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The present paper studies time-delayed-connection induced amplitude death in high-dimensional

oscillator networks. We provide two procedures for design of a coupling strength and a transmission

delay: these procedures do not depend on the topology of oscillator networks (i.e., network structure

and number of oscillators). A graphical procedure based on the Nyquist criterion is proposed and

then is numerically confirmed for the case of five-dimensional oscillators, called generalized R€ossler

oscillators, which have two pairs of complex conjugate unstable roots. In addition, for the case of

high-dimensional oscillators having two unstable roots, the procedure can be systematically carried

out using only a simple algebraic calculation. This systematic procedure is numerically confirmed

for the case of three-dimensional oscillators, called Moore-Spiegel oscillators, which have two posi-

tive real unstable roots. VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4896318]

Time-delay-induced death has been actively investigated

both experimentally and analytically, since it has great

potential as a candidate phenomenon for stabilizing sev-

eral unstable systems. Most of the previous studies on

time-delay-induced death have shown their analytical

results for the following cases: a two-dimensional normal

form of supercritical Hopf bifurcation, which has a pair of

complex conjugate unstable roots, is employed as an oscil-

lator; the topology of the oscillator network is given in

advance. However, in engineering systems, oscillators can-

not always be described by such two-dimensional oscilla-

tors and the topology is generally unknown. The present

paper applies a parametric approach well known in the

field of robust control to time-delayed-induced amplitude

death in high-dimensional oscillator networks. We provide

two procedures for designing connection parameters. A

graphical procedure based on the Nyquist criterion is pro-

posed and then is numerically confirmed for the case of

five-dimensional oscillators which have two pairs of com-

plex conjugate unstable roots. In addition, for the case of

high-dimensional oscillators having two unstable roots, the

procedure can be systematically carried out using only a

simple algebraic calculation. This systematic procedure is

numerically confirmed for the case of three-dimensional

oscillators which have two positive real unstable roots.

I. INTRODUCTION

The dynamical behavior of coupled oscillators has

received considerable attention in nonlinear science.1,2 In

recent years, such dynamical behavior has been employed in

the field of engineering. Examples include consensus and

cooperation in multi-agent system networks3 and dynamics

of networks.4–7 One of the most remarkable behaviors in

coupled oscillators is synchronization: the oscillators follow

the same pattern without a leader.1,2,8 Among the several

types of synchronization, chaotic synchronization is

expected to be useful for secure communications.9 On the

other hand, it is well known that each oscillator can cease to

oscillate due to its strong interaction. This phenomenon,

called amplitude death, can be considered as a synchroniza-

tion to an unstable steady state.10–12

Amplitude death in coupled oscillators has been studied

intensively for almost a quarter-century.13,14 This phenom-

enon can be observed in coupled non-identical oscillators, but,

never in coupled identical oscillators.14 It was reported that a

transmission delay in connections, which naturally exists in

real coupled oscillators, has the ability to induce this phenom-

enon even in coupled identical oscillators.15 On the basis of

this report, time-delay-induced death has been investigated

both experimentally and analytically (see Refs. 11 and 12 and

references therein). From an engineering point of view, ampli-

tude death has great potential as a candidate phenomenon for

stabilizing several unstable systems, since there is no need to

employ controllers.16 Therefore, amplitude death would be a

useful phenomenon for stabilizing unstable oscillator net-

works without a leader (e.g., a centralized controller) or with-

out decentralized controllers in various fields.

Most of the previous studies on time-delay-induced

death17–19 have shown their analytical results for the follow-

ing cases: a two-dimensional normal form of supercritical

Hopf bifurcation, called the Stuart-Landau oscillator, is

employed as a oscillator for simplicity of analysis; the topol-

ogy of the oscillator network is given in advance. Remark

that the Stuart-Landau oscillator has a pair of complex conju-

gate unstable roots; thus, it is obvious that the analytical

results for these cases cannot be generally used for engineer-

ing systems. The major reasons are as follows: oscillators in

engineering systems cannot always be described by two-

dimensional oscillators with unstable two roots in complex

conjugate pairs; the topology of an oscillator network is gen-

erally unknown in engineering systems, such as sensora)http://www.eis.osakafu-u.ac.jp/~ecs
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networks20 and mobile agents;21 and a system designer who

wants to induce death needs not only a stability analysis but

also a procedure for designing connection parameters.

In order to overcome the above major problems, the

present paper applies a parametric approach well known in

the field of robust control22 to time-delayed-induced ampli-

tude death in high-dimensional oscillator networks. We pro-

vide two procedures for designing connection parameters

(i.e., coupling strength and transmission delay); these proce-

dures are useful even when the topology of the oscillator net-

work (i.e., network structure and number of oscillators) is

unknown (see Fig. 1). We propose a graphical procedure

based on the Nyquist criterion and apply it to five-

dimensional oscillators, called generalized R€ossler oscilla-

tors,23,24 which have two pairs of complex conjugate

unstable roots. Further, in the case that the high-dimensional

oscillators have two unstable roots, we show that the proce-

dure can be systematically carried out only using a simple

algebraic calculation. This systematic procedure is applied to

three-dimensional oscillators, called Moore-Spiegel oscilla-

tors,25,26 which have two positive real unstable roots.

This paper employs the following notation. The princi-

pal argument of a complex number z is defined by Arg[z]

2 [0, 2p). The largest integer n 2 Z that is not greater than a

real number x is defined by bxc :¼ maxfn 2 Z : n � xg. The

symbol :¼ denotes a definition.

