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Abstract The present study experimentally investigates am-
plitude death in delay-coupled double-scroll circuits with
a time-varying network topology that randomly changes at
a regular interval. Circuit experiments show that amplitude
death can occur in the time-varying network. Furthermore,
the experimental results well agree with the analytical re-
sults obtained based on a time-averaged adjacency matrix
when the interval is much shorter than the natural period of
the double-scroll circuits.

Keywords Amplitude death · Delayed coupling · Time-
varying network topology

1 Introduction

A variety of nonlinear phenomena in coupled oscillators are
induced by mutual interactions among oscillators [2]. These
interactions are roughly classified into weak and strong types.
The former mainly influences the phase of each oscillator.
Phase synchronization can thus occur in coupled oscillators
[3,4]. The latter influences not only the phase but also the
amplitude of each oscillator. Strong interaction can induce
oscillation quenching in coupled oscillators [5–7]. Ampli-
tude death, a quenching phenomenon, is the stabilization
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of the steady state in coupled oscillators. This phenomenon
occurs in both coupled limit-cycle oscillators and coupled
chaotic oscillators [8]. Recently, amplitude death has been
found in various types of coupled oscillator, such as quan-
tum self-oscillators [9], fractional-order oscillators [10,11],
and reaction diffusion systems [12,13]. In addition, partial
amplitude death, where an oscillator either converges onto
its own equilibrium point or maintains oscillation, has been
reported [14].

Amplitude death has great potential application for the
suppression of undesired oscillations in various engineering
systems [15–20]. It is of considerable importance for stable
operation of coupled permanent-magnet synchronous mo-
tors [15]. An unnecessary oscillation of the dc bus voltage is
quenched by coupling a pair of dc microgrids [16,17]. Am-
plitude death can be used to suppress thermoacoustic oscil-
lations, which can harm gas turbine engines [18–20]．

Early research on amplitude death concluded that a fre-
quency mismatch between oscillators is required to induce
amplitude death [21,22]. However, some coupling schemes
that can cause amplitude death in identical coupled oscilla-
tors have been proposed, such as delayed connections [23,
24], dynamic connections [25], conjugate connections [26],
mean-field connections [27], and direct and indirect connec-
tions [28]. Delayed connections have attracted much atten-
tion [6,29] because time delay is inherent in interactions in
real systems (e.g., autapse connections in neural networks
[30–32]). Amplitude death induced by delayed connections
has been studied for ring networks [33], all-to-all networks
[11], small world networks [34], random networks [34], and
scale-free networks [35].

Most studies on amplitude death have considered only
time-invariant networks. However, it is well known that a lot
of networks in the real world have time-varying topologies,
such as ad-hoc networks [36], physiological networks [37],
neural networks [38], epidemic systems [39], and gene reg-
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Fig. 1 Illustration of a randomly time-varying network with 5 oscillators. (a) Time variation of the network with regular interval ∆t; (b) constraint
matrix H, which limits the network topology; (c) elements of the adjacency matrix E(t).

ulatory networks [40]. We are thus interested in amplitude
death in time-varying networks.

Stability analysis for such networks is quite difficult be-
cause the local stability of amplitude death is equivalent
to that of linear time-varying systems with delay. For this
difficult task, we previously numerically investigated am-
plitude death in a simple time-varying network [41] whose
topology randomly changed at a regular interval and whose
nodes were the two-dimensional Stuart-Landau oscillators.
However, our previous study did not address two signifi-
cant problems related to the practical usage of amplitude
death. First, amplitude death has not been experimentally
confirmed in time-varying networks; experimental investi-
gation of the robustness against noise and parameter mis-
match, which are unavoidable in real systems, is quite im-
portant from an engineering point of view. Second, our pre-
vious study focused only on the Stuart-Landau oscillator,
which is a two-dimensional periodic normal form of Hopf
bifurcation. Thus, we need to confirm whether amplitude
death occurs in more general oscillators, since the dynamics
of many real oscillators is not only periodic but also usually

more complex (e.g., chaotic) due to their high dimensional-
ity of three or higher.

