
Singular arcs in optimal control of
continuous-time bimodal switched linear systems

言語: eng

出版者: 

公開日: 2020-04-10

キーワード (Ja): 

キーワード (En): 

作成者: Hara, Naoyuki, Konishi, Keiji

メールアドレス: 

所属: 

メタデータ

http://hdl.handle.net/10466/00016831URL



1

SingularArcs in Optimal Control of
Continuous-Time Bimodal Switched Linear Systems

Naoyuki Hara,Member, IEEE,and Keiji Konishi,Member, IEEE

Abstract—This paper considers a singular problem in optimal
control of continuous-time bimodal switched linear systems. A
relaxed switched system with a continuous-valued switching
signal is considered and the representations of singular control
and singular arcs are derived. The similarity in the structure
between the singular control and a stabilizing switching law
is revealed and an approximation of the singular control by
a well-defined switching signal is addressed. The results are
demonstrated by numerical simulations.

Index Terms—Singular arcs, Optimal control, Switched linear
systems.

I. I NTRODUCTION

Switched systems are a class of hybrid dynamical systems
[1], [2]. A switched system consists of several subsystems
and a switching signal that chooses an active subsystem.
The behavior of switched systems depends not only on the
properties of each subsystem but also on the switching signal.
For example, a switched system consisting of asymptotically
stable subsystems may be destabilized by some switching
signals and vice versa.

Optimal control of switched systems has been one of
the research topics [3]. The source of the difficulty arising
in the optimal control is that the control input involves a
discrete-valuedswitching signal. As it is difficult to deal with
optimal control problems without any assumptions regarding
the switching signal, various such assumptions are typically
made, for instance prespecifying the order and/or number of
switches. In [4], a two-stage optimization method was pro-
posed to compute switching times and continuous-valued input
signals under the assumption that the order and number of
the switches among the subsystems are given. Infinite-horizon
optimal control was considered by making the assumption that
the number of switches is finite and one or more subsystems
are asymptotically stable [5], [6], [7].

In addition to the above difficulty, an obscurity in the
optimal control of continuous-time switched systems is that
an optimal switching signal does not necessarily exist in
the set of switching signals whose switching intervals have
a positive lower bound. To deal with optimal control of
switched systems, a discrete input set representing admissible
discrete values for a switching signal is often relaxed to its
convex hull. The system with the relaxed input set is called a
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relaxed system. When the minimum principle is applied to an
optimal control problem for the relaxed system, there is a case
when a control (relaxed switching signal) cannot be directly
determined from the minimization condition of the associated
Hamiltonian—this is the singular case [8], [9]. When the
singular case happens, an optimal input does not take a value
in the discrete set, and no discrete-valued switching signals
whose switching intervals have a positive lower bound give
an optimal cost value for the optimal control problem for
the original switched system. A few authors have considered
optimal control problems of switched systems involving the
singular case [10], [11]. In [11], a method for identifying sin-
gular arcs was considered for nonlinear systems with limited
state dimension. Here a singular arc refers to an extremal
(a triplet of admissible state, co-state, and input satisfying
state and co-state differential equations) in the singular case
(see Def. 3.1, [11]). The singular case should be properly
taken into account if an optimal control problem of interest
possibly entails it. This point is important, especially when
one resorts to numerical computation to solve such an optimal
control problem [12], [13]. Even for linear switched systems
with a standard quadratic cost functional, whether or not the
singular case occurs in the optimal control problem has not
been fully understood, e.g., general conditions that subsystems
and cost function satisfy for the existence or no-existence
of the singular case have not been provided so far (note
that for systems with state dimension up to three, algebraic
conditions have been proposed [11]). Another problem in
practice associated with the singular case is that we need to
find a well-defined switching signal (i.e., a switching signal
taking discrete values is defined and its switching intervals
have a positive lower bound, see 1.3.3 in [2] for its detailed
definition) that approximates the singular control, possibly by
a form of state feedback.

In this paper, we focus on a simple switched system, a
continuous-time bimodal switched linear system, and give a
partial solution to the issues mentioned above. We provide a
method for identifying singular arcs where the singular control
is restricted to a constant, using the Lyapunov equation for a
convex combination of subsystems. We first relax a discrete-
valued switching signal to a continuous-valued signal and find
singular arcs for a system with the relaxed switching signal.
Since singular controls cannot be realized by a well-defined
switching signal, we describe how they can be approximated
by a well-defined stabilizing switching law, which has a form
of state feedback.