II. OSCILLATOR NETWORKS

Consider N oscillators defined by

_xiðtÞ ¼ F½xiðtÞ� þ buiðtÞ ði ¼ 1; 2;…;NÞ: (1)

xiðtÞ 2 Rm denotes the state of oscillator i, uiðtÞ 2 R is the

coupling signal, and b 2 Rm is the coupling vector. The non-

linear function F : Rm ! Rm is twice continuously differen-

tiable, which has at least one unstable fixed point

x� : 0 ¼ Fðx�Þ. Oscillator i is coupled by

ui tð Þ ¼ kT 1

gi

XN

l¼1

cilxl t� sð Þ
" #

� xi tð Þ
( )

; (2)

where s� 0 and k 2 Rm are, respectively, the delay time

and the coupling strength. The network topology depends on

cil as follows: cil¼ cli¼ 1 (cil¼ cli¼ 0) denotes that oscillator

i is (not) connected to oscillator l. Here, gi :¼
PN

l¼1 cil is the

number of oscillators linked to oscillator i, where we assume

gi> 0, 8i. Remark that gi in connection (2) is introduced to

make it diffusive.64

There exits at least one steady state

½ xT
1 xT

2 � � � xT
N �

T ¼ ½ x�T x�T � � � x�T �T ; (3)

in oscillators (1) with delayed connection (2). It should be

noted that the location of steady state (3) is fixed independ-

ent of k, cil, N, and s owing to diffusive connection (2), but

its stability depends on them.

The present paper tackles the following stabilization: an

unstable steady state (3) in oscillators without connection

(i.e., k� 0) is stabilized by connection (2) with suitable pa-

rameters k and s. The main goal of this paper is to derive pro-

cedures for design of the connection parameters which can be

used for any number of oscillators N and for any topology cil.

III. LINEAR STABILITY ANALYSIS

Linearizing oscillators (1) coupled by connection (2)

around steady state (3) yields

D _xi tð Þ ¼ ADxi tð Þ þ bDui tð Þ;

Dui tð Þ ¼ kT 1

gi

XN

l¼1

cilDxl t� sð Þ
" #

� Dxi tð Þ
( )

;

8>><
>>: (4)

where DxiðtÞ :¼ xiðtÞ � x� is a small deviation from the fixed

point x* and the Jacobi matrix at x* is described by A :¼
@FðxÞ=@xjx¼x� : This paper assumes that A has at least one

unstable eigenvalue. Further, the pair (A, b) is assumed to be

controllable;27,65 thus, a linear transformation DxiðtÞ ¼
CziðtÞ allows us to obtain the controllability canonical form.

Then, the dynamics of oscillator i at x*, that is system (4),

are governed by

_zi tð Þ ¼ �Azi tð Þ þ �b�k
T 1

gi

XN

l¼1

cilzl t� sð Þ
" #

� zi tð Þ
( )

; (5)

where

�A :¼ C�1AC ¼

0 1 � � � 0 0

0 0 . .
.

0 0

..

. ..
. . .

. . .
. ..

.

0 0 � � � 0 1

�am �am�1 � � � �a2 �a1

2
66666666664

3
77777777775
;

�b :¼ C�1b ¼

0

0

..

.

0

1

2
66666666664

3
77777777775
; �k

T
:¼ kTC ¼

�km

�km�1

..

.

�k2

�k1

2
66666666664

3
77777777775

T

:

FIG. 1. Conceptual diagram of an oscillator network with unknown topology.
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The elements ai in �A are the coefficients of the characteristic

polynomial of A

dðsÞ :¼ det½sIm � A� ¼ det½sIm � �A�
¼ sm þ a1sm�1 þ � � � þ am�1sþ am: (6)

From Eq. (5), we notice that

_ZðtÞ ¼ ðIN 	 �A
�ÞZðtÞ þ ðC	 �b�k

TÞZðt� sÞ (7)

describes the dynamics of an oscillator network around a

steady state, where ZðtÞ :¼ ½ z1ðtÞT � � � zNðtÞT �
T

and �A
�

:¼ �A

��b�k
T
. The elements of C are as follows: fCgil ¼ cil=gi if

i 6¼ l and {C}il¼ 0 if i¼ l.
Now consider the stability of system (7). The character-

istic equation associated with this system is written as

det½sImN � IN 	 �A
� � ðC	 �b�k

TÞe�ss� ¼ 0: (8)

It should be noted that L :¼ IN�C is similar to the real

symmetric matrix �L :¼ IN � D�1=2ED�1=2, where D :¼ diag

{g1,…, gn} and E :¼DC. As a result, L can be diagonalized

with a diagonal transformation matrix Q as

Q�1LQ ¼ diagðq1;…; qNÞ;

where we have

0 ¼ q1 � q2 � � � � � qN � 2; (9)

for any network topology.28–32 The relation between eigen-

values qi (i¼ 1,...,N) of L and the network topology was

revealed in Ref. 29. This diagonalization simplifies charac-

teristic equation (8) as follows:

gðsÞ :¼
YN
i¼1

hðs; qiÞ; (10)

where

hðs; qÞ :¼ det½sIm � �A
� � e�ssð1� qÞ�b�k

T �: (11)

Let us recall our main purpose, which is to propose procedures

for designing the connection parameters kT and s for stabiliz-

ing steady state (3) on the basis of uncertain information: the

number of oscillators and the network topology. Thus, we

have to deal with the stability of h(s, q) for any q 2 [0, 2].

From Eq. (6) and

nðsÞ :¼ �k
T
adjðsIm � �AÞ�b

¼ �k1sm�1 þ �k2sm�2 þ � � � þ �km�1sþ �km; (12)

the characteristic function h(s, q) can be simplified as

hðs; qÞ ¼ det
sIm � �A

�
e�ssð1� qÞ�b

�k
T

1

" #

¼ dðsÞ þ nðsÞf1� e�ssð1� qÞg: (13)

As a result, we see that our design problem can be reduced

to a procedure for designing the gain �ki (i¼ 1,…, m), and the

delay time s such that h(s, q) is stable for any q2 [0, 2].

