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Abstract

The present paper studies amplitude death in high-dimensional maps coupled by time-delay connections. A linear stability analysis
provides several sufficient conditions for an amplitude death state to be unstable, i.e., an odd number property and its extended
properties. Furthermore, necessary conditions for stability are provided. These conditions, which reduce trial-and-error tasks for
design, and the convex direction, which is a popular concept in the field of robust control, allow us to propose a design procedure
for system parameters, such as coupling strength, connection delay, and input-output matrices, for a given network topology. These
analytical results are confirmed numerically using delayed logistic maps, generalized Henon maps, and piecewise linear maps.
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1. Introduction

A considerable number of studies have examined various
phenomena in coupled continuous-time nonlinear oscillators [1–
4] and coupled discrete-time nonlinear maps [5, 6]. These phe-
nomena are roughly classified into two types: weak- and strong-
coupling induced phenomena. For weak coupling, the phases
of coupled oscillators are governed by simple phase dynam-
ics [7, 8], and for strong coupling, their amplitudes are influ-
enced by connections. Amplitude death, a phenomenon that
occurs with strong coupling, has been widely investigated both
analytically and experimentally [9, 10]. This phenomenon is
defined as a stabilization of unstable fixed points embedded
within continuous-time nonlinear oscillators with diffusive con-
nections. As this phenomenon can suppress oscillations, it has
potential use in the avoidance of undesired oscillations for prac-
tical coupled systems [11–13]. However, diffusive connections,
the most popular connections, never induce amplitude death in
identical oscillators [14, 15]. This fact is considered a drawback
in terms of utilization of amplitude death.

It is well known that at least three types of connections
can overcome this drawback: time-delay [16, 17], dynamics
[18–20], and conjugate connections [21]. Among these con-
nections, there has been a gradual accumulation of analytical
and experimental knowledge on time-delay induced amplitude
death [16, 17, 22–25] because the transmission delays of infor-
mation signals passing through connections [26, 27] are ubiqui-
tous in real situations. Many studies have examined time-delay

∗Corresponding author
Email address: konishi@eis.osakafu-u.ac.jp (Keiji Konishi)
URL: http://www.eis.osakafu-u.ac.jp/~ecs/index-e.html

(Keiji Konishi)

induced death of coupled continuous-time oscillators [9, 10].
Conversely, there have been several efforts to deal with ampli-
tude death in coupled discrete-time maps.

Time-delay-induced amplitude death of coupled discrete-
time maps was reported in 2003 [28]. That study provided ana-
lytical results on death in a pair of high-dimensional maps with
a delayed connection. The results are summarized as follows:
(a) death cannot occur with no-delay connections; (b) the odd
number property [15] exists even in a pair of high-dimensional
maps; and (c) death cannot occur even with delay connections
in a pair of one-dimensional maps. Result (b) was extended
to a simple ring lattice [29]. Atay and Karabacak analytically
investigated amplitude death in one-dimensional map networks
with uniform delay time [30]. Masoller and Martı́ found ampli-
tude death in one-dimensional map networks with non-uniform
delay time [31], and the results were investigated analytically
and numerically in detail [32–35]. However, few studies have
attempted to deal with high-dimensional map networks [36] be-
cause it is not easy to analytically investigate their stability.

This study considers amplitude death in high-dimensional
map networks with uniform delay time. We can deal with com-
plex network topologies in the same manner as a simple topol-
ogy. It is shown that the linear stability of amplitude death is
governed by a characteristic equation with topology parame-
ters. The characteristic equation reveals that results (a) and (b)
in the previous study [28] for a pair of maps remain even for
map networks. As the number of topology parameters is equiv-
alent to that of maps in a network, one may think that a design
of connection parameters in networks with a large number of
maps is a complicated problem. However, we demonstrate that
the convex direction [37], a strong mathematical concept for ro-
bust control theory, simplifies the design of connection param-
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eters. We provide a systematic procedure that designs connec-
tion parameters (i.e., coupling strength and connection delay)
and the input-output matrices of maps. Furthermore, result (b)
is extended to reduce the number of trial-and-error tasks in the
design procedure. The analytical results are confirmed numer-
ically using three types of map networks, i.e., delayed logistic
[38, 39], generalized Henon [40], and piecewise linear [41, 42]
map networks. This paper is a substantially extended version of
our previous conference paper [36].

