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Koopman mode decomposition (KMD) is a technique of nonlinear time-series analysis capable of decompos-
ing data on complex spatiotemporal dynamics into multiple modes oscillating with single frequencies, called the
Koopman modes (KMs). We apply KMD to measurement data on oscillatory dynamics of a temperature field
inside a room that is a complex phenomenon ubiquitous in our daily lives and has a clear technological motivation
in energy-efficient air conditioning. To characterize not only the oscillatory field (scalar field) but also associated
heat flux (vector field), we introduce the notion of a temperature gradient using the spatial gradient of a KM.
By estimating the temperature gradient directly from data, we show that KMD is capable of extracting a distinct
structure of the heat flux embedded in the oscillatory temperature field, relevant in terms of air conditioning.
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I. INTRODUCTION

In this paper, we address dynamics of a temperature field
arising in a room. The thermal dynamics are ubiquitous in our
daily lives and typical of complex phenomena emerging as an
interaction of physical and engineered systems such as fluid
flows, air conditioners, and humans [1]. Exploring the dynam-
ics is of fundamental interest in far-from-equilibrium physics
and of technological significance in energy-efficient air con-
ditioning, especially by in situ diagnosis of temperature-field
dynamics. The dynamics are traditionally studied with the
model-based approach, that is, numerical simulations of non-
linear differential equations of fluid flows and so on, which
is referred to as computational fluid dynamics (CFD): see,
e.g., Refs. [2,3]. Because CFD is normally time-consuming,
it is not applicable to the in situ diagnosis of temperature-
field dynamics. Thus, instead of the model-based approach,
an alternative data-based approach to the in situ diagnosis
has been desirable and feasible due to the development of
internet-of-things technology; see, e.g., Refs. [4,5].

Recently, the second author’s group proposed the use of
Koopman mode decomposition (KMD) for the dynamical
analysis of heat transfer inside atriums in buildings [6,7].
KMD is a new technique of nonlinear time-series analysis
based on eigenvalues of the so-called Koopman operator,
which is a linear infinite-dimensional operator defined for a
nonlinear dynamical systems [8–10]. The technique is capable
of decomposing multichannel time series into modal oscil-
lations, each of which contains a single frequency, charac-
terized by the eigenvalues. KMD has the solid mathematical
foundation on an operator theory of dynamical systems [8], a
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clear property of timescale separation of complex spatiotem-
poral dynamics, and has been used widely in modeling and
analysis of thermal dynamics in buildings [11–15].

The purpose of this paper is to utilize the capability of
data-driven KMD for characterizing oscillatory dynamics of
a temperature field inside a room. Specifically, we estimate
the spatial derivative of such an oscillatory temperature field,
which we will term a temperature gradient, directly from
measurement data without development of underlying dy-
namic models. The estimation of a temperature gradient is
direct to the in situ diagnosis of heat flux inside a room
according to the well-known Fourier’s law [16], which is
related to the conservation law of the total internal energy of
working air. The estimation method is based on the so-called
phase averaging that is widely used in fluid research [17] and
connected to the Koopman operator framework in Ref. [8]. We
apply the method to time-series data on temperature measured
in a practically used laboratory space and then show that
KMD is capable of extracting a distinct structure of the heat
flux embedded in the oscillatory temperature field, which is
relevant in terms of air conditioning.

The current application of KMD is novel in terms of
the previous studies [6,7,11–15]. The authors of Ref. [11]
focus on long-term (24 h period) thermal dynamics for a
whole building system, for which a minimal component is a
room. The same focus appears in the papers [12,13,15]. In
Refs. [6,7,14] the authors focus on short-term dynamics (less
than a 6 h period) in building systems, while not focusing
on the fine-scale spatial structure inside a room, namely, the
temperature field. In this paper, we conduct KMD of the
short-term, fine-scale dynamics of a temperature field.

This paper is organized as follows. In Sec. II we intro-
duce the methodology utilized in this paper to analyze the
oscillatory dynamics of a temperature field directly from
measurement data. In Sec. III we introduce the data on a
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temperature field measured inside a practically used room.
Section IV is the main result of this paper and devoted to
the data-based analysis of a temperature field oscillating in
time and associated structure of heat flux. We summarize and
outline future work in Sec. V.

II. METHODOLOGY

We introduce KMD as the key technique in this paper and
then derive a simple method for estimating the spatial gradient
of a temperature field directly from measurement data via
KMD.