The present study addresses these problems by perform-
ing real circuit experiments on amplitude death in a time-
varying network. In our experiments, a three-dimensional
chaotic circuit [42] is employed as the oscillator. The time-
varying topology, implemented using analog switches that
are opened and closed by binary signals, randomly changes
at a regular interval. It is shown that amplitude death occurs
in the time-varying network1. Furthermore, it is observed
that if the regular interval of the time-varying topology is
sufficiently shorter than the natural period of the chaotic cir-
cuit, the results of the approximate stability analysis based
on a time-averaged adjacency matrix are in good agreement
with the behavior of the circuit.

1 Various known collective behaviors, such as complete synchro-
nization, partial synchronization, and chimera state, that can occur in
delayed coupled oscillators [43] are not covered in the present study.
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Fig. 2 Circuit diagram of coupled oscillator circuits for N = 2. Each OSC consists of a double-scroll circuit and a delay unit; SW consists of two
switching devices and coupling resisters.

2 Delay-coupled oscillators with randomly time-varying
network

Let us briefly review randomly time-varying networks [41].
Figure 1(a) shows delay-coupled oscillators whose network
topology changes at regular interval ∆t > 0. Two oscillators
are connected with probability p ∈ [0, 1] and are not con-
nected with probability 1 − p according to constraint matrix
H = {h j,l}, as shown in Fig. 1(b). The element h j,l ∈ {0, 1}
governs the connection between oscillators as follows: if
h j,l = hl, j = 1, the j-th and l-th oscillators are allowed to
be connected; if h j,l = hl, j = 0, they are not allowed to
be connected; self-feedback is not allowed (i.e., h j, j ≡ 0).
For instance, as illustrated in Figs. 1(a) and (b), oscillator
1 (OSC 1) is allowed to be connected to oscillator 5 (OSC
5) because h1,5 = h5,1 = 1, but not to oscillator 4 (OSC 4)
because h1,4 = h4,1 = 0.

The time-varying network topology at time t is described
by an adjacency matrix {E(t)} j,l = h j,lε j,l(t), where ε j,l(t) =
εl, j(t) ∈ {0, 1} is a random binary signal with interval ∆t.
We have ε j,l(t) = εl, j(t) = 1 with a probability of p and
ε j,l(t) = εl, j(t) = 0 with a probability of 1 − p. Based on
this random signal, the j-th and l-th oscillators are coupled
with probability p if h j,l = hl, j = 1. The random signals
ε j,l(t) = εl, j(t) for j, l ∈ {1, . . . ,N} are independent of each
other. Figure 1(c) shows an example of three elements of
adjacency matrix E(t). Since we have h1,2ε1,2(t) = 1 for
t ∈
[
(n−1)∆t, n∆t

)
and h1,2ε1,2(t) = 0 for t ∈

[
n∆t, (n+2)∆t

)
,

OSC 1 and OSC 2 are connected only for t ∈
[
(n−1)∆t, n∆t

)

in Fig. 1(a). Additionally, since we have h1,4ε1,4(t) ≡ 0 be-
cause h1,4 = 0, OSC 1 and OSC 4 are never connected.

Let N be the number of oscillators. The dynamics of the
j-th oscillator is expressed as

ẋ( j)(t) = F
(
x( j)(t)

)
+ bu( j)(t)

y( j)(t) = cx( j)(t)
( j = 1, . . . ,N), (1)

where x( j)(t) ∈ Rm and y( j)(t) ∈ R are the state variable and
the output signal of the j-th oscillator, respectively. F(x) :
Rm → Rm is a nonlinear function, which is assumed to have
at least one equilibrium point x∗ satisfying F(x∗) = 0. Vec-
tor b ∈ Rm denotes the input coefficient vector and vector
c ∈ R1×m denotes the output coefficient vector. The input
signal u( j)(t) ∈ R is given by

u( j)(t) = k
N∑

l=1

h j,lε j,l(t)
{
y(l)(t − τ) − y( j)(t)

}
, (2)

where k ∈ R is the coupling strength. y(l)(t − τ) ∈ R denotes
the delayed output signal with connection delay τ ≥ 0 from
the l-th oscillator. Coupled oscillators (1) and (2) have the
homogeneous steady state

[
x(1)T

(t) · · · x(N)T
(t)
]T
=
[
x∗T · · · x∗T

]T
. (3)