2. Map networks

Consider the following high-dimensional maps,{
xi(n + 1) = F

[
xi(n)

]
+ bui(n),

yi(n) = cxi(n),
(i = 1, . . . ,N), (1)

where xi(n) ∈ Rm is the system state of the i-th m-dimensional
map at time n ∈ Z. The input and output signals are ui(n) ∈ R
and yi(n) ∈ R, respectively. N ∈ Z+ represents the number of
maps. F : Rm → Rm denotes the nonlinear map, which has
at least one fixed point x∗ : x∗ = F

[
x∗

]
. The input and output

matrices are b ∈ Rm and c ∈ R1×m, respectively. Here, the input
signal ui(n) with connection delay τ ∈ Z+and coupling strength
k ∈ R is expressed as follows:

ui(n) = k


 N∑

l=1

εil

di
yl(n − τ)

 − yi(n)

 , (2)

di :=
N∑

l=1

εil,

where εil governs the network topology. Here, εil = εli = 1
(= 0) indicates that maps i and l are (are not) connected. In ad-
dition, self-feedback is not allowed (i.e., εii = 0). The number
of maps connected to map i is expressed by di.

Here we focus on the following spatial uniform equilibrium
state of map network (1) with connection delay (2):[

x1(n)T · · · xN(n)T
]T
=

[
x∗T · · · x∗T

]T
. (3)

The linearized dynamics of a coupled map network (1) (2) at
equilibrium state (3) is described as follows:

vi(n + 1) = (A − kbc) vi(n) + kbc
N∑

l=1

εil

di
vl(n − τ), (4)

A :=
∂F(x)
∂x

∣∣∣∣∣x=x∗
, (5)

where vi(n) := xi(n) − x∗. Here we employ the following as-
sumption.

Assumption 1. The fixed point x∗ of each isolated map is un-
stable, i.e., the Jacobi matrix A is unstable. Furthermore, (A, b, c)
is assumed to be minimal1.

1(A, b, c) is minimal if and only if they are controllable and observable [43];

Linearized system (4) can be rewritten as follows:

V(n + 1) =
[
IN ⊗ (A − kbc)

]
V(n)

+ (E ⊗ kbc)V(n − τ), (6)

where V(n) and E are defined as

V(n) :=


v1(n)
...

vN(n)

 , E :=


ε11/d1 · · · ε1N/d1
...

. . .
...

εN1/dN · · · εNN/dN

 .
Here the matrix IN and the symbol ⊗ denote an N-dimensional
identity matrix and the Kronecker product, respectively. Note
that the stability of spatial uniform equilibrium state (3) is equal
to that of the mN-dimensional linear system (6) with delay time
τ. Substituting a solution V(n) = zna, with a nonzero vector
a ∈ RmN , into a linearized system (6) allows us to obtain its
characteristic polynomial,

Ḡ(z) := det [zImN − IN ⊗ (A − kbc)
−(E ⊗ kbc)z−τ

]
, (7)

which can be used to investigate the stability of equilibrium
state (3). We can diagonalize the matrix IN − E using a matrix
T [30, 44] as follows:

T−1(IN − E)T = diag(ρ1, . . . , ρN). (8)

Note that the eigenvalues of IN−E, i.e., ρi (i = 1, . . . ,N), satisfy

0 = ρ1 ≤ ρ2 ≤ · · · ≤ ρN ≤ 2, (9)

for any number of maps and topology [30]. This diagonaliza-
tion simplifies characteristic polynomial (7), i.e.,

Ḡ(z) :=
N∏

q=1

ḡ(z, ρq), (10)

ḡ(z, ρ) := d(z) + kn(z)
{
1 − (1 − ρ)z−τ} . (11)

Here n(z) and d(z) defined as

n(z)
d(z)

:= c(zIm − A)−1b =
cadj(zIm − A)b
det

[
zIm − A

] , (12)

represent the transfer function of each map (1) from ui(n) to
yi(n) around the fixed point x∗. Note that n(z) and d(z) depend
only on each isolated map (i.e., A, b, c) but not on connection
(2), i.e., k, εil, and τ. We summarize the above analytical argu-
ment as follows.

Lemma 1. The local stability of spatial uniform equilibrium
state (3) of map network (1) (2) is equivalent to the stability of

they can be easily checked numerically.



the following polynomial:

G(z) :=
N∏

q=1

g(z, ρq), (13)

g(z, ρ) := zτd(z) + kn(z) (zτ − 1 + ρ) . (14)

Proof. The above argument reveals that the local stability of
state (3) is governed by polynomial (10). Since the roots z of
ḡ(z, ρ) = 0 are the same as those of g(z, ρ) = 0, the stability of
ḡ(z, ρ) is equivalent to that of g(z, ρ). As a result, the stability of
polynomial (10) is equivalent to that of polynomial (13).