The contributions of the paper are twofold:
1) Explicit characterization of singular arcs with constant
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singularcontrol (Theorems 1 and 2, Section III);
2) Clarify the relationship between the singular control and

a well-defined stabilizing switching law (Section IV).

The paper is organized as follows. In Section II, a
continuous-time bimodal switched linear system is introduced
and singular control problems are discussed. In Section III,
we present the main results of this paper. In Section IV, an
approximation of the singular control is presented. In Section
V, a numerical example is provided.

A preliminary version of this paper was presented at a
conference [14]. The major differences lie in the significantly
improved proof of Theorem 1 (Lemma 1 in the conference
version), a newly added algorithm (Algorithm 1), and a new
illustrative example.

II. SINGULAR ARCS IN THEOPTIMAL CONTROL PROBLEM

OF CONTINUOUS-TIME BIMODAL SWITCHED L INEAR

SYSTEMS

We consider a bimodal switched linear system;

ẋ(t) = Aκ(t)x(t), x(0) = x0, (1)

wherex(t)∈Rn andκ(t)∈ {1,2}. The variableκ(t) functions
as a control input for (1), which chooses the current active
subsystem from{A1,A2}. We make the following assumptions
for the system (1).

(A1) Thereexists a stable convex combination ofA1 and
A2, i.e., ∃α ∈ [0,1] such that

A(α) := αA1+(1−α)A2

is stable.
(A2) For anyα ∈ [0,1] that makesA(α) stable,A(α) has

real eigenvalues.

Assumption (A1) is a necessary and sufficient condition for
the quadratic stabilizability of bimodal switched linear systems
(Theorem 14, [15]). (A2) is in practice easily checked numer-
ically because the eigenvalues are continuous with respect to
α .

The system (1) has an equivalent representation,

ẋ(t) = (A1u(t)+(1−u(t))A2)x(t)

= A(u(t))x(t), (2)

whereu(t) takes values in the binary set{0,1}. We here relax
the binary set to the interval[0,1] and consider the relaxed
system (2) whereu(t) is allowed to take values in[0,1].

Let us consider the optimal control that minimizes the
following cost functional:

J(x0,u(·)) :=
1
2

∫ Tf

0
xT(t)Qx(t)dt +

1
2

xT(Tf )Qf x(Tf ),

Q, Qf > 0, Tf ∈ R≥0∪{+∞}. (3)

Define the Hamiltonian function

H(x(t),λ (t),u(t)) :=
1
2

xT(t)Qx(t)+λ T(t)A(u(t))x(t), (4)

whereλ (t)∈Rn is the adjoint variable. Letu(t) andx(t) be the
optimal control and the corresponding trajectory, respectively.

Then the minimum principle states that there exists an abso-
lutely continuous functionλ (t) and the following conditions
are satisfied.

(a) x(t) andλ (t) are the solution to the following differen-
tial equations:

ẋ(t) =
∂

∂λ
H(x(t),λ (t),u(t))

= A(u(t))x(t), (5)

λ̇ (t) =− ∂
∂x

H(x(t),λ (t),u(t))

=−Qx(t)−AT(u(t))λ (t). (6)

(b) H(x(t),λ (t),u(t)) = min
ū(·)

H(x(t),λ (t), ū(t)).

(c) Theadjoint variableλ satisfies the boundary condition

λ (Tf ) = Qf x(Tf ). (7)

The Hamiltonian function (4) is rewritten as

u(t)λ T(t)A12x(t)+λ T(t)A2x(t)+
1
2

xT(t)Qx(t),

A12 := A1−A2,

and it follows from the condition (b) that the optimal control
u(t) ∈ [0,1] is given by the bang–bang control:

u(t) =

{
0, λ T(t)A12x(t)> 0,
1, λ T(t)A12x(t)< 0.

(8)

This will be the case unlessλ T(t)A12x(t) is identically zero:

λ T(t)A12x(t) = 0, ∀t ∈ [a,b], a< b. (9)

An extremal(x,λ ,u) that satisfies (9) is called a singular arc
(see Def. 3.1 in [11]) and the correspondingx andu are called
a singular trajectory and a singular control, respectively. Note
that the optimal control for the system with dimensionn= 1
is easily found to beu(t) = 2−arg min

i∈{1,2}
Ai , 0≤ t ≤ Tf , where

A1 or A2 is at least negative by the assumption (A1). Thus, in
the remainder of the paper, we assumen≥ 2.