A. Koopman operator and Koopman mode decomposition

Consider a continuous-time, finite-dimensional dynamical
system described by the following ordinary differential equa-
tion:

dx
dt

= F(x), ∀x ∈ Rn, (1)

where x ∈ Rn is the state of the system, and F: Rn → Rn is
the nonlinear vector field. Under a proper condition of F, the
so-called flow St : Rn → Rn, t � 0 is defined as one parameter
semigroup based on trajectories of the system (1). Here we
introduce a function defined on the state space, f : Rn → C,
and we call it an observable while writing a space of all
observables as K. Then the linear operator Ut : K → K, t � 0
mapping an observable f to new one is defined through the
composition as

Ut f := f ◦ St , ∀ f ∈ K. (2)

This Ut is called the Koopman operator and an infinite-
dimensional operator that represents the time evolution of f
under the flow St (t � 0). It completely keeps the information
on the original nonlinear system (1) under a certain condition,
precisely, K contains the components of x; see, e.g., Ref. [18].

For the current analysis, we introduce the notion of eigen-
values and eigenfunctions of the Koopman operator Ut . A
Koopman eigenvalue (KE) is a complex number μ such that
there exists a nonzero φ ∈ K, called a Koopman eigenfunc-
tion, such that Utφ = exp(μt )φ. If the cardinality of KEs is
countably infinite (see Ref. [18]), we use the integer subscript
j to represent a pair of KE and a Koopman eigenfunction:

Utφ j = exp(μ jt )φ j, ∀t � 0. (3)

Now we are in a position to introduce the so-called Koop-
man Mode Decomposition (KMD). By keeping in mind that
multivariate time-series data on temperature field are analyzed
in this paper, a vector-valued observable is defined as f :=
[ f1, . . . , fM]� ( fi ∈ K), where � stands for the transpose
operation of vectors. The positive integer M will be connected
to the number of measurement locations of a temperature field
later. For this observable f , the positive time evolution of f
along the flow St starting at the initial state x(0), denoted by
y(t ) = f (St (x(0))), is expressed with the Koopman operator
Ut as follows:

y(t ) = [(Ut f1)(x(0)), . . . , (Ut fM )(x(0))]�, ∀t � 0. (4)

Here, by assuming as in Ref. [9] that each fi is expanded with
the Koopman eigenfunctions φ j , (4) is described as follows:

y(t ) =
∞∑
j=1

exp(μ jt )φ j (x(0))V j, ∀t � 0. (5)

Here V j ∈ CM is a constant complex-valued vector for the
spectral expansion of f and is called a Koopman mode (KM),
which was originally coined in Ref. [9] for discrete-time
dynamical systems. Equation (5) shows that the possibly com-
plicated time evolution y(t ) driven by the nonlinear system (1)
can be decomposed into an infinite number of KMs, each of
which oscillates at a single frequency characterized by KE.
This type of spectral expansion of signals is called KMD.

Before moving the estimation idea in the next section,
we suppose that the multivariate signal y(t ) is derived by
synchronously measuring the target dynamics evolving in a
spatial domain D with dimension d ∈ {1, 2, 3}, and we denote
the M distinct locations for the measurement by r1, . . . , rM ∈
RD. Regarding this, (5) can be rewritten as

y(t ) =

⎡
⎢⎣

y(t ; r1)
...

y(t ; rM )

⎤
⎥⎦

=
∞∑
j=1

exp(μ jt )φ j (x(0))

⎡
⎢⎣

Vj (r1)
...

Vj (rM )

⎤
⎥⎦, ∀t � 0. (6)

This expansion implies that the KM V j is dependent on the
location r, and that the dynamics measured in space can
be represented by the finite-dimensional system (1). This
is mathematically tractable for several situations, i.e., as in
Ref. [8], where the dynamics are sufficiently approaching
to a finite-dimensional attractor, called an inertial manifold
[19], or where the dynamics can be approximately captured
with a spatial discretization of an original infinite-dimensional
dynamical system, the latter of which corresponds to our
working assumption in this paper.