We now focus on the local stability of this steady state. Lin-
earizing coupled oscillators (1) and (2) at steady state (3)
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Fig. 3 Time-series data of voltages v(1),(2)
b at (k, τ) = (4.85, 0.50) for a pair of oscillator circuits with random on-off switching (p = 0.5) for (a)

∆t = 0.080 ms and (b) ∆t = 2.000 ms. The errors δ for (a) and (b) correspond to points A and B in Fig. 4, respectively.

yields the following time-varying linear system with delay:

∆Ẋ(t) = (IN ⊗ A)∆X(t) + k
[(

E(t) ⊗ bc
)
∆X(t − τ)

−
{
diag (d1(t), . . . , dN(t)) ⊗ bc

}
∆X(t)

]
, (4)

where ∆X(t) :=
[
∆x(1)T (t) · · ·∆x(N)T (t)

]T
, ∆x( j) := x( j) − x∗

( j = 1, ...,N), and A := {∂F(x)/∂x}x=x∗ . The symbol ⊗ de-
notes the Kronecker product. The time-varying degree of the
j-th oscillator is defined by d j(t) :=

∑N
l=1{E(t)} j,l. It should

be emphasized that the stability analysis of linear system (4)
is a difficult task because of its time-varying matrices [i.e.,
E(t) and diag (d1(t), . . . , dN(t))] and time delay. In Sec. 4,
we approximately analyze the stability of linear system (4)
based on a time-averaged adjacency matrix.

3 Circuit experiments on amplitude death

We now experimentally investigate amplitude death in the
delay-coupled double-scroll circuits with a randomly time-
varying network topology. This section considers two cases:
a pair of oscillator circuits (N = 2) and a network consisting
of five oscillator circuits (N = 5).

3.1 Pair of oscillator circuits (N = 2)

Consider the pair of double-scroll circuits [42] coupled by a
delayed connection with random on-off switching shown in
Fig. 2. Each oscillator circuit, which has capacitors Ca and
Cb, linear resistor Rd, nonlinear resistor NR, and inductor L,

is governed by the circuit equation

Ca
dv( j)

a

dt
=

1
Rd

(
v( j)

b − v( j)
a

)
− h
(
v( j)

a

)
Cb

dv( j)
b

dt
=

1
Rd

(
v( j)

a − v( j)
b

)
+ i( j)

L + i( j)
u

L
di( j)

L

dt
= −v( j)

b

, ( j = 1, 2). (5)

The current through NR with parameters m0,1 and Bp is given
by h(v) := m0v + (m1 − m0)

{|v + Bp| − |v − Bp|
}
/2. The volt-

ages, v(1)
b and v(2)

b , across Cb are applied to the delay unit2,
and then delayed voltages v(1)

b (t − T ) and v(2)
b (t − T ) with

delay time T are applied to coupling resistor r through the
switching devices3. The coupling currents flowing to each
oscillator are given by

i(1)
u =

1
r

h1,2ε1,2(t)
{
v(2)

b (t − T ) − v(1)
b (t)
}
,

i(2)
u =

1
r

h2,1ε2,1(t)
{
v(1)

b (t − T ) − v(2)
b (t)
}
.

(6)

A switching device passes (does not pass) the delayed volt-
age directly to the coupling resistor when the binary volt-
age signal applied to the device is at a high (low) level (see
Appendix A); that is, the two oscillator circuits are coupled
(i.e., h1,2ε1,2(t) = h2,1ε2,1(t) = 1) if the signal is high, and
are isolated (i.e., h1,2ε1,2(t) = h2,1ε2,1(t) = 0) if the signal is
low.

2 The delay unit is mainly implemented by a peripheral interface
controller (PIC) [44]. The voltage v( j)

b is stored in the memory of the
PIC through its built-in 8-bit analog-to-digital (A/D) converter with
sampling period 25 µs. The delayed digital signal is output from the
PIC and converted to delayed voltage v( j)

b (t − T ) by a digital-to-analog
(D/A) converter.