The relaxation of the binary input set to the interval[0,1]
implies that the switched system is embedded in a larger
family of systems, and is often used to consider optimal
control problems for switched systems [10], [11], [12]. The
reasons for considering the relaxation are summarized as
follows.

1) For this class of systems, an optimal control takes the
form of bang–bang control unless a singular control
appears. In the bang–bang control case, an optimal
control for the relaxed system is also a solution to the
switched system.

2) An optimal switching input for the switched system does
not exist if a singular control appears, i.e., no optimal
switching signals whose switching intervals have a pos-
itive lower bound exist. Even if this situation occurs, a
singular trajectory can be approximated by a switching
control. It should be mentioned that this situation often
arises in many randomly generated systems [16] as well
as in practical control problems such as the control of
electrical converters [11].
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In this paper, we consider an infinite-horizon control prob-
lem,

min
u(·)

1
2

∫ ∞

0
xT(t)Qx(t)dt, x(0) = x0, (10)

s.t. (2),

and consider a way to identify singular arcs on the interval
[0,∞). Note that considering an optimal control problem for
the relaxed system (2) means that we try to find a Filippov
solution in optimal control for the switched system (1).

Note that we can obtain an optimal switching signal numer-
ically by using the computation methods reported by [7], [12]
when the singular case does not occur. A method for creating
a lookup table for the switching has been reported [7], and
a method for computing an optimal switching signal over a
finite horizon has been proposed [12].

III. M AIN RESULTS

In this section, we present a lemma and two theorems.
The first theorem (Theorem 1) describes a property of the
Lyapunov equation for the convex combination system, which
plays a key role in the proof of the second theorem.

Lemma 1:Define the set

A := {α ∈ [0,1] | ∃Pα > 0 : AT(α)Pα +PαA(α)+Q= 0}.
(11)

Assume that there exists a solution to the optimization problem

OP : min
α∈A

g(α ,x0) (12)

g(α,x0) := xT
0 Pαx0, (13)

and letα∗ be the solution ofOP. Thenu(t) = α∗ minimizes
(10) among the set of constant inputs.

Proof: As the matrix A(α) is stable for anyα ∈ A ,∫ ∞
0 xT(t)Qx(t)dt with a constant input can be computed as

follows:∫ ∞

0
xT(t)Qx(t)dt =−

∫ ∞

0
xT(t)

(
AT(α)Pα +PαA(α)

)
x(t)dt

=−
∫ ∞

0

d
dt

(
xT(t)Pαx(t)

)
dt

= xT(0)Pαx(0)

= xT
0 Pαx0. (14)

Since the objective function of (12) is equivalent to (14) and
α∗ is the minimizer for (12) by the assumption,u(t) = α∗
minimizes (10) among the set of constant inputs.

Note that u(t) = α∗ is also the solution for initial states
given by scalar multiples ofx0, i.e., βx0 (∀β ∈ R).

The following theorem shows a property of the Lyapunov
equation for the convex combination system.

Theorem 1: Let α∗ be the solution ofOp and assume that
α∗ /∈ {0,1}. Let v∗ be the eigenvector corresponding to an
eigenvalues∗ of A(α∗) = A2+α∗A12 and letPα∗ > 0 be the
solution to the Lyapunov equation:

AT(α∗)Pα∗ +Pα∗A(α∗)+Q= 0. (15)

Assumefurther thatv∗ and x0 are linearly dependent. Then
the equality

v∗TPα∗A12v
∗ = 0 (16)

(A12 = A1−A2)

holds.
Proof: Sinceg(α,x0), defined by (13), takes its minimum

value in the interior ofA by the assumption, the equality

∂g
∂α

∣∣∣∣
(α∗,x0)

= 0

holds. Further,

∂g
∂α

∣∣∣∣
(α∗,v∗)

= 0

holds, becausex0 andv∗ are assumed to be linearly dependent,
i.e., v∗ = βx0 for someβ ∈R. The partial derivative ofg can
be calculated as follows:

∂g
∂α

=xT
0

(
∂

∂α
Pα

)
x0

=xT
0

(
∂

∂α

∫ ∞

0
eAT (α)tQeA(α)tdt

)
x0

=xT
0

{∫ ∞

0

(
∂

∂α
eAT (α)t

)
QeA(α)tdt

+
∫ ∞

0
eAT (α)tQ

(
∂

∂α
eA(α)t

)
dt

}
x0

=2xT
0

{∫ ∞

0
eAT (α)tQ

(
∂

∂α
eA(α)t

)
dt

}
x0. (17)