This study investigates the characteristic polynomial G(z) in
Lemma 1 to analyze the stability of equilibrium state (3). It
must be emphasized that we perform linear stability analysis
around equilibrium state (3). Thus, our analytical results are
valid for only the local dynamics around it, i.e., we do not deal
with global dynamics. This indicates that, even if the charac-
teristic polynomial G(z) is stable, the states xi (i = 1, . . . ,N) do
not always converge to equilibrium state (3).

3. Stability analysis

This section shows several stability conditions for equilib-
rium state (3) on the basis of the analysis of N(m + τ)-order
polynomial G(z) in Eq. (13). Two types of stability conditions
are key points in understanding this section. The first is a suf-
ficient condition for state (3) to be unstable. This means that if
the sufficient condition is satisfied, the state is unstable; how-
ever, if the state is unstable, the sufficient condition is not al-
ways satisfied. The second is a necessary condition for state (3)
to be stable. This means that if the state is stable, then the nec-
essary condition is satisfied; however, if the necessary condition
is satisfied, the state is not always stable.

3.1. Unstable conditions
We show a sufficient condition when τ = 0.

Lemma 2. For connection (2) without delay (i.e., τ = 0), equi-
librium state (3) is not stabilized for any E, k, b, and c.

Proof. Polynomial (13) always includes g(z, 0) = d(z) because
ρ1 = 0 holds for any topology. From Eq. (12), we see that
d(z) is the characteristic polynomial of matrix A, which is as-
sumed to be unstable in Assumption 1. Thus, polynomial (13)
is unstable and independent of E, k, b, and c.

Note that the lemma for N = 2 was reported in a previous study
[28]. Here, to simplify several proofs that will be introduced
below, we provide a preliminary fact.

Lemma 3. Consider a matrix P ∈ Rm×m and its characteristic
polynomial p(z) := det

[
zIm − P

]
. For a real number z0 ∈ R

that is not an eigenvalue of P, inequality p(z0) < 0 (p(z0) > 0)
implies that P has an odd (even) number of real eigenvalues2

greater than z0.

2Throughout this paper, the term for real eigenvalues greater than z0 ex-
presses that the real eigenvalues are within the range (z0,+∞).

(a)

(b)

Figure 1: Sketches of characteristic polynomial g(z, 0) for proofs: (a) Theorem
1 and Corollary 1; (b) Theorem 2 and Corollary 2

Proof. p(z) at z = z0 can be rewritten as follows:

p(z0) = det
[
z0Im − P

]
=

m∏
l=1

{z0 − λl(P)} ,

where λl(P) represents an eigenvalue of P. This equation sug-
gests that under the assumption of z0 , λl(P) for any l ∈ {1, . . . ,
m}, we have p(z0) < 0 (p(z0) > 0) if and only if there exist an
odd (even) number of eigenvalues on the real axis greater than
z0.

Let us consider a sufficient condition under which equilib-
rium state (3) cannot be stabilized. This is referred to as the odd
number property.

Theorem 1. Equilibrium state (3) is not stabilized for any E, k,
τ, b, and c if an odd number of eigenvalues of the Jacobi matrix
A defined by Eq. (5) are on the real axis and are greater than
one.

Proof. G(z) includes g(z, 0) due to ρ1 = 0; thus, this proof fo-
cuses only on the stability of g(z, 0). Since g(z, 0) is a (m + τ)-
order polynomial of z (see Eq. (14)), then limz→+∞ g(z, 0) = +∞



always holds (Fig. 1(a)). Therefore, if g(1, 0) = d(1) < 0 holds,
we have at least one real root z > 1 of g(z, 0) = 0. From Lemma
3, d(1) < 0 suggests that an odd number of eigenvalues of the
matrix A are on the real axis and are greater than one.

Theorem 1 is an extended version of the odd number property
of a single map [45, 46], a pair of maps [28], and a simple ring
lattice [29] for generalized topologies. Note that Theorem 1
provides no information for which A has an even number of
eigenvalues on the real axis that are greater than one. More
information is provided in Corollary 1.

Corollary 1. Let n(ẑ) = 0 have a solution ẑ. Equilibrium state
(3) is not stabilized for any E, k, and τ if there exists at least
one ẑ > 1 such that an odd number of eigenvalues of the matrix
A are on the real axis and are greater than ẑ.