3 Resistor r includes the on-resistance of the switching device.
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Fig. 4 Stability region in coupling parameter (k, τ) space for a pair of oscillators (N = 2) for (a) ∆t = 0.080 ms, (b) ∆t = 0.800 ms, (c) ∆t =
2.000 ms, and (d) a time-invariant network. Circles denote coupling parameter sets (k, τ) for the experiment, and their color represents error δ.
The curves and regions respectively denote the marginal stability curves and the stability regions analytically derived based on the time-averaged
adjacency matrix.

The nominal parameters of the oscillator circuits are fixed
at

Ca = 0.1 µF, Cb = 1.0 µF, L = 180 mH, Rd = 1.8 kΩ,

m0 = −0.4 mS, m1 = −0.8 mS, Bp = 1 V, (7)

throughout the present study, where each isolated oscillator
circuit shows a double-scroll attractor [45]. Note that oscil-
lators (5) with coupling currents (6) can be written as cou-
pled oscillators (1) and (2) with

F(x) =


η
{
x2 − x1 − ĝ(x1)

}
x1 − x2 + x3

−γx2

 , b =


0
1
0

 , c =


0
1
0


T

, (8)

where

x1 :=
va

Bp
, x2 :=

vb

Bp
, x3 :=

iLRd

Bp
, η :=

Cb

Ca
, γ :=

R2
dCb

L
,

a := m1Rd, b := m0Rd, k :=
Rd

r
, τ :=

T
RdCb

, (9)

ĝ(x) := bx +
1
2

(b − a)
{
|x − 1| − |x + 1|

}
.

The dimensionless time t/RdCb is used instead of the real
time t. Coupled oscillators (1) and (2) with Eq. (8) have three
equilibrium points, namely x±∗ =

[
±p∗ 0 ∓ p∗

]T
and x0

T =

[
0 0 0

]T
, where p∗ := (b − a)/(b + 1). Here, the natural

period4 of the oscillator circuit around the equilibrium point
x∗± is Tf ≈ 3 ms.

Let us experimentally examine amplitude death in a pair
of delay-coupled double-scroll circuits. The connection prob-
ability is fixed at p = 0.5 throughout the present study. In
other words, there is a 50% chance that the binary voltage
signal will be high. The constraint matrix is set to

H =
[
0 1
1 0

]
, (10)

(i.e., h1,2 = h2,1 = 1 in Eq. (6)); that is, the two oscillator
circuits are allowed to be connected. The coupling strength
and the connection delay are set to (k, τ) = (4.85, 0.50). Fig-
ure 3 shows the time-series data of v(1),(2)

b for the switching
intervals ∆t = 0.080 ms and 2.000 ms in the coupled circuits
shown in Fig. 2. These switching intervals correspond to
the fast and slow switching of the network topology, respec-
tively (the natural period of the oscillator circuit Tf ≈ 3 ms).
The two isolated oscillator circuits start to be coupled by
coupling current (6) at t = 0.50 s. With the short interval

4 The period Tf ≈ 3 ms is estimated using the eigenvalues of Jaco-
bian matrix A at equilibrium point x±∗. Operational amplifiers with a
slew rate of 13 V/µs, which is sufficiently high compared with the pe-
riod Tf and the voltage range of the oscillator circuit, are employed to
make nonlinear resistor NR.
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Fig. 5 Circuit diagram of a network with five oscillators (N = 5). OSC
and SW are the same as those in Fig. 2.

∆t = 0.080 ms, these voltages converge onto the equilibrium
point (i.e., amplitude death), as shown in Fig. 3(a), whereas
with the long interval ∆t = 2.000 ms, they do not, as shown
in Fig. 3(b). To quantitatively evaluate the stability of the
equilibrium point in the circuit experiments, we define the
mean absolute error δ [V] from the equilibrium point:

δ :=
〈

1
N

N∑
j=1

∣∣∣∣v( j)
b (t) − v∗b

∣∣∣∣〉. (11)