The integral term in (17) is further computed as∫ ∞

0
eAT (α)tQ

(
∂

∂α
eA(α)t

)
dt

=
∫ ∞

0
eAT (α)tQ

∫ 1

0
eτA(α)tA12te

(1−τ)A(α)tdτdt (18)

by using the formula (Fact 11.14.3, [17]):

d
dα

eM+αN =
∫ 1

0
eτ(M+αN)Ne(1−τ)(M+αN)dτ,

∀M,N ∈ Rn×n.

We pre- and post-multiply the equation (18) withα = α∗ by
v∗T andv∗, respectively. Then the equation

v∗T
∫ ∞

0
eAT (α∗)tQ

∫ 1

0
eτA(α∗)tA12te

(1−τ)A(α∗)tdτdtv∗

=
∫ ∞

0
es∗tv∗TQ

∫ 1

0
eτA(α∗)tA12te

s∗(1−τ)tdτdtv∗

=
∫ ∞

0
e2s∗tv∗TQ

∫ 1

0
e(A(α

∗)−s∗I)tτA12tdτdtv∗ (19)

is obtained. By using the relationv∗TQ= −v∗TPα∗(A(α∗)+
s∗I), (19) is written as

−
∫ ∞

0
e2s∗tv∗TPα∗(A(α∗)+s∗I)t

∫ 1

0
e(A(α

∗)−s∗I)tτdτdtA12v
∗

=−v∗TPα∗(A(α∗)+s∗I)
∫ ∞

0

∫ 1

0
e2s∗tte(A(α

∗)−s∗I)tτdτdtA12v
∗.

(20)
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Now we compute the double integral in (20). The change of
variables,tτ = σ , gives∫ ∞

0

∫ t

0
e2s∗te(A(α

∗)−s∗I)σ dσdt. (21)

By reversing the order of integration, (21) is computed as
follows:∫ ∞

0

∫ ∞

σ
e2s∗te(A(α

∗)−s∗I)σ dtdσ =
∫ ∞

0

∫ ∞

σ
e2s∗tdte(A(α

∗)−s∗I)σ dσ

=− 1
2s∗

∫ ∞

0
e2s∗σ e(A(α

∗)−s∗I)σ dσ

=− 1
2s∗

∫ ∞

0
e(A(α

∗)+s∗I)σ dσ

=
1

2s∗
(A(α∗)+s∗I)−1.

Thus the equation (20) is equal to

−v∗TPα∗(A(α∗)+s∗I) · 1
2s∗

(A(α∗)+s∗I)−1A12v
∗

=− 1
2s∗

v∗TPα∗A12v
∗,

and we have

0=
∂g
∂α

∣∣∣∣
(α∗,v∗)

= 2

(
− 1

2s∗
v∗TPα∗A12v

∗
)
.

We hence obtain the equality (16).
Notethat Theorem 1 holds only for a real eigenvalues∗ (see

the assumption (A2)), and never holds for a complex eigen-
value: this is because the requirement of linear dependence of
v∗ and x0, the latter of which is the state and always a real
vector. Theorem 2 below shows that a singular control occurs
if the initial statex0 satisfies the conditions given in Lemma
1 and Theorem 1. It also provides an explicit representation
of the singular control and singular arcs.

Theorem 2:Assume that the conditions given in Lemma 1
and Theorem 1 hold. Then,

(x∗(t),λ ∗(t),u∗(t)) = (es∗tx0,Pα∗x
∗(t),α∗), t ≥ 0 (22)

is a singular arc, and the quadratic cost in (10) is given by

1
2

xT
0 Pα∗x0. (23)

Further, when the condition

X ̸= 0 (24)

X :=−v∗T{(AT
12Q+QA12)A12−Pα∗ [A12, [A2,A12]]}v∗

holds, where[·, ·] is defined by[M,N] := MN−NM for any
square matricesM,N ∈ Rn×n, the necessary condition for the
optimality of the singular control is given by

X < 0. (25)

Proof: The partial derivative of the Hamiltonian (4) is

∂H
∂u

= λ TA12x. (26)