Sections IV and V shall provide solutions to this problem.

IV. HIGH-DIMENSIONAL OSCILLATORS

A. Inherent limitations

To begin with, two inherent limitations of connection

(2) are described below.

Lemma 1. Consider oscillators (1) coupled by connec-
tion (2). If connection (2) has no delay time (s� 0), then
steady state (3) cannot be stabilized for any kT and C.

Proof. See Subsection 1 of the Appendix. �

Lemma 2. Consider oscillators (1) coupled by connec-
tion (2). If A has either a zero eigenvalue or an odd number
of positive real eigenvalues, connection (2) never stabilizes
steady state (3) for any s, kT, and C.

Proof. See Subsection 2 of the Appendix. �

Lemma 2 guarantees that the well-known odd-number
property for a single oscillator with delayed feedback con-

trol33–35 or in two oscillators (i.e., N¼ 2)36 remains in oscil-

lator networks.

B. Design of connection

Our design problem is to determine the connection pa-

rameters such that we have stable W :¼ {h(s, q):q 2 [0, 2]}.

W can be described by

W ¼ fð1� lÞhðs; 0Þ þ lhðs; 2Þ : l 2 ½0; 1�g; (14)

because all of the coefficients of Eq. (13) are given by affine

functions of q. Here, l is the uncertain parameter corre-

sponding to q/2. The parametric approach in robust control

theory32,37–39 gives us a useful stability condition.

Lemma 3. The family of quasi-polynomials W, Eq. (14),
is stable if all of

(a) h(s, 0) is stable;

(b) h(s, 2) is stable;

(c) for any x 2 ½0;þ1Þ; /ðxÞ :¼ arg½hðjx; 0Þ�
�arg½hðjx; 2Þ� 6¼ 6p

are satisfied.
It is obviously difficult to check the conditions in

Lemma 3. This is because they deal with the stability of

quasi-polynomials (i.e., the transcendental equations). This

difficulty motivates us to provide procedures for designing

kT and s without using a direct way to numerically analyze

the transcendental equations. From Lemma 3, we can pro-

vide a graphical procedure for designing kT and s.

Theorem 1. For any C, the steady state (3) is stable if
kT and s are designed such that (i) M(s) :¼ n(s)/[d(s)þ n(s)]
is stable and (ii) the Nyquist plot M(jx)e�jxs never intersects
the lines lð0Þ [ lð2Þ on the real axis, where lð0Þ :¼ fr þ jv :
r � �1; v ¼ 0g and lð2Þ :¼ fr þ jv : r � þ1; v ¼ 0g.

Proof. See Subsection 3 of the Appendix. �

Theorem 1 provides us the following procedure for

designing the connection parameters:

Step 0: Assume that A and b are known, but N and C are

unknown.

Step 1: If (A, b) is controllable and A does not satisfy

Lemma 2, then go to the next step, else quit.
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Step 2: Obtain elements ai (i¼ 1,…,m) from Eq. (6).

Step 3: Search for �k
T

and s which satisfy conditions (i)

and (ii) in Theorem 1.

Step 4: Transform �k
T

to kT ¼ �k
T
C�1 after choosing C

such that �A ¼ C�1AC and �b ¼ C�1b take a controllable

canonical form.

Remark that �k
T

and s estimated in step 3 are not unique:

we may have several pairs of �k
T

and s numerically. This pro-

cedure is used in the following numerical examples.

C. Numerical examples

Consider a generalized R€ossler oscillator (1) with

FðxiÞ ¼

ax
ð1Þ
i � x

ð2Þ
i

x
ð1Þ
i � x

ð3Þ
i

x
ð2Þ
i � x

ð4Þ
i

x
ð3Þ
i � x

ð5Þ
i

eþ bx
ð5Þ
i ðx

ð4Þ
i � dÞ

2
666666664

3
777777775
; b ¼

0

0

0

1

0

2
66664

3
77775; (15)

where a¼ 0.04, b¼ 4.00, d¼ 2.00, and e¼ 0.10 are the

parameters.23,24 The oscillator has two fixed points

x�� ¼ ½ 0:0125 0:0005 0:0125 0:0005 0:0125 �T and

x�þ ¼ ½49:9875 1:9995 49:9875 1:9995 49:9875 �T: one

which lies close to the origin and another which does not.

We follow the procedure for designing the connection

parameters proposed in subsection IV B. For step 0, the

Jacobi matrix at each fixed point is calculated and b is

given in Eq. (15). For step 1, we confirm that A at x��
does not satisfy the condition in Lemma 2, since the eigen-

values of A are �7.9918, 0.0047 6 j1.6181, and

0.0122 6 j0.6181. Further, we see that (A, b) is controlla-

ble. On the other hand, we do not have to consider

the other fixed point, because its A has one real positive

eigenvalue. For step 2, we obtain ai (i¼1,…, 5) from

Eq. (6). For step 3, �k
T

is set such that M(s) has stable poles:

�8.0, �0.5 6 j1.7, and �0.5 6 j0.7. These stable poles

can be set arbitrarily.66 The Nyquist plots MðjxÞe�jxs

with s ¼ 0.01, 0.30, and 1.00 are drawn for x2 [0, þ1) as

shown in Fig. 2. We see that MðjxÞe�jxs with s¼0.30

does not cross the lines lð0Þ [ lð2Þ on the real axis. For

step 4, the coupling strength is estimated: kT ¼
½0:5582 �0:0414 �1:9623 2:0420 �1:2529 �: It must

be emphasized that the delay time s¼0.30 and the cou-

pling strength kT designed by the above procedure are valid

for any number of oscillators and for any topology.