Here, ⟨·⟩ denotes the average over time interval t ∈ [t0 +
0.5, t0+1.0], where t0 is the start time of coupling and v∗b ≡ 0
is steady-state voltage v( j)

b (t) on the equilibrium point5. In
Fig. 3(a), the voltages converge onto the equilibrium point
with a small error (δ = 0.0065 V). In contrast, in Fig. 3(b),
the error is large (δ = 0.0489 V). Figures 4(a), (b), and (c)
show error δ in coupling parameter (k, τ) space for intervals
∆t = 0.080 ms, 0.800 ms, and 2.000 ms, respectively. The
circles denote coupling parameter sets (k, τ) for the circuit
experiments. Their color represents the value of δ. Black cir-
cles denote amplitude death. It can be seen that the number
of stable parameter sets decreases as interval ∆t increases.
The curves in Fig. 4 denote the marginal stability curves,
which are discussed in Sec. 4. Figure 4(d) shows the exper-
imental results for the time-invariant network (i.e., ε1,2(t) =
ε2,1(t) ≡ 1) with adjacency matrix (10). At τ ≈ 1.5, there
is no stable parameter set for k greater than 3. For the fast
time-varying network (see Fig. 4(a)), stable parameter sets
exist even for k ≈ 6.

3.2 Oscillator network (N = 5)

We now consider the network consisting of five oscillator
circuits (N = 5) shown in Fig. 5, where OSC and SW are

5 For calculating Eq. (11), we measured voltages v( j)
b , ∀ j ∈

{1, . . . ,N} in parallel using an A/D board (see Appendix A).

the same as those in Fig. 2. The coupling currents flowing to
each oscillator are given by

i( j)
u (t) =

1
r

5∑
l=1

h j,lε j,l(t)
{
v(l)

b (t − τ) − v( j)
b (t)
}
, ( j = 1, . . . , 5).

(12)

Currents (12) can be written in non-dimensional form (2)
via variable transformation (9).

This subsection considers the following two constraint
matrices:

Hring :=


0 1 0 0 1
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
1 0 0 1 0


, Hall :=


0 1 1 1 1
1 0 1 1 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0


. (13)

Note that Hring and Hall represent the adjacency matrices
of a ring network (see Fig. 1(b)) and an all-to-all network,
respectively. Let us demonstrate the implementation of the
time-varying topology based on constraint matrices Hring

and Hall. Figure 6 shows the time-series data of the five
oscillator circuits and the binary voltage signals applied to
SWs with interval ∆t = 0.800 ms for Hring and Hall. Here,
( j−l) denotes the binary voltage signal applied to the SW be-
tween the j-th and l-th oscillator circuits, as shown in Fig. 5.
The connection parameters are fixed at (k, τ) = (1.78, 0.50).
Until t = 0.01 s, all the binary voltage signals are low; that
is, all the oscillator circuits are isolated (i.e., h j,lε j,l(t) ≡ 0,
∀ j, l in Eq. (12)). After t = 0.01 s, the signals randomly
and independently take high or low levels with interval ∆t =
0.800 ms based on the constraint matrix. For Hring, as shown
in Fig. 6(a), voltages v(1)

b , . . . , v
(5)
b converge onto the equilib-

rium point even though signals (2−5), (1−3), (2−4), (3−5),
and (1 − 4) are always low due to constraint matrix Hring.
For Hall (see Fig. 6(b)), all the voltages of the oscillator cir-
cuits also converge onto the equilibrium point; in contrast to
Hring, there are no binary voltage signals that always take a
low level.

Figures 7(a), (b), and (c) show the experimental results
for constraint matrix Hring in (k, τ) space with intervals ∆t =
0.080 ms, 0.800 ms, and 2.000 ms, respectively. Figures 8(a),
(b), and (c) show the results for Hall. It can be seen that for
Hring, the number of stable parameter sets (k, τ) decreases as
interval ∆t increases, whereas for Hall, this number depends
little on ∆t. These experimental results are consistent with
our numerical results [41]. Note that with Hring and Hall,
each oscillator circuit is allowed to be connected with two
and four neighboring oscillator circuits, respectively. This
difference in the number of neighbors may have affected the
results; however, the influence of the number of neighbors
and interval ∆t on the stability of amplitude death in a ran-
domly time-varying network has not been sufficiently inves-
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Fig. 6 Time-series data for five oscillator circuits with randomly time-varying network topology (top) and binary voltage signals applied to SWs
(bottom). (a) Hring and (b) Hall. The symbol ( j − l) represents the binary voltage signal applied to the SW between the j-th and l-th oscillator
circuits in Fig. 5: the j-th and l-th oscillator circuits are connected if the signal is high, and are isolated if it is low. For (a), the binary voltage
signals (2 − 5), (1 − 3), (2 − 4), (3 − 5), and (1 − 4) are always low due to constraint matrix Hring.

tigated. A detailed investigation of this relation is left for
future work.