Its first and second time derivatives are calculated as follows:

d
dt

(
∂H
∂u

)
= λ̇ TA12x+λ TA12ẋ

= (−Qx−AT(u)λ )TA12x+λ TA12A(u)x

=−xTQA12x−λ T [A(u),A12]x

=−xTQA12x−λ T [A2,A12]x (27)

d2

dt2

(
∂H
∂u

)
=−xT(AT(u)QA12+QA12A(u))x

− (−Qx−AT(u)λ )T [A(u),A12]x−λ T [A(u),A12]A(u)x

=C(x,λ )+uD(x,λ ) (28)

where

C(x,λ ) :=−xT(AT
2 Q−QA2)A12x−2xTQA12A2x

+λ T [A2, [A2,A12]]x

D(x,λ ) :=−
{

xT(AT
12Q+QA12)A12x−λ T [A12, [A2,A12]]x

}
.

In (28), the inputu appears explicitly (see Appendix A for
the detailed calculation), which means that the problem order
of the singular control problem (Def. 3.2 in [11]) is one.
Substitutingu∗(t) = α∗, λ ∗(t) = Pα∗x∗(t), and x∗(t) = es∗tx0

(x0 = v∗) into (26) results in

∂H
∂u

∣∣∣∣
(x∗,λ ∗,u∗)

= x∗TPα∗A12x
∗

= e2s∗tv∗TPα∗A12v
∗ (∀t ≥ 0)

= 0,

where the equality (16) in Theorem 1 is used. Note thatPα∗

is the solution of the Lyapunov equation (15), and the adjoint
λ ∗(t) = Pα∗x∗(t) satisfies the differential equation (6). Thus,
(x∗(t),λ ∗(t),u∗(t)) is a singular arc, i.e., the equality (9) holds
for [0,∞). The quadratic cost in (10) is computed as1

2xT
0 Pα∗x0

using the relation (14) withα = α∗.
D(x∗,λ ∗) is calculated as

D(x∗,λ ∗) = D(es∗tx0,λ ∗(t)) = e2s∗tX, (29)

and X is non-zero by the assumption, which shows that the
arc order (Def. 3.3 in [11]) is one. When the arc order
is one, the necessary condition for the optimality of the
singular control is given by the generalized Legendre–Clebsch
condition (Theorem 3.6 in [11], [9]):

∂
∂u

d2

dt2

(
∂H
∂u

)
< 0, ∀t ∈ [0,∞). (30)

From (28), the left-hand side of (30) is calculated asD(x,λ )
and thus the necessary condition for the optimality is given
by

D(x∗,λ ∗) = e2s∗tX < 0, ∀t ∈ [0,∞)

⇕
X < 0.
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Remark1: The condition (24) ensures that the arc order
for the considered singular arc is one. IfX = 0, higher
time derivatives of (26) are required to obtain the necessary
condition.

Remark 2: For a nonlinear affine system with state di-
mension up to three, determinant-based algebraic conditions
to compute singular arcs have been proposed [11]. In this
paper, Theorem 2 provides the explicit characterization of
the singular control and singular arcs where the singular
control is restricted to a constant for a bimodal switched linear
system with arbitrary system dimension. Although the singular
control is given by a constant for two-dimensional systems
[16], note that, for a system with state dimension higher than
two, not all the possible singular controls are represented
by a constant as in Theorem 2. Our results assume the real
eigenvalue condition. If the assumption does not hold, one can
use the algebraic conditions [11] for systems with dimension
up to three to identify the singular arcs; note that the explicit
characterization of the singular arcs was not provided.

Remark 3:We considered only bimodal systems and not
multi-mode systems with more than two subsystems. This
limitation comes from the adopted technique in the proof of
Theorem 1 where we used the formula related to the derivative
of matrix exponential functions with single variable (Fact
11.14.3, [17]). When we consider the multi-mode systems, we
need a similar formula for multi variables, which we are not
sure if there exists. Although our results are only for bi-modal
systems, it does not mean that this is too restrictive because
there are some practical applications that can be represented
bi-modal systems, such as DC-DC converters ([2], [16], [18])
and wheeled mobile robots (Example 1.3, [2]).

Using the above results, singular arcs are identified as
follows. For the states on a unitary semisphere in the state-
space, we find the states satisfying the conditions mentioned in
Lemma 1 and Theorem 1. Scalar multiples of such vectors are
candidate singular trajectories. Then we check whether each
candidate singular trajectory satisfies the optimality condition
in Theorem 2. Note that the optimization problem for each
statex0 in Lemma 1 can be solved using a general nonlinear
programming solver such asfminbnd in MATLAB. The
linear dependency condition forv∗ and x0 in Theorem 1 is
easily checked by computing their inner product.