Let us numerically confirm that the connection parame-

ters designed above can be used for various networks as

sketched in Fig. 3: the simplest network with N¼ 2, the ring-

type network with N¼ 10, and the complete network with

N¼ 8. The time series data of the three networks before and

after coupling are shown in Fig. 4. The individual oscillators

without connection behave oscillatory for t< 100. The con-

nection with the designed parameters is applied to these

oscillators at t¼ 100. It can be seen that each oscillator con-

verges on its fixed point for t> 100. This result supports that

the connection parameters designed by our procedure are

valid independently of the number of oscillators and the net-

work topology.

FIG. 2. Nyquist plots M(jx)e�jxs with s¼ 0.01 (dotted line), 0.30 (bold

line), and 1.00 (thin line) for x 2 [0, þ1).

FIG. 3. Three networks for our numer-

ical examples: (a) two oscillators, (b)

ring-type network with N¼ 10, and (c)

complete network with N¼ 8.
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Remark that step 3 is a troublesome task: although it is

easy to design �k
T

for condition (i) (i.e., for M(s) to be stable),

the design of �k
T

and s for condition (ii) requires a trial-and-

error search in the (mþ 1)-dimensional parameter space. It is

difficult to simplify the search in general; however, section

V shall show that we can simplify it for oscillators (1) whose

A has two non-zero unstable eigenvalues.

V. HIGH-DIMENSIONAL OSCILLATORS WITH TWO
UNSTABLE ROOTS

A. Two-dimensional oscillators

This subsection deals with networks consisting of two-

dimensional oscillators (i.e., m¼ 2) to obtain analytical

results on stability. The stability of h(s, q) given by Eq. (13)

is investigated for the case that

dðsÞ ¼ det½ sI2 �A � ¼ s2 þ a1sþ a2; nðsÞ ¼ �k1sþ �k2: (16)

For a2� 0, matrix A has one positive real eigenvalue or a

zero eigenvalue. Therefore, a2> 0 is assumed in order to

avoid the odd-number case in Lemma 2. Further, if a1� 0,

matrix A is stable or has two eigenvalues on the imaginary

axis. Thus, a1< 0 should be assumed in order to guarantee

an unstable A.

Our aim in this subsection is to design connection

parameters �k1; �k2, and s for h(s, q) to be stable for any

q2 [0, 2]. Our previous study34 based on the direct method

for stability analysis40 allows us to deal with such a design

problem.

Note that the equations h(s, 0)¼ 0 and h(s, 2)¼ 0 can

be described by ess¼M(s) and �ess¼M(s), respectively.

For s¼ jx, as we have jejxsj2 ¼ 1, the necessary condition

for

6ejxs ¼ MðjxÞ (17)

is jMðjxÞj2 ¼ 1, which can be rewritten as

Wðx2Þ :¼ jdðjxÞ þ nðjxÞj2 � jnðjxÞj2

¼ x4 þ c1x
2 þ c2 ¼ 0; (18)

where

c1 :¼ a1ða1 þ 2�k1Þ � 2ða2 þ �k2Þ; c2 :¼ a2ða2 þ 2�k2Þ: (19)

Suppose that W(x2)¼ 0 has two distinct positive roots, x2
a

and x2
b, where x2

a < x2
b. The direct method40 guarantees that

the characteristic root always moves from right to left through

the points 6jxa in the complex plane if W0ðx2
aÞ :¼ ½dWðx2Þ=

dx2�x¼xa
< 0, or always from left to right if W0ðx2

bÞ > 0.

These points for which W0ðx2
aÞ < 0 are stabilizing points and

those for which W0ðx2
bÞ > 0 are destabilizing points.

Now we provide a way for designing the coupling

strength ð�k1; �k2Þ.
Lemma 4. If the coupling strength ð�k1; �k2Þ satisfies all of

the inequalities

a1 þ �k1 > 0; a2 þ 2�k2 > 0; c2
1 � 4c2 > 0; (20)

then we have the following three facts: (i) W(x2)¼ 0 has the
stabilizing points 6jxa and the destabilizing points 6jxb;
(ii) the characteristic polynomial of M(s), that is d(s) þ n(s),
is stable; and (iii) characteristic quasi-polynomial h(s, 2)
with s¼ 0, that is d(s) þ 2n(s), is stable.

Proof. See Subsection 4 of the Appendix. �

Here, for the case of no delay (i.e., s� 0), we now

confirm the number of unstable roots of h(s, 0)¼ 0 and

h(s, 2)¼ 0. According to our assumptions a1< 0 and a2> 0,

we see that h(s, 0)¼ 0 with s¼ 0, that is d(s)¼ 0, has two

unstable roots independently of the coupling strength. Since

h(s, 2)¼ 0 with s¼ 0 is described by d(s)þ 2n(s), it has no

unstable roots, due to fact (iii) in Lemma 4.

Remark that both h(s, 0)¼ 0 and h(s, 2)¼ 0 have the

common points 6jxa,b, and these points do not depend on s.