Figures 7(d) and 8(d) show the experimental results for
the time-invariant network with adjacency matrices Hring

and Hall, respectively. For τ ≈ 3 in Fig. 7(d), amplitude
death does not occur for k greater than 3, whereas in Fig. 7(a),
it occurs for k greater than 3. Similar results can also be ob-
served in Figs. 8(d) and 8(a).

4 Stability analysis based on time-averaged adjacency
matrix

The previous section experimentally verified amplitude death
in a randomly time-varying network. This section analyti-
cally investigates the stability of amplitude death. As stated
in Sec. 2, it is difficult to analyze the local stability of am-
plitude death in a time-varying network. Thus, this section
approximately analyzes the stability based on an analysis
method proposed in previous studies [46–48] and compares
the results with the experimental results.

4.1 Stability analysis based on time-averaged adjacency
matrix

For sufficiently long time L (≫ ∆t), the random binary signal
in Eq. (2) can be averaged as

1
L

∫ t+L

t
ε j,l(r)dr = p. (14)

If this averaging is approximately valid for time-variant sys-
tem (4) with delay, then we can reduce it to a time-invariant
system with delay as

∆Ẋ(t) = (IN ⊗ A)∆X(t) + k
[
(pH ⊗ bc)∆X(t − τ)

−
{

pdiag(d1, . . . , dN) ⊗ bc
}
∆X(t)

]
, (15)

where pH is the time-averaged adjacency matrix, and d j :=∑N
l=1 h j,l ( j = 1, . . . ,N). Note that previous studies [46–48]

mathematically proved the validity of the averaging shown
above for time-variant systems without delay: the local sta-
bility of synchronization in a fast time-varying network, whi-
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Fig. 7 Stability regions for Hring for (a) ∆t = 0.080 ms, (b) ∆t = 0.800 ms, (c) ∆t = 2.000 ms, and (d) a time-invariant network. Circles, curves,
and shaded areas are the same as those in Fig. 4.

ch is governed by a linear time-variant system without de-
lay, can be approximately reduced to the stability of a lin-
ear time-invariant system without delay. The present study
focuses on time-variant system (4) with delay, for which
the validity has not been proven. Thus, it is not presently
guaranteed that the stability of system (4) with delay can
be approximately reduced to that of system (15) with delay.
Guaranteeing the above is a difficult task. Therefore, in the
following, we analyze the stability of amplitude death un-
der the assumption that the averaging in Eq. (14) is valid for
time-variant system (4) with delay.

Suppose that the row sum of H is equivalent to D (i.e.,
d j = D,∀ j ∈ {1, . . . ,N}). Then, diagonal matrix diag(d1

, . . . , dN) can be rewritten as DIN . Thus, linear system (15)
with the time-averaged adjacency matrix is simplified to

∆Ẋ(t) =
{
IN⊗(A−pkDbc)

}
∆X(t)+kp(H⊗bc)∆X(t−τ). (16)

The stability of linear system (16) is governed by the roots
of the following characteristic equation:

G(s) = det
[
sINm−

{
IN⊗(A−kpDbc)

}−kp(H⊗bc)e−sτ
]
. (17)

Real symmetric matrix H can be diagonalized as T−1HT =
diag(ρ1, . . . , ρN) using orthogonal matrix T, where ρq (q =
1, . . . ,N) ∈ R are the eigenvalues of H. This diagonalization

yields N characteristic equations

G(s) =
N∏

q=1

g(s, ρq),

g(s, ρ) := det
[
sIm − A + kpDbc − kpρbce−sτ

]
. (18)

We see that linear system (16) with the time-averaged adja-
cency matrix is stable if and only if g(s, ρq) is stable for all
q ∈ {1, . . . ,N}. Equation (18) allows us to analytically ob-
tain the marginal stability curves and the stability regions in
coupling parameter (k, τ) space (see Appendix B) [49].