Note that the method mentioned above requires to solve
the optimization problem (12) with the states on the unitary
semisphere where the state-space gridding (on the unitary
semisphere) is necessary for computation. Thus it requires
more computational effort when the system dimension be-
comes higher. The state-space gridding-based method has been
used in other optimal control literature (e.g., [6], [7], [11]), and
a method for generating the gridding points on the unitary
semisphere has been reported (APPENDIX B in [6]). Note
here that the computation of our method is performed off-
line, and the applicability of the method should be evaluated
in terms of a tolerable off-line computation time. Although
the method may not be viable for higher dimensional systems

because of the requirement of a large amount of computation
time, this drawback could be alleviated by adjusting the
gridding resolution adaptively. Since we only want to identify
the statesx0 satisfying the linear dependency condition, the
gridding resolution can be low over the state-space regions
where the linear dependency level is relatively low and should
be high where the linear dependency level is relatively high.
Based on this observation, we could use the following gridding
strategy. First we use a uniform coarse gridding, and find
the state-space regions where the linear dependency level is
relatively high. Then only for such regions we increase the
resolution of the gridding, and evaluate the linear dependency
level. We further increase the gridding resolution only for the
regions where linear dependency level is relatively high, and
repeat this procedure until a prescribe level of accuracy is
achieve.

IV. RELATIONSHIP TO THESTABILIZING SWITCHING LAW

We show that the singular control and a well-defined sta-
bilizing switching signal have similar features. We propose a
method for approximating the singular control by a discrete-
valued switching signal whose switching intervals have a
positive lower bound, which shows that for any finite interval
[a,b] (a < b) the number of switching times is finite. This
switching signal is a well-defined switching signal (see 1.3.3
in [2] for the detailed definition of well-definedness).

Let α∗ /∈ {0,1} be singular control, and define

Mi := AT
i Pα∗ +Pα∗Ai , i = 1,2.

Consider the following well-defined stabilizing switching law
(Chap. 3.4, [2]):

Sstab :



tk+1 = inf
{

t > tk : xT(t)Mκ(tk)x(t)
> −rκ(tk)x

T(t)Qx(t)
}
, r i ∈ (0,1),

κ(tk+1) = arg min
i∈{1,2}

{
xT(tk+1)Mix(tk+1)

}
,

k= 1,2, . . . ,
κ(0) =arg min

i∈{1,2}

{
xT

0 Mix0
}
.

(31)

This switching law is obtained by modifying a switching law

κ(t) = arg min
i∈{1,2}

{
xT(t)Mix(t)

}
(32)

so that the resulting switching intervalstk+1− tk (k= 1,2, . . .)
have a positive lower bound. Now, notice that the equation
(32) can be further rewritten as

κ(t) = arg min
i∈{1,2}

{
xT(t)Mix(t)

}
= arg min

i∈{1,2}

{
xT(t)(AT

i Pα∗ +Pα∗Ai)x(t)
}

= arg min
i∈{1,2}

{
2xT(t)Pα∗Aix(t)

}
(33)

=

{
1, xT(t)Pα∗(A1−A2)x(t)< 0,
2, xT(t)Pα∗(A1−A2)x(t)> 0.

(34)

Since the regionΩ where the singular control occurs is
included in

Ωsw :=
{

x∈ Rn|xTPα∗(A1−A2)x= 0
}
,
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Algorithm 1 Computation ofr1, r2 in (31).
1: Set a desired relative error levelε > 0, an initial value

r∗ ∈ (0,1), and a sufficiently large evaluation timet f > 0.
2: For an initial statex0 on the singular trajectory of interest,

compute the quadratic costJ∗ by (23). Choose a perturbed
initial statex̃0.