Further, it should be noted that the critical delays at which a

pair of complex conjugate roots of h(s, 0)¼ 0 passes through

the points 6jxa,b on the imaginary axis are derived from

Eq. (17)

s 0ð Þ
a l½ � :¼ wa

xa
þ 2p

xa
l; s 0ð Þ

b l½ � :¼
wb

xb
þ 2p

xb
l; l¼ 0;1;…; (21)

where

wa :¼ Arg½MðjxaÞ�; wb :¼ Arg½MðjxbÞ�: (22)

The critical delays for h(s, 2)¼ 0 are described by

s 2ð Þ
a l½ � :¼ wa

xa
� p

xa
þ 2p

xa
l; s 2ð Þ

b l½ � :¼
wb

xb
� p

xb
þ 2p

xb
l;

l ¼ 0; 1;…: (23)

FIG. 4. Time series data of the three networks with generalized R€ossler

oscillators (15): (a) two oscillators, (b) ring type network with N¼ 10, and

(c) complete network with N¼ 8. Individual oscillators without connection

behave oscillatory for t< 100; they are coupled at t ¼ 100.
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Figure 5 illustrates the relation of these critical delays.67

Here, we shall consider the delay-dependent stability of

h(s, 0) and h(s, 2) using the critical delays.

Lemma 5. h(s, 0)¼ 0 with coupling strength ð�k1; �k2Þ
satisfying (20) has no unstable roots if xa,b and wa,b satisfy

wa

xa
<

wb

xb
; (24)

and s belongs to the intervals, K(0), where

K 0ð Þ :¼ s 2 s 0ð Þ
a l½ �; s 0ð Þ

b l½ �
� �

; l¼ 0;1;…;
xawb�xbwa

2p xb�xað Þ

$ %( )
:

(25)

Proof. See Subsection 5 of the Appendix. �

Lemma 6. h(s, 2)¼ 0 with coupling strength ð�k1; �k2Þ sat-
isfying (20) has no unstable roots if xa,b and wa,b satisfy

wa � p
xa

< 0 <
wb � p

xb
; (26)

and s belongs to the intervals K(2) where

K 2ð Þ :¼
�

s 2 0; s 2ð Þ
b 0½ �

h �
; s 2 s 2ð Þ

a l½ �; s 2ð Þ
b l½ �

� �
;

l ¼ 1;…;
xawb � xbwa þ p xb � xað Þ

2p xb � xað Þ

$ %�
: (27)

Proof. See Subsection 6 of the Appendix. �

From Lemmas 4, 5, and 6, it is obvious that both h(s, 0)

and h(s, 2) are stable if ð�k1; �k2Þ satisfies (20) and s belongs

to the intervals K(0) \ K(2). This fact corresponds to condi-

tions (a) and (b) in Lemma 3; however, condition (c) still

remains undiscussed. The following lemma shows that the

designed ð�k1; �k2Þ and s 2 (K(0) \ K(2)) always guarantee con-

dition (c).

Lemma 7. If coupling strength ð�k1; �k2Þ satisfies (20) and
delay time s belongs to the intervals K(0) \ K(2), condition
(c) in Lemma 3 (i.e., Eq. (A1)) always holds.

Proof. See Subsection 7 of the Appendix. �

The above arguments are summarized by the following

theorem.

Theorem 2. Consider two-dimensional oscillators (1)
(m¼ 2) with connection (2). Assume that the coefficients of
d(s) in Eq. (16) satisfy a1< 0 and a2> 0. The coupling
strength ð�k1; �k2Þ, given as the coefficients of n(s) in Eq. (16),
is supposed to satisfy

a1 þ �k1 > 0; a2 þ 2�k2 > 0; c2
1 � 4c2 > 0; (28)

wa=xa < wb=xb; ðwa � pÞ=xa < 0 < ðwb � pÞ=xb; (29)

where

c1 :¼ a1ða1 þ 2�k1Þ � 2ða2 þ �k2Þ; c2 :¼ a2ða2 þ 2�k2Þ; (30)

xa :¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�c1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

1� 4c2

p
2

s
; xb :¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�c1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

1� 4c2

p
2

s
; (31)

wa;b :¼ Arg
�k2 þ jxa;b

�k1

a2 þ �k2 � x2
a;b þ jxa;b a1 þ �k1ð Þ

 !
: (32)

If the delay time s is in the intervals K(0) \ K(2), where

K 0ð Þ :¼ s2 s 0ð Þ
a l½ �;s 0ð Þ

b l½ �
� �

;l¼0;1;…;
xawb�xbwa

2p xb�xað Þ

$ %( )
;

(33)

K 2ð Þ :¼
�

s 2 0; s 2ð Þ
b 0½ �

h �
; s 2 s 2ð Þ

a l½ �; s 2ð Þ
b l½ �

� �
;

l ¼ 1;…;
xawb � xbwa þ p xb � xað Þ

2p xb � xað Þ

�
;

�$
(34)

s 0ð Þ
a l½ � :¼ wa

xa
þ 2p

xa
l; s 0ð Þ

b l½ � :¼
wb

xb
þ 2p

xb
l; (35)

s 2ð Þ
a l½ � :¼ wa

xa
� p

xa
þ 2p

xa
l; s 2ð Þ

b l½ � :¼
wb

xb
� p

xb
þ 2p

xb
l; (36)

then steady state (3) is stable.

FIG. 5. Sketch of stable intervals K(0)

(upper) and K(2) (lower).
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Proof. It is straightforward to prove this theorem from

Lemmas 3, 4, 5, 6, and 7. Thus, we omit this proof. �

B. Extension to high-dimensional oscillators

In this subsection, we show that the procedure for

two-dimensional oscillators mentioned in subsection V A

can be easily extended to m-dimensional oscillators whose

A has two non-zero unstable eigenvalues. To begin

with, recall the characteristic quasi-polynomials h(s, 0)

¼ d(s)þ n(s)(1� e�ss) and h(s, 2)¼ d(s)þ n(s)(1þ e�ss).

Here, d(s) and n(s) are given by Eqs. (6) and (12),

respectively.