4.2 Comparison with experimental results

Let us derive the marginal stability curves with the Jacobian
matrix of oscillator circuit (8) at equilibrium point x∗±,

A =


−η(b + 1) η 0

1 −1 1
0 γ 0

 , (19)

where the parameters

η = 10, γ = 18, b = −0.72, a = −1.44,

are calculated from circuit parameters (7). The marginal sta-
bility curves obtained using the procedure in Appendix B
are shown in Figs. 4(a)-(c), 7(a)-(c), and 8(a)-(c). The bold
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Fig. 8 Stability regions for Hall for (a) ∆t = 0.080 ms, (b) ∆t = 0.800 ms, (c) ∆t = 2.000 ms, and (d) a time-invariant network. Circles, curves, and
shaded areas are the same as those in Fig. 4.

(thin) curves represent the crossing direction of the charac-
teristic roots of g(s, ρ) = 0: the roots cross the imaginary
axis towards stability (instability) when parameter set (k, τ)
crosses the curves with an increment k. The shaded areas de-
note the stability regions where all the roots of G(s) = 0 lie
in the left-half complex plane; that is, linear system (16) is
stable for sets (k, τ) within these regions.

For ∆t = 0.080 ms (i.e., a fast time-varying network),
shown in Figs. 4(a), 7(a), and 8(a), the stable parameter sets
for our experiment (i.e., black circles) well agree with the
stability regions obtained based on the time-averaged adja-
cency matrix (i.e., shaded areas) despite that our circuits in-
clude small parameter mismatch6. However, for ∆t = 2.000 ms
(i.e., a slow time-varying network), shown in Figs. 4(c) and
7(c), our analytical results do not well agree with the experi-
mental results. Of note, in Fig. 8(c), our analytical results are
in good agreement with the experimental results. This sug-
gests that the upper limit of switching interval ∆t, for which
the experimental results agree with the analysis based on the
time-averaged matrix, depends on the constraint matrix.

For the time-invariant network (i.e., Figs 4(d), 7(d), and
8(d)), the marginal stability curves and the stability regions
can be derived by substituting p = 1 into Eq. (18). Com-
pared with the regions for the time-varying network, those
for the time-invariant network shrink in the direction of cou-

6 The resistors in our circuits have a tolerance of 1%. We selected
capacitors that deviated by less than 0.6% from their nominal values.

pling strength k. This is because coupling strength k is mul-
tiplied by probability p in Eq. (18). This implies that ampli-
tude death occurs for larger coupling strength k as coupling
probability p decreases.

5 Conclusion

The present study investigated amplitude death experimen-
tally in delay-coupled double-scroll circuits with a randomly
time-varying network topology. Our circuit experiments sho-
wed that amplitude death can occur in such a time-varying
network. Furthermore, for the fast time-varying network, the
approximate stability analysis based on the time-averaged
adjacency matrix well agreed with the experimental results.

The present study considered only the typical constraint
matrix of a time-varying network topology, which has the
same sum for each row. Constraint matrices with different
row sums (e.g., the adjacency matrix of a small-world net-
work) will be investigated in future work. Furthermore, am-
plitude death induced in a time-varying network topology
with different types of oscillator, such as fractional-order
systems [10,11,50] and oscillators with hidden chaotic at-
tractors [51], will also be the subject of future work.

Acknowledgements The present study was partially supported by JSPS
KAKENHI (JP 26289131, JP 18H03306, and JP 17K12748).
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Fig. 9 Experimental setup for N = 2. OSC and SW are the same as
those in Fig. 2.