B. Estimation of Koopman modes

Estimation of KMs without knowledge of the nonlinear
system (1) is central to the data-based analysis in this paper.
This type of estimation algorithm is generally referred to as
dynamic mode decomposition [20]. In this paper, to clarify
both the physical and signal-processing perspectives of KM,
we introduce the so-called phase averaging in Ref. [17] based
on the signal-oriented representation (6). The connection be-
tween the phase averaging and KM is mentioned in Ref. [8].
We now suppose that an oscillatory component of period T (>
0) is contained in the scalar-valued signal y(t ; ri ) in (6). This
implies that one KE, denoted by μ�, satisfies μ� = i2π/T
(i is the imaginary unit). Thus, the phase averaging 〈y(ri )〉T

of y(t ; ri ) with respect to period T is defined as follows:

〈y(ri )〉T := lim
N→∞

1

N

N−1∑
k=0

y(kT ; ri ). (7)

Here we assume that all the KEs are distinct. Because y(t ) are
derived by real-field measurement and thus are real-valued,

022210-2



KOOPMAN MODE DECOMPOSITION OF OSCILLATORY … PHYSICAL REVIEW E 102, 022210 (2020)

there exists the KE that is the complex conjugate of μ�,
denoted as μ�+1 = −i2π/T . Then the phase averaging of the
multivariate signal y(t ) in (6) with respect to T is represented
as follows:

〈y〉T :=

⎡
⎢⎣

〈y(r1)〉T
...

〈y(rM )〉T

⎤
⎥⎦ = V̂� + V̂�+1, (8)

with

V̂� := φ�(x(0))

⎡
⎢⎣

V�(r1)
...

V�(rM )

⎤
⎥⎦.

Note that V̂� and V̂�+1 are complex conjugate vectors, and
their sum becomes real-valued. We will call the vector V̂�

the KM, although it differs from the exact KM V� possibly
by a constant. Hence, provided that μ�, precisely T is known
with FFT etc., it is possible to estimate the sum of KMs, V̂� +
V̂�+1, directly from the signal y(t ) with the phase averaging.

C. Estimation of temperature gradient

We are in a position to formulate the estimation problem
of a temperature gradient directly from measurement data.
For this, the multivariate signal y(t ) in (6) is regarded as
time evolutions of a temperature field measured at the M
locations in a room. When denoting the original, continuum,
temperature field by θ (t, r) (t � 0 and r ∈ D ⊂ Rd ), we infer
θ (t, r) from (6) as

θ (t, r) ∼
∞∑
j=1

exp(μ jt )φ j (x(0))Vj (r), (9)

where φ j (x(0)) is now a constant scalar. Then, by using the
vector differential operator ∇r in Cartesian coordinates r, the
spatial derivative of the temperature field θ (t, r), namely, the
temperature gradient, is derived as

∇rθ (t, r) ∼
∞∑
j=1

exp(μ jt )φ j (x(0))∇rVj (r). (10)

This implies that in the KMD formulation, the location-
dependent vector ∇rVj (r) determines the temperature gradi-
ent with respect to the KE μ j , that is, the heat flux on the
timescale determined by μ j .

The location-dependent vector is related to the heat flux
in the root-mean-square (RMS) sense. By defining the single-
mode component with the above KM with μ� = i2π/T em-
bedded in θ (t, r) as

θ{�,�+1}(t, r) := exp(μ�t )φ�(x(0))V�(r)

+ exp(μ�+1t )φ�+1(x(0))V�+1(r)

= 2 cos

(
2π

T
t

)
Re[φ�(x(0))V�(r)]

− 2 sin

(
2π

T
t

)
Im[φ�(x(0))V�(r)], (11)

we have the component-wise RMS vector of the temperature
gradient ∇rθ{�,�+1}(t, r), denoted by 〈∇rθ{�,�+1}(r)〉RMS as

follows: for each r = [r1, . . . , rd ]� ∈ D,

〈∇rθ{�,�+1}(r)〉RMS

:=

⎡
⎢⎢⎢⎣

√∫ T
0

{
∂θ{�,�+1}(t, r)/∂r1

}2
dt/T

...√∫ T
0

{
∂θ{�,�+1}(t, r)/∂rd

}2
dt/T

⎤
⎥⎥⎥⎦

=
√

2|φ�(x(0))|

⎡
⎢⎣

|∂V�(r)/∂r1|
...

|∂V�(r)/∂rd |

⎤
⎥⎦, (12)

where | · | stands for the absolute value of numbers. This
suggests that the weighted sum of location-dependent vec-
tors, φ�(x(0))∇rV�(r) + φ�+1(x(0))∇rV�+1(r), appears in the
RMS-based estimation of the heat flux parameterized by the
KE.