3: loop
4: Compute a quadratic costJ of the well-defined stabiliz-

ing law (31) withx0 = x̃0 and r1 = r2 = r∗ over [0,t f ].
5: if J−J∗

J∗ < ε then
6: break.
7: else
8: r∗← r∗+1

2 .
9: end if

10: end loop
11: Set r1 = r2 = r∗.

the singular control is approximated by the switching law
Sstab in the neighborhood ofΩ if Ωsw is attractive. The
switching lawSstab only gives a larger cost value,J, than the
optimal cost,J∗, obtained by the singular control. However,
the level of approximation can be adjusted by the parameter
r i ∈ (0,1) in (31). If we choose a larger value close to 1,
the switching intervalstk+1− tk become small and the state
trajectory becomes close to the singular trajectory. We give
a simple algorithm, Algorithm 1, to obtain the parameters
r1 and r2 such that the resulting state response satisfies
a prescribed level of approximation. Note that a perturbed
initial state x̃0 is used on line 4 in Algorithm 1, because
xT

0 M1x0 = xT
0 M2x0 holds in theory for an initial statex0 on a

singular trajectory and the initial switching signalκ(0) in (31)
cannot be determined. In practice, however, the exact equality
does not hold in numerical computation, and replacement of
x0 with x̃0 may not be necessary.

Remark 4: The way of the approximating the singular
control in the stabilizing switching law (31) is done by
introducing a hysteresis in (32). Construction of the approxi-
mating discrete-valued switching signal itself is not new; for
example, a feedback switching law with a parameter adjusting
the switching frequency has been reported in [18] and a
frequency modulation method for creating a discrete-valued
signal over a time interval has been used in [19]. In this
section, however, we pointed out the relationship between the
well-known switching law and the singular control, which we
think has not been explicitly addressed so far.

A state-feedback switching law for linear switched systems
has been proposed based on the min-type Lyapunov function
in [16] and it is shown that the switching law gives a good
approximate optimal control with respect to the infinite hori-
zon quadratic cost. We here discuss the relationship between
this switching law and (32). The switching law presented in
Theorem 6 in [16] for the bimodal case with the state weight
Q1 = Q2 = Q> 0 is given by

i∗(x) ∈ I(x) = arg min
i∈{1,2},λ∈L(x)

xT(Pλ −Pi)Aix (35)

where

Pi : AT
i Pi +PiAi +Q= 0, (36)

Pλ : A(λ )TPλ +Pλ A(λ )+Q= 0 (A(λ ) = λ1A1+λ2A2)
(37)

L(x) = arg min
λ∈Λ+(M)

xTPλ x, (38)

Λ+(M) = {{λ1,λ2} : λ1+λ2 = 1,λ1,λ2≥ 0,

Pλ > 0,max(eig(Pλ ))≤M} ,M > 0.
(39)

The objective function in (35) can be computed as

xT(Pλ −Pi)Aix= xTPλ Aix−xTPiAix

= xTPλ Aix−
1
2

xT(PiAi +AT
i Pi)x

= xTPλ Aix+
1
2

xTQx.

Then,since the termxTQx does not affect the minimization,
I(x) becomes

I(x) = arg min
i∈{1,2}, λ∈L(x)

xTPλ Aix

= arg min
i∈{1,2}

xTPλ ∗(x)Aix (40)

where λ ∗(x) ∈ L(x), assumingL(x) is a singleton set. The
control law (40) has the same form as (33) except that the solu-
tion of the Lyapunov equationPλ ∗(x) in (40) is state-dependent
whereas the one in (33) is fixed. The two control laws give the
same switching signal when the statex is in the neighborhood
of the singular trajectory of interest. Note that the control law
(40) requires to solve the optimization problem (38) online,
whereas (33) requires offline optimization of (12) over the
states (on the unitary semisphere) to obtain the fixedPα∗ . If the
state is in the neighborhood of a different singular trajectory,
the control law (33) with the fixedPα∗ does not necessarily
yield an optimal one for this singular trajectory; optimality
loss in this case depends on the difference of the two sets
Ωsw (below (34)) with two differentPα∗ corresponding to two
different singular trajectories.

V. I LLUSTRATIVE EXAMPLE

We consider the bimodal switched system [12] (see also
[13]):

ẋ(t) = Aκ(t)x(t),κ(t) ∈ {1,2}

A1 =

[
−10 5

3 −2

]
, A2 =

[
3 1
7 −20

]
.

