fig. 5. State-space trajectories for the initial stage=[1,6].

El
optimal control case reported in [12], [13]. [10]

[11]
VI. CONCLUSION

We have considered a method for characterizing singujag
arcs in the optimal control of bimodal switched linear systems.
We showed that a well-defined switching signal can be used!td
approximate a singular control. Future research topics includg
extension of the method to switched systems with more than
two subsystems and classification of possible optimal contr?ﬁ]
by spectra of subsystemg. We think that the type of possible
optimal controls is deeply related to the spectradgfand the
present work with the real eigenvalue assumption is a std
toward this direction. [17]
APPENDIX [18]
DERIVATION OF (28) IN THEOREM 2

19
The representation (28) is obtained as follows. We have[ ]

@ (OH\ d, - ;
@ <(9U> = a (7 QAlzx—)\ [Az,Alz]X)
= — X" QAIX— X" QAIX— AT [Ag, Aa] — AT [Ag, Arg]X
= —x"AT (U)QAL2x — X" QA A (U)X

— (—Qx—AT(UA)T[Az, Ar2]x — AT [Ag, Ap] A(u)x
= —x" (AT (U)QA12+ QAA(U) )X
— (—Qx—AT(WA)T[AU), Ara]x— AT[AU), A2 A(U)X,
and substitutingA(u) = Ay + uAy» in the above equation and
arranging with respect ta leads to
— X" (A} QA2 + UAL,QA12 + QA2A + UQAZ, )X
— (—Qx—AJA —UALA) T[Az, Ara]x — A T[Ag, Ago] Aox
— UAT [Ag,Alg]Alzx
= —x" (A} Q—QA)Arox — 2XT QAL AX+ A T [Ag, [A, Ag2]|X
—u{x" (AL,Q+ QA12)A1ax — AT [Az, [A, Ar2]]X}
=C(x,A)+uD(x,A).
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