The estimation problem posed in this paper is to determine
the weighed sum of location-dependent vectors. This can be
solved with KMD in the above subsection. For computation,
the multivariate signal y(t ) in (6) is treated as its sampled
data in time, yk (k = 0, 1, . . .). The sampling period (in time)
is assumed to be sufficiently smaller than the period T of
our interest. Given the KE μ�, equivalently T , the sum of
KMs V̂� + V̂�+1 is computed directly from the time-series
data with the phase averaging (7). From (8), the sum of KMs
is regarded as the real-valued vector containing the values
of the function φ�(x(0))V�(r) + φ�+1(x(0))V�+1(r) at the M
locations r1, . . . , rM . Therefore, in this paper we compute
an approximation of the spatial derivative φ�(x(0))∇rV�(r) +
φ�+1(x(0))∇rV�+1(r) by applying the standard scheme of nu-
merical differentiation (difference approximation) to the data
V̂� + V̂�+1. The method of the estimation is summarized as
the three steps after real-field measurement of temperature: (1)
to determine the oscillation period T embedded in the time-
series data, (2) to compute the sum of KMs with the phase av-
eraging, and (3) to compute the approximate spatial derivative.

III. MEASUREMENT DATA

In this section, we present time-series data on oscillatory
dynamics of a temperature field measured inside a room.
For this, we also introduce a practically used room for the
measurement and its overview including the information on
sensors.

A. Target space

The real-field measurement was conducted in the room of
our research group in Nakamozu Campus, Osaka Prefecture
University, Sakai, Japan. Figure 1 shows one photograph of
the interior view of the space and its geometrical overview
from the top of the space. The width of the room is about 14 m,
the depth is about 7 m, and the height is about 2.6 m. In this
room, undergraduate and graduate students do research with
desktop-type personal computers (PCs), where students and
PCs are the main heat sources. Also, the four air conditioners
denoted by squares (blue) in Fig. 1 are found on the ceiling.
These air conditioners are called AC-1 to AC-4, and each
air conditioners supplies air to its neighborhood. The room
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FIG. 1. Photograph and geometry of room analyzed in this paper.
The four blue squares represent the air conditioners equipped on the
ceiling denoted by AC-1 to AC-4. The red dots denoted by TH-1 to
TH-28 represent the environment sensors hanged from the ceiling at
a height of 1.9 m from the floor, as shown in the photograph. The out-
room temperature was measured at the two locations denoted by red
dots: one was close to the door, and the other was outside a window.

temperature was measured with environment sensors (OM-
RON, 2JCIE-BL01) that were introduced at 28 locations hung
from the ceiling (at height 1.9 m from the floor). These
sensors are called TH-1 to TH-28 in Fig. 1, where they are
denoted with dots (red). The out-room temperature was also
measured at the two locations denoted with dots (red): one was
close to the door, and the other was outside a window. The
measurement was conducted with the environmental sensor
and data logger (HIOKI, LR50 Series).

B. Time-series data

The measurement data are introduced for the two different
seasons, summer and winter, in Japan. The air conditioners
were operated during the measurement, and no one would
work inside the room because the data shown below were
collected in the early morning. This setting aims to simplify
the temperature-field dynamics analyzed here by avoiding any
disturbance due to the human presence. In this sense, the fol-
lowing phenomena shown in the data are relatively stationary
and mainly affected by the intrinsic physical characteristics of
the room and the operation of air conditioners. Also, the data
for the different seasons will make it possible to estimate the
season dependence of the underling heat flux.

The data in summer are shown in Fig. 2 with a sampling
period of 1 min. In this figure, the 28 colored lines represent
the time evolutions of temperature at the 28 locations of the
environment sensors, collected on Tuesday, July 17, 2018.
The time duration of the data is from 4 AM to 8 AM in
Japan Standard Time (JST). In this figure, we clearly see
that a stationary oscillatory component is embedded in the
time-series data. As mentioned above, the air conditioners
were operated continuously from 4 AM to 8 AM, and no
one would work inside the room. It is thus anticipated that
the oscillatory response in Fig. 2 results from the operation of
air conditioners with a feedback mechanism. The mechanism
is basically that each air conditioner turns on if it detects
a too hot or cold temperature by sensors, which detailed
information including control systems and parameters is not
available for users.