The subsystemA1 is stable andA2 is unstable (eigenvalues
A1 : {−11.5678,−0.4322}, A2 : {3.3004,−20.30042}). The
convex combinationA(α) = αA1 + (1− α)A2 is stable for
α : 0.2975< α ≤ 1. We choose the weighting matrixQ =
diag(1,1) in (10). In the following, we find the singular arcs
using the main results (Lemma 1, Theorem 1 and Theorem 2),
and also demonstrate how singular control is approximated by
the well-defined stabilizing switching law addressed in Section
IV.
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We first find singular trajectories using Lemma 1 and
Theorem 1. Among the pointsx= [cosθ ,sinθ ]T (0≤ θ ≤ π),
we found vectors that are linearly dependent with an eigen-
vectorv∗ of A(α∗) (α∗ = argminα g(α,x)). The optimization
problem (12) was solved usingfminbnd in MATLAB. Two
points satisfying the described condition were found and the
correspondingα∗ values are 0.6912 and 0.7733. The scalar
multiples of the points constitute singular trajectories, and
they are plotted in Fig. 1. The optimality condition (24) in
Theorem 2 is satisfied withX =−1003.8 (α∗ = 0.6912) and
X =−426.3 (α∗ = 0.7733).

We compare the singular control with the well-defined
stabilizing switching law addressed in Section IV. For the
initial condition x0 = [3.7679,3.2868]T on the singular tra-
jectory (a), the singular control isu(t) = 0.6912 (κ(t) =
2− u(t) = 1.3088), and the corresponding state trajectories
and time responses are plotted in Figs. 2, 3, and 4 (black solid
curves). The quadratic cost is computed asJ∗ = 1

2xT
0 Pα∗x0 =

2.3129. Although the approximate stabilizing switching law
(31) only achieves a larger cost value thanJ∗, we can compute
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an approximating parameterr1 and r2 in (31) to attain a
prescribed approximation level. Now we choose a relative
error levelε = 0.01 (1%), an initial approximating parameter
r∗ = 0.5, and evaluation timet f = 2.0. Algorithm 1 is then
performed and the approximating parameterr1 = r2 = 0.875
in the well-defined stabilizing switching law (31) is obtained.
The responses withr1 = r2 = 0.5 and 0.875 are shown in
Figs. 2, 3, and 4. We see that more frequent switching occurs
in the control law with largerr i , and the corresponding state
responses are closer to the singular trajectory than those with
smaller r i . The quadratic costs for the stabilizing switching
law with r1 = r2 = 0.5 and 0.875 areJ = 2.5266 and 2.3309,
respectively (relative error: 9.2% and 0.78%, respectively).

Note that when the initial conditionx0 is not on the singular
trajectory, a kind of backward integration is used to compute
a non-singular arc segment (Proposition 4.2, [11]). Let us
illustrate this point. For an initial conditionx0 = [1,6]T , the
state trajectories are plotted in Fig. 5: the subsystemA2 is
first used, and then the switching signal turns into the singular
control. The trajectory resembles the one for a finite-horizon
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optimal control case reported in [12], [13].

VI. CONCLUSION

We have considered a method for characterizing singular
arcs in the optimal control of bimodal switched linear systems.
We showed that a well-defined switching signal can be used to
approximate a singular control. Future research topics include
extension of the method to switched systems with more than
two subsystems and classification of possible optimal controls
by spectra of subsystemsAi . We think that the type of possible
optimal controls is deeply related to the spectra ofAi , and the
present work with the real eigenvalue assumption is a step
toward this direction.

APPENDIX

DERIVATION OF (28) IN THEOREM 2

The representation (28) is obtained as follows. We have

d2

dt2

(
∂H
∂u

)
=

d
dt

(
−xTQA12x−λ T [A2,A12]x

)
=− ẋTQA12x−xTQA12ẋ− λ̇ T [A2,A12]−λ T [A2,A12]ẋ

=−xTAT(u)QA12x−xTQA12A(u)x

− (−Qx−AT(u)λ )T [A2,A12]x−λ T [A2,A12]A(u)x

=−xT(AT(u)QA12+QA12A(u))x

− (−Qx−AT(u)λ )T [A(u),A12]x−λ T [A(u),A12]A(u)x,

and substitutingA(u) =A2+uA12 in the above equation and
arranging with respect tou leads to

−xT(AT
2 QA12+uAT

12QA12+QA12A2+uQA2
12)x

− (−Qx−AT
2 λ −uAT

12λ )T [A2,A12]x−λ T [A2,A12]A2x

−uλ T [A2,A12]A12x

=−xT(AT
2 Q−QA2)A12x−2xTQA12A2x+λ T [A2, [A2,A12]]x

−u
{

xT(AT
12Q+QA12)A12x−λ T [A12, [A2,A12]]x

}
=C(x,λ )+uD(x,λ ).
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