Proof. In accordance with Theorem 1, we focus on the stability
of polynomial g(z, 0). This polynomial at z = ẑ > 1 is reduced
to a simple polynomial g(ẑ, 0) = ẑτd(ẑ) due to n(ẑ) = 0. Here we
see that limz→+∞ g(z, 0) = +∞ always holds (Fig. 1(a)). Thus,
g(z, 0) = 0 has at least one real root z > ẑ > 1, if we find at
least one ẑ > 1 such that g(ẑ, 0) < 0 ⇔ d(ẑ) < 0 holds. From
Lemma 3, the condition d(ẑ) < 0 implies that an odd number of
eigenvalues of the matrix A are on the real axis and are greater
than ẑ > 1.

Corollary 1 generalizes a previous study [46] that dealt with
only a single map.

The above analytical results and the previous related studies
focused on only real eigenvalues greater than one. Furthermore,
they do not depend on the system dimension m and delay time
τ. Here we provide two sufficient unstable conditions based on
the real eigenvalues greater than −1 that are dependent on m
and τ.

Theorem 2. Assume that τ is an even number. For an even
(odd) m, equilibrium state (3) is not stabilized for any E, k, b,
and c if an odd (even) number of eigenvalues of the matrix A
are on the real axis and are greater than −1.

Proof. Let us analyze the stability of g(z, 0) as well as Theorem
1. If m + τ is an even (odd) number, we have limz→−∞ g(z, 0) =
+∞ (= −∞) due to the highest order m+ τ of g(z, 0) (Fig. 1(b)).
Furthermore, for an even τ, we see that g(−1, 0) = d(−1). These
facts provide the following results. For an even m+τ and even τ
(i.e., an even m and even τ), g(z, 0) = 0 has at least one real root
z < −1 if g(−1, 0) = d(−1) < 0 holds. The condition d(−1) < 0
suggests that an odd number of eigenvalues of the matrix A are
on the real axis and are greater than −1. For an odd m + τ and
even τ (i.e., an odd m and even τ), g(z, 0) = 0 has at least one
real root z < −1 if g(−1, 0) = d(−1) > 0 holds. The condition
d(−1) > 0 suggests that an even number of eigenvalues of the
matrix A are on the real axis and are greater than −1.

Corollary 2. Let ẑ be a solution of n(ẑ) = 0. For an even
(odd) m, equilibrium state (3) is not stabilized for any E, k, and
τ if there exists at least one ẑ < −1 such that an odd (even)
number of eigenvalues of the matrix A are on the real axis and
are greater than ẑ.

Proof. Here, the stability of g(z, 0) is analyzed as well as The-
orem 1. As with Theorem 2, we have limz→−∞ g(z, 0) = +∞
(= −∞) for an even (odd) m + τ (Fig. 1(b)). Furthermore, for
an even (odd) τ, we see that g(ẑ, 0) = (ẑ)τ d(ẑ) = + |ẑ|τ d(ẑ)
(= − |ẑ|τ d(ẑ)). Therefore, for an even m + τ, if we find at least
one ẑ < −1 such that d(ẑ) < 0 with an even τ or d(ẑ) > 0
with an odd τ hold, then at least one real root z < ẑ < −1 of
g(z, 0) = 0 exists. In addition, for an odd m + τ, if we find at
least one ẑ < −1 such that g(ẑ, 0) = + |ẑ|τ d(ẑ) > 0 with an even
τ or g(ẑ, 0) = − |ẑ|τ d(ẑ) > 0 with an odd τ hold, then at least
one real root z < ẑ < −1 of g(z, 0) = 0 exists. These facts are
summarized as follows. At least one real root z < ẑ < −1 of
g(z, 0) = 0 exists if d(ẑ) < 0 with an even m holds or d(ẑ) > 0
with an odd m holds. From Lemma 3, the inequality d(ẑ) < 0
(> 0) implies that an odd (even) number of eigenvalues of the
matrix A are on the real axis and are greater than ẑ < −1.

It must be emphasized that Theorem 2 and Corollary 2 have not
been introduced in previous studies, even for N = 1, 2. These
sufficient conditions reduce the number of trial-and-error tasks
when designing connections, because we know that if at least
one of these conditions holds, then amplitude death is never
induced for any connection parameter and network topology. In
such a case, we must change b, c or give up on inducing death.