Now we assume that d(s)¼ 0 has two unstable roots

(i.e., A has two unstable eigenvalues k1 and k2). Hence, we

can decompose d(s) as d(s)¼ ds(s)du(s), where duðsÞ :¼
ðs� k1Þðs� k2Þ ¼ s2 � ðk1 þ k2Þsþ k1k2 is the second-

degree unstable polynomial and ds(s) is the (m – 2)-degree

stable polynomial. Since all the coefficients of n(s), �ki

(i¼ 1,…,m), can be chosen arbitrarily, we may take

n(s)¼ ds(s)nu(s), where nu(s) :¼r1sþ r2. As a result, we

have

hðs; 0Þ ¼ dsðsÞfduðsÞ þ nuðsÞð1� e�ssÞg;
hðs; 2Þ ¼ dsðsÞfduðsÞ þ nuðsÞð1þ e�ssÞg: (37)

It should be noted that the quasi-polynomials enclosed by {}

in Eq. (37) correspond to the h(s, 0) and h(s, 2) that subsec-

tion V A dealt with. The following corollary shows that

Theorem 2 can be extended to a class of m-dimensional

oscillators.

Corollary 1. Consider oscillators (1) with connection
(2). Assume that (A, b) is controllable; A has two unstable
eigenvalues, k1 and k2; and the others are stable. Theorem 2
is valid when we use

duðsÞ ¼ s2 � ðk1 þ k2Þsþ k1k2; nuðsÞ ¼ r1sþ r2; (38)

instead of d(s) and n(s) in Eq. (16).
From this corollary, we have a systematic design proce-

dure for the connection parameters:

Step 0: Assume that A and b are known, but N and C are

unknown.

Step 1: If (A, b) is controllable and A does not satisfy

Lemma 2, then go to the next step, else quit.

Step 2: If A has two unstable eigenvalues k1 and k2

and the others are stable, then go to the next step, else go to

Sec. IV.

Step 3: From a1¼�(k1þ k2)< 0 and a2¼ k1k2> 0,

then we design �k1; �k2, and s by Theorem 2.

Step 4: From the designed �k1 and �k2, obtain r1 ¼ �k1 and

r2 ¼ �k2.

Step 5: From dðsÞ ¼ det½sIm � A� and duðsÞ ¼ ðs� k1Þ
ðs� k2Þ, obtain dsðsÞ ¼ dðsÞ=duðsÞ.

Step 6: Design all the elements of �k
T
; �ki (i¼ 1,…, m),

such that �k1sm�1 þ �k2sm�2 þ � � � þ �km�1sþ �km ¼ dsðsÞ
ðr1sþ r2Þ holds.

Step 7: Obtain coupling strength kT from kT ¼ �k
T
C�1,

after choosing C such that �A ¼ C�1AC and �b ¼ C�1b take a

controllable canonical form.

This procedure is used in the following numerical

examples.

C. Numerical examples

Let us consider three-dimensional oscillators (1) with

FðxiÞ ¼
x
ð2Þ
i

x
ð3Þ
i

�x
ð3Þ
i � ða� bþ bfxð1Þi g

2Þxð2Þi � ax
ð1Þ
i

2
6664

3
7775;

b ¼ ½0 1 0�T ; (39)

where a and b denote the parameters. This oscillator is

known as a Moore-Spiegel oscillator.25,26 The oscillator has

a fixed point at the origin x*¼ 0. Throughout this paper, the

parameters are set to a¼ 0.1 and b¼ 1.1, where there exist

the unstable fixed point x*¼ 0 with two positive real eigen-

values and a limit cycle in each isolated oscillator. It must be

emphasized that the previous studies,17–19,41 which treat only

the fixed point with a pair of complex conjugate unstable

eigenvalues, cannot be used for this oscillator.

Now we follow the procedure for designing the connec-

tion parameters proposed in subsection V B. For step 0, the

Jacobi matrix A is calculated and b is given in Eq. (39). For

step 1, we confirm that A does not satisfy the condition in

Lemma 2, since the eigenvalues of A are k1¼ 0.5302,

k2¼ 0.1147, and k3¼�1.6449. Further, we see that (A, b) is

controllable. For step 2, we see that k1,2 are the two unstable

roots and the other is stable. For step 3, we have

a1¼�0.6449 and a2¼ 0.0608. The critical delays sð0Þa;b½l� and

sð2Þa;b½l� can be easily obtained from Theorem 2. Figures

6(a)–6(c) illustrate the relation between the critical delays

and �k1 for �k2 ¼ 0:3; 0:7; 1:0, respectively, where

sð0Þa;b½l� ðs
ð2Þ
a;b½l�Þ are denoted by bold black curves (thin red

curves). It can be seen that there is no stability region in

Fig. 6(a) and the narrow strip region exits in Fig. 6(b). There

is a wide region in Fig. 6(c). Here, we set �k1 ¼ 2:0 and
�k2 ¼ 0:7. The delay time is chosen from the region: we set

s¼ 1.0. For step 4, we have r1¼ 2.0 and r2¼ 0.7. For

step 5, we obtain ds (s)¼ sþ 1.6449. For step 6, we have
�k

T ¼ ½ 1:1514 3:9898 2:0000 �. For step 7, the coupling

strength is given by kT ¼ ½ 1:2276 2:0000 0:7622 �.
The time series data of the three networks (see Fig. 3)

before and after coupling are shown in Fig. 7. We see that

each oscillator converges on its fixed point for t> 100. This

result supports our analytical results.

VI. DISCUSSIONS

This section discusses the relations to the previous stud-

ies on amplitude death and to consensus problems which

have been investigated in control theory.