A Implementation of time-varying network and
measurement circuit

This appendix shows how to implement a time-varying network and
measurement circuit. For simplicity, we explain a pair of oscillator cir-
cuits (i.e., N = 2) even though we experimentally implemented a net-
work with five oscillator circuits (i.e., N = 5), as shown in Fig. 5.
Figure 9 illustrates the experimental setup, where OSC and SW are
the same as those in Fig. 2. The digital output board (PEX-H293022,
Interface Corp.) attached to Computer 1 outputs the binary voltage sig-
nal with interval ∆t. This signal is generated as follows: (1) Computer 1
generates random variable ε1,2(t) = ε2,1(t) ∈ {0, 1}; this variable is mul-
tiplied by h1,2 = h2,1; (2) the digital output board outputs a high (low)
level signal if h1,2ε2,1(t) = 1 (h1,2ε2,1(t) = 0); (3) steps (1) and (2) are
repeated at regular interval ∆t. The binary voltage signal is applied to
the two analog switching devices (ADG452) in SW. OSCs 1 and 2 are
connected only when a high level signal is applied to the switching de-
vices. Furthermore, since the digital output board can output 12 signals
in parallel, the board can operate not only for one SW (i.e., N = 2), but
for 10 SWs, as shown in Fig. 5. In the case of 10 SWs (i.e., N = 5), all
10 binary voltage signals are simultaneously generated at interval ∆t,
as shown in Fig. 6.

Voltages v(1)
b and v(2)

b of the oscillator circuits are fed into Com-
puter 2 through a 12-bit A/D input board (PCI-3153, Interface Corp.,
sampling rate: 30 kHz, input voltage range: ±5 V). The A/D input board
can measure up to 16 voltages in parallel. The measured voltages are
used for calculating error δ in Eq. (11).

In a previous study [52], a pair of double-scroll circuits (i.e., N =
2) with a time-varying network was implemented, in which the circuits
were coupled by a static (i.e., non-delayed) connection. This previous
study investigated synchronization numerically and experimentally in
time-varying networks. Neither amplitude death nor a delayed connec-
tion was considered. In addition, three or more oscillators were not
experimentally implemented.
B Procedure for drawing marginal stability curves

Here, we derive the marginal stability curves (see Chapter 5 in [49]
for more details) of Eq. (18) in coupling parameter (k, τ) space. By
substituting s = iλ, λ ∈ R, the Jacobian matrix (19), and the input and
output coefficient vectors (8) into g(s, ρ) = 0, we can obtain its real and
imaginary parts,−η̄λkpρ sin λτ + λ2kpρ cos λτ + θR(λ) − λ2kpD = 0
−λ2kpρ sin λτ − η̄λkpρ cos λτ + θI(λ) + η̄λkpD = 0

, (20)

where η̄ := η(b+1), θR(λ) := −λ2(η̄+1)+η̄γ, and θI(λ) := λ(γ+ηb−λ2).
Because sin2 x + cos2 x = 1, we get

λ2 p2
(
λ2 + η̄2

) (
D2 − ρ2

)
k2

+ 2λpD
{
−λθR(λ) + η̄θI(λ)

}
k + θ2R(λ) + θ2I (λ) = 0. (21)

Equation (21) can be solved with respect to k,

k(λ) =
−D
{
−λθR(λ) + η̄θI(λ)

}
±
√

Dd(λ)

λp
(
λ2 + η̄2) (D2 − ρ2)

, (22)

where Dd(λ) is given by

Dd(λ) := −D2
{
λθI(λ) + η̄θR(λ)

}2
+ ρ2
(
λ2 + η̄2

) {
θI(λ)2 + θR(λ)2

}
.

Furthermore, from Eq. (20), we have

τ(λ, n) =

1
λ

{
Tan−1 η̄θR(λ) + λθI(λ)

η̄θI(λ) − λθR(λ) + λk(λ)pD
(
λ2 + η̄2) + nπ

}
, (23)

where n = 1, 2, . . .. Thus, the marginal stability curves can be theoreti-
cally drawn in (k, τ) space from Eqs. (22) and (23) using λ in the range
of Dd(λ) > 0.

Furthermore, to estimate the stability region, the direction of the
roots of g(iλ, ρ) = 0 crossing the imaginary axis is required. The direc-
tion is obtained based on the sign of the following equation:

Re
[

ds
dk

]
s=iλ
= Re

 −ipλ(iλ + η̄)(D − ρe−iλτ)

−λ2 + γ − η + iλ
{
1 + kp

(
D − ρe−iλτ)} + (iλ + η̄)

[
i2λ + 1 + kp

{
D − (1 − iλτ) ρe−iλτ}]

 . (24)

A positive (negative) sign for Eq. (24) denotes that the roots cross the
imaginary axis from left to right (right to left) as coupling strength k
increases.
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