The data in winter are shown in Fig. 3 in the same manner
as in Fig. 2. The time duration of the data was again 4 AM
to 8 AM (in JST) on Wednesday, January 9, 2019. By com-
parison with the summer data, the variation in temperature
at several locations becomes larger in the winter data: for
example, see panel (b) in Figs. 2 (summer) and 3 (winter).
In Fig. 3 we see again a stationary oscillatory component
in the time-series data and anticipate the same cause as in

FIG. 2. Time-series data on in-room temperature in summer. The data were measured between 4 AM and 8 AM (in Japan Standard Time)
on July 17, 2018. The labels TH-1 to TH-28 correspond to the environment sensors shown in Fig. 1.
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FIG. 3. Time-series data on in-room temperature in winter. The data were measured between 4 AM and 8 AM (in Japan Standard Time)
on January 9, 2019. The labels TH-1 to TH-28 correspond to the environment sensors shown in Fig. 1.

summer—the oscillatory component is caused by an interac-
tion between the physical room and the air conditioners.

IV. RESULTS AND DISCUSSION

In this section, we apply KMD to the measured time-
series data on temperature in Sec. III and then estimate the
temperature gradient in the real room using the method in
Sec. II C. Since the data at the 28 locations are sampled at the
common height, the analysis of temperature field is regarded
as a two-dimensional problem. This point will be mentioned
later.

A. Summer data

First, we apply KMD to the summer data in Fig. 2. This
aims to conduct the first step (1) in Sec. II C for determining
the oscillation period T of the estimation. For this, we use
the Arnordi-type algorithm [9] to derive approximations of the
KEs for the multivariate data yk ∈ RM (k = 0, 1, . . . , N − 1)
in Fig. 2. The dimension M of the data is equal to 28, and the
number N of snapshots from 4 AM to 8 AM is equal to 241.
The Arnoldi-type algorithm derives the total 240 (= N − 1)
pairs of approximations of KEs λ̂ j := exp(μ j × 60 s) and
KMs (V̂ j). It is noted that the KEs λ̂ j are derived through
the sampling (with period of 60 s) of a continuous-time
formulation (5) of KMD. To pick up a KE whose oscillation is
stationary in time and dominant in the data, we introduce the
energy-oriented norm Ej from Refs. [6,7] as

Ej :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

√√√√N−1∑
k=0

||λ̂k
jV̂ j ||2 (λ̂ j ∈ R)

√√√√N−1∑
k=0

||2Re[λ̂k
jV̂ j]||2 (otherwise)

, (13)

where ‖ · ‖ stands for the norm of vectors. Table I shows the
derived KEs and KMs with high magnitude of the energy-
oriented norm (except for the bias component in the original
data). The conjugate pairs of KEs are labeled as { j, j + 1}
in this table. That is, the mode pair {1, 2} has the largest
magnitude of the energy-oriented norm and thus the largest
contribution to the data, which is regarded as a dominant
mode. The oscillation period is about 14 min, which is ex-
actly confirmed from the summer data in Fig. 2. Also, the
absolute value of KE, |λ̂1,2|, is close to unity, and hence the
corresponding oscillation is almost stationary.

As the second and third steps (2 and 3) in Sec. II C, we ap-
ply the phase averaging (8) with T = 14 min to the multivari-
ate data yk in Fig. 2 and then derive an approximation of the
spatial derivative φ�(x(0))∇rV�(r) + φ�+1(x(0))∇rV�+1(r).
The result of the spatial derivative is shown in Fig. 4, where
the gradient vectors at TH-9 to TH-13 and TH-16 to TH-20
are visualized. As shown in Sec. II C, the spatial derivative is
related to the heat flux on a timescale of 14 min. According to
Fourier’s law [16], the gradient vectors should be assigned in
a consistent manner that heat is transferred from one location
(of air inside a room) with high temperature to another with
low temperature. The original data in Fig. 2 were collected in

TABLE I. Koopman mode decomposition of time-series data on
in-room temperature in summer.

{ j, j + 1} |λ̂ j | Tj [min] ||V̂ j || Ej

{1,2} 0.9913 14.23 1.0640 11.26
{3,4} 0.9836 13.46 1.1740 9.356
{5,6} 0.9738 89.16 1.6027 8.301
{7,8} 0.9949 15.17 0.5542 7.461
{9,10} 0.9176 7.182 1.6390 5.999
{11,12} 0.9971 16.23 0.3205 5.193
{13,14} 0.9924 18.63 0.4439 5.005
{15,16} 1.0037 133.92 0.1349 4.921
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FIG. 4. Visualization of temperature gradient in summer derived
with KMD. The phase averaging with T = 14 min was used for the
time-series data in Fig. 2.