Amplitude death is now a hot topic in nonlinear scien-

ces.11,12,42–46 Especially, time-delay-induced death15 has

been widely investigated for over fifteen years. It has been

developed as follows: Reddy et al. discovered this phenom-

enon in globally coupled Stuart-Landau oscillators and ana-

lyzed its stability;15,17 the stability analysis was extended to
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a ring of Stuart-Landau oscillators;18,19 Zou, Zheng, and

Zhan analyzed the stability of time-delay-induced death on

complex networks with R€ossler oscillators.41 Since these

studies dealt with the oscillators which have a pair of com-

plex conjugate unstable roots, their results cannot always be

used for high-dimensional oscillators, for instance, the gener-

alized R€ossler oscillators with two pairs of complex conju-

gate unstable roots23,24 (see Subsection IV C) and the

Moore-Spiegel oscillators with two positive real unstable

roots25,26 (see Subsection V C). In contrast, our paper can

deal with such high-dimensional oscillators.

Michiels and Nijmeijer provided the following two

novel and valuable results:10 the stability regions on the

connection parameter space for m-dimensional oscillators

coupled by directed connections can be directly computed

in a computationally efficient way; for the case of Lorenz

oscillators with sufficiently large coupling strength, there

always exists the connection delay inducing death inde-

pendently of the network topology. In contrast, for undir-

ected connections, our paper provides the procedures for

designing connection parameters for general high-

dimensional oscillators without restriction on sufficiently

large coupling strength.

Now let us briefly review our previous studies on the

time-delay-induced death related to our present paper.

Reference 47 dealt with high-dimensional oscillators coupled

by time-delay connections on a one-way ring topology. As

this previous study focused only on the specific network to-

pology, its results cannot be used for oscillator networks

with general topologies our present paper deals with.

Reference 30 investigated amplitude death in Stuart-Landau

oscillator networks with two connection delays: its results

cannot be applied to the high-dimensional oscillators, which

have two real positive unstable roots or more than two unsta-

ble roots. Reference 32 extended the results of Ref. 48,

which investigated amplitude death in two scalar time-delay

oscillators with a delayed connection, to scalar time-delay

oscillator networks. Although Ref. 32 analyzed amplitude

death using the concept of a robust stability,37–39 which is

also used in our present paper, the results of the previous

study32 are meant for only scalar time-delay oscillator

networks.

It was reported that amplitude death can be induced by

various time-delay connections: the distributed delay connec-

tion,49–51 the partial delay connection,52 the gradient delay

connection,53 the time-varying delay connection,54–57 the dig-

ital delay connection,58 the mismatched delay connection,59

and the asymmetric delay connections.60 It must be empha-

sized that most of them enlarge the parameter space where

death occurs, as compared with the original delay connection.

FIG. 7. Time series data of the three networks with Moore-Spiegel oscilla-

tors (39): (a) two oscillators, (b) ring type network with N¼ 10, and (c) com-

plete network with N¼ 8. Individual oscillators without connection behave

oscillatory for t< 100; they are coupled at t¼ 100.

FIG. 6. Critical delays sð0Þa;b½l� (bold

black curves) and sð2Þa;b½l� (thin red

curves) in �k1-s plane for (a) �k2 ¼ 0:3,

(b) �k2 ¼ 0:7, and (c) �k2 ¼ 1:0. Gray

regions denote the stability region s 2
(K(0) \ K(2)).
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The consensus problems in networked multi-agent sys-

tems have been widely investigated in the field of control

theory.3 The problems under communication time-delays

among agents61 have attracted a growing interest in recent

years.62,63 Most of the studies on the consensus problems

with communication time-delays investigate the dynamics of

agents coupled by the delayed connections, in which each

agent does not have unstable roots, and design the connec-

tion parameters such that the coupled agents are stable. One

might conclude that the consensus problems with communi-

cation time-delays are similar to the design problems for

time-delay-induced death, but they are totally opposite. The

consensus problems always treat the time delay as a negative

factor of instability; in contrast, our paper treats it as a posi-

tive factor of stability.

VII. CONCLUSION

The present paper provides procedures which allow us

to obtain the coupling strength and connection delay for

inducing stabilization of a steady state in oscillator net-

works. The procedures take into account the case in which

the network structure and number of oscillators are

unknown. In addition, we showed that if the oscillators

have two unstable roots, the procedure can be systemati-

cally carried out using only a simple algebraic calculation.

These analytical results are numerically confirmed for the

cases of generalized R€ossler oscillators and Moore-Spiegel

oscillators.
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APPENDIX: PROOFS OF LEMMAS AND THEOREMS

This appendix provides proofs of lemmas and theorems.

1. Proof of Lemma 1

From Eq. (9), we see that q1¼ 0 is fixed for any C.

Hence, if h(s, q1¼ 0) is not stable, then g(s) cannot be stable

(see Eq. (10)). For s¼ 0, we have h(s, 0)¼ d(s) independ-

ently of kT and C. As A has at least one unstable eigenvalue

by assumption, d(s)¼ 0 has unstable roots. Therefore, for

s¼ 0, steady state (3) cannot be stabilized by connection (2).

2. Proof of Lemma 2

Equation (9) suggests that q1¼ 0 is fixed for any C.

Thus, if h(s, 0) is not stable, then g(s) cannot be stable.

Obviously if A has a zero eigenvalue (i.e., d(0)¼ 0), then h(0,

0)¼ d(0)þ n(0) {1 � e0}¼ 0 holds (i.e., h(s, 0) is not stable

due to the zero root) for any s, kT, and C. On the other hand,

the function h(s, 0) is continuous in s. For real positive s, we

have that lims!þ1 hðs; 0Þ ¼ þ1: We notice that h(s, 0) with

s¼ 0 is given by hð0; 0Þ ¼ det½ �A � ¼
Qm

i¼1ð�kiÞ: Here, ki

(i¼ 1,…,m) are the eigenvalues of A; thus, we have

h(0, 0)< 0 when the number of real positive eigenvalues is

odd. This fact suggests that h(s, 0)¼ 0 has at least one unsta-

ble root independently of s, kT, and C.