Japan’s summer, and thus the air conditioners AC-2 and AC-3
located at TH-17 and TH-19 were operated in the cooling
mode. The cold air was supplied from the locations at TH-17
and TH-19 and would affect the locations at TH-10 and TH-
12. The effect is clearly visualized with the gradient vectors
derived here: see the downward arrows at TH-10 and TH-12.
The downward direction implies that heat is transferred from
the location at TH-10 (or TH-12) to at TH-17 (or TH-19),
which is consistent with the cooling operation of the air
conditioners.

B. Winter data

Next, we address the winter data in Fig. 3 and present their
KMD result in the same manner as above. The setting of M
and N as well as the algorithm is the same as in the summer
case. The derived KEs and KMs with a high magnitude of an
energy-oriented norm are shown in Table II. The mode pair
{1, 2} with period of about 19 min is regarded as the dominant
mode. Also, the absolute value of KE, |λ̂1,2|, is close to unity,
and hence the corresponding oscillation is almost stationary.

The associated result on the spatial derivative is shown
in Fig. 5, where the gradient vectors at TH-9 to TH-13 and
TH-16 to TH-20 are again visualized. For the winter data in
Fig. 3, the air conditioners AC-2 and AC-3 located at TH-17
and TH-19 were operated in the heating mode. The hot air
was supplied from the locations at TH-17 and TH-19. The
hot air tends to move along the ceiling in winter and directly

TABLE II. Koopman mode decomposition of time-series data on
in-room temperature in winter.

{ j, j + 1} |λ̂ j | Tj [min] ||V̂ j || Ej

{1,2} 1.0060 18.99 0.9979 52.20
{3,4} 0.9948 17.94 0.9395 12.44
{5,6} 0.9288 2.912 2.4635 9.340
{7,8} 0.8659 2.762 3.4384 9.332
{9,10} 0.9890 13.09 0.9563 9.061
{11,12} 1.0012 9.569 0.3457 8.797
{13,14} 1.0042 20.63 0.2255 8.730
{15,16} 0.9497 64.67 2.0646 7.841

FIG. 5. Visualization of temperature gradient in winter derived
with KMD. The phase averaging with T = 19 min was used for the
time-series data in Fig. 3.

affect the neighborhoods of the air conditioners AC-2 and
AC-3. This implies that heat is transferred from the locations
at TH-17 and TH-19 to their neighborhoods including the
locations at TH-9, TH-11, and TH-13. In the measurement,
all the sensors were hung close to the ceiling at a common
height, and thus the measurement data are expected to capture
the two-dimensional transfer of the hot air. This observation is
consistent with the temperature gradient in Fig. 5, where the
upward vectors appear at TH-9, TH-11, and TH-13.

From the analyses, we conclude that KMD estimates the
physically relevant structure of heat flux directly from the
measurement data on temperature.

V. CONCLUSION

This paper is devoted to the data-based analysis of oscil-
latory dynamics of a temperature field inside a practically
used room. The main technique is KMD applied to time-series
data on temperature measured at multiple locations of sensors
in the room. To characterize not only the oscillatory field
(scalar field) but also associated heat flux (vector field), we
introduced the notion of a temperature gradient using the
spatial gradient of a KM. By estimating the gradient directly
from data, we showed that KMD is capable of extracting a
distinct structure of the heat flux embedded in the oscillatory
temperature field, relevant in terms of air conditioning. The
method for estimating the gradient is basically to take the
phase average for time-series data and thus this can be simply
implemented for the in situ diagnosis of temperature-field
dynamics.

This study, which builds upon on the capability of KMD
on thermal analysis in buildings demonstrated in early work
[6,7,11–13], is another step toward real-time control of a
temperature field for heat, ventilation, and air conditioning
(HVAC) systems. In future work, based on the data-based
analysis, we will synthesize a feedback controller for reg-
ulating the temperature field as a new function of HVAC.
Concretely, using the estimated temperature gradient and KM,
an output-feedback controller will be synthesized that is all
data-driven without development of a model. In this sense,
this study will be a basis of the future work.
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