3. Proof of Theorem 1

This proof shows that the three conditions, (a), (b), and

(c) in Lemma 3, hold if the conditions (i) and (ii) are satisfied.

(a) h(s, 0)¼ d(s)þ n(s) (1� e�ss) is equivalent to the char-

acteristic quasi-polynomial associated to a closed-loop

system consisting of the feedforward part M(s) and the

feedback part �e�ss. By the Nyquist stability criterion,

it is obvious that if conditions (i) and (ii) are satisfied,

then h(s, 0) is stable.

(b) h(s, 2)¼ d(s)þ n(s) (1þ e�ss) corresponds to a closed-

loop system consisting of M(s) and þe�ss. As is the

case with h(s, 0), the conditions (i) and (ii) also guaran-

tee that h(s, 2) is stable.

(c) Let us prove that

/ xð Þ ¼ arg
h jx; 0ð Þ
h jx; 2ð Þ

� 	
¼ arg

1�M jxð Þe�jxt

1þM jxð Þe�jxt

" #

6¼ 6p; 8x 2 0;þ1½ Þ: (A1)

It is obvious that if condition (ii) is satisfied, then the two

vectors 1 6 M(jx)e�jxs in the complex plane never have op-

posite directions for any x 2 [0, þ1). Therefore, condition

(A1) holds.

4. Proof of Lemma 4

This proof deals with each fact on the basis of the follow-

ing relations: a1 þ �k1 > 0 with the assumption a1 < 0 is a suf-

ficient condition for a1 þ 2�k1 > 0; a2 þ 2�k2 > 0 with the

assumption a2> 0 is a sufficient condition for a2 þ �k2 > 0.

(i) Note that W(x2)¼ 0 obviously has two real positive

roots, x2
a < x2

b, if the three inequalities c1< 0, c2> 0,

and c2
1 � 4c2 > 0 are satisfied. It is easy to confirm

that condition (20) with a1< 0 and a2> 0 is a suffi-

cient condition for these inequalities to hold. Further,

W(0)¼ c2> 0 shows that 6jxa and 6jxb are stabiliz-

ing and destabilizing points, respectively.

(ii) The necessary and sufficient condition for dðsÞ þ
nðsÞ ¼ s2 þ ða1 þ �k1Þsþ a2 þ �k2 to be stable is that

a1 þ �k1 > 0 and a2 þ �k2 > 0. We easily see that con-

dition (20) is a sufficient condition.

(iii) The necessary and sufficient condition for dðsÞ þ
2nðsÞ ¼ s2 þ ða1 þ 2�k1Þsþ a2 þ 2�k2 to be stable is

that a1 þ 2�k1 > 0 and a2 þ 2�k2 > 0. We also easily

see that condition (20) is a sufficient condition.

5. Proof of Lemma 5

Let us focus on the root movement of h(s, 0)¼ 0 in the

case that s is increased from 0. Recall that h(s, 0)¼ 0 with

s¼ 0 has two unstable roots independently of the coupling

strength. It is obvious that if sð0Þa ½0� < sð0Þb ½0�, which is equiv-

alent to condition (24), holds, then the following facts hold:
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the pair of complex conjugate unstable roots of h(s, 0)¼ 0

moves to the left through the stabilizing points 6jxa when s
exceeds sð0Þa ½0�; the pair of complex conjugate stable roots of

h(s, 0)¼ 0 moves to the right through the destabilizing points

6jxb when s exceeds sð0Þb ½0�. These stabilizing and destabi-

lizing transitions are repeated (i.e., l¼ 1,…,) until inequality

sð0Þa ½l� < sð0Þb ½l� fails to hold. Therefore, h(s, 0)¼ 0 has no

unstable roots if condition (24) holds and s belongs to the

intervals K(0).

6. Proof of Lemma 6

Recall that h(s, 2)¼ 0 both with s¼ 0 and ð�k1; �k2Þ satis-

fying (20) has no unstable roots due to fact (iii) in Lemma 4.

We see that if sð2Þa ½0� < 0 < sð2Þb ½0�, which is equivalent to

condition (26), holds, then the following facts hold: the pair

of complex conjugate stable roots of h(s, 2)¼ 0 moves to the

right through 6jxb when s exceeds sð2Þb ½0�; the two unstable

roots in complex conjugate pairs move to the left through

6jxa when s exceeds sð2Þa ½0�. These stabilizing and destabi-

lizing transitions are repeated (i.e., l¼ 1,…,) until inequality

sð2Þa ½l� < sð2Þb ½l� fails to hold. Therefore, h(s, 2)¼ 0 has no

unstable roots if condition (26) holds and s belongs to the

intervals K(2).

7. Proof of Lemma 7

Lemmas 4, 5, and 6 guarantee that if condition (20) and

s 2 ðKð0Þ \ Kð2ÞÞ hold, then we have stable M(s), h(s, 0), and

h(s, 2). Remark that h(s, 0)¼ 0 and h(s, 2)¼ 0 can be rewrit-

ten as 1 � M(jx)e�jxs¼ 0 and 1þM(jx)e–jxs¼ 0, respec-

tively. We notice that on the assumption of a stable M(s),

stable functions h(s, 0) and h(s, 2) suggest that the Nyquist

plot M(jx)e�jxs never intersects l(0)[ l(2). This implies that

the two vectors 1 6 M(jx)e�jxs in the complex plane never

have opposite directions for any x 2 [0, þ1). Therefore, we

notice that condition (c) in Lemma 3 holds if condition (20)

is satisfied and s belongs to (K(0) \ K(2)).
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