3.2. Stable conditions

Here, we show some necessary conditions to ensure that
equilibrium state (3) is stable. First, we introduce segment poly-
nomial L(z) as follows:

L(z) := {g(z, ρ) : ρ ∈ [0, ρ̄]} , (15)

where ρ̄ ≤ 2 is the upper limit of the maximum eigenvalue ρN in
inequality (9). Note that ρ in polynomial (14) depends on E and
N. In addition, the segment polynomial (15) can be rewritten by
a function of a parameter µ as follows:

L(z) = {g(z, 0) + µĝ(z) : µ ∈ [0, 1]} , (16)

where

ĝ(z) := g(z, ρ̄) − g(z, 0) (17)

denotes the direction of the segment.
This segment polynomial can be used for analysis of the

local stability of equilibrium state (3).

Corollary 3. If L(z) is stable3, then equilibrium state (3) is
locally stable for any network whose ρN is less than or equal to
ρ̄.

Proof. The polynomials g(z, ρq) (q = 1, . . . ,N) for coupled
map networks whose ρN is less than or equal to ρ̄ are a sub-
set of L(z). This suggests that if L(z) is stable, then equilibrium
state (3) in the coupled map networks is stable locally.

3A segment is stable if and only if every polynomial on the segment is stable
[47].



The following lemma gives the necessary condition for L(z) to
be stable.

Lemma 4. The fact that two polynomials, i.e.,

d(z) + kn(z), (18)

zτd(z) + kn(z)(zτ − 1), (19)

are stable is a necessary condition for L(z) to be stable.

Proof. It has been reported [30] that the maximum eigenvalue
ρN satisfies the following:

1 <
N

N − 1
≤ ρN ≤ 2. (20)

Thus, 1 < ρN always holds. Then L(z) must include g(z, 1) =
zτ {d(z) + kn(z)}. Furthermore, we have ρ1 = 0; thus, g(z, 0)
must also be an element of L(z). Consequently, each stability
is a necessary condition for L(z) to be stable. As can be seen,
the stability of g(z, 1) and g(z, 0) is equal to that of polynomials
(18) and (19), respectively.

We see that polynomial (18) is the same as the characteristic
polynomial of a control system with a forward plant n(z)/d(z)
and negative feedback part k. Note that polynomial (19) de-
pends on τ, but polynomial (18) does not. This fact suggests an
order for designing k and τ. First, a range of k is derived from
polynomial (18). Second, τ is chosen such that polynomial (19)
is stable within the range of k.

The robust control theory provides a sufficient condition un-
der which L(z) is stable.

Lemma 5 (Ref. [37]). Segment polynomial L(z) in Eq. (16) is
stable if all of the following are satisfied.

(c-1) g(z, 0) is a stable polynomial,

(c-2) g(z, ρ̄) is a stable polynomial,

(c-3) ĝ(z) is a convex direction (see Appendix A).

Conditions (c-1) and (c-2) can be checked by a popular sta-
bility analysis method [48]. The direction in condition (c-3) can
be simplified as follows:

ĝ(z) = g(z, ρ̄) − g(z, 0) = ρ̄kn(z). (21)

Note that the direction depends on only n(z). From Theorem 3
in Appendix A, we have a simple condition for the direction.

Lemma 6. A real polynomial ĝ(z) is a convex direction if the
following inequality holds:

1
nr(θ)2 + ni(θ)2

(
nr(θ)

dni(θ)
dθ

− ni(θ)
dnr(θ)

dθ

)
≤ m

2
, θ ∈ (0, π),

(22)

where n
(
e jθ

)
:= nr(θ) + jni(θ).

Proof. From Theorem 3 in Appendix A, we note that a suf-
ficient condition for ĝ(z) to be a convex direction is that the
following inequality holds.

∂ arg
{
ĝ
(
e jθ

)}
∂θ

≤ m
2
, θ ∈ (0, π) (23)

Substituting n
(
e jθ

)
:= nr(θ)+ jni(θ) and Eq. (21) into inequality

(23) yields inequality (22).

These sufficient and necessary conditions and the stability anal-
ysis on the convex direction will be used in the design of the
connection parameters and the input-output matrices of maps
in the next section.

4. Design for inducing amplitude death

Here, we show a procedure to design the connection pa-
rameters (i.e., k and τ) and input-output matrices (i.e., b and
c) to induce stabilization on the basis of our analytical results
discussed in the preceding section (Fig. 2).

(Step 0) Compute A. Assume that matrix A is unstable (As-
sumption 1).

(Step 1) If an odd number of eigenvalues of matrix A are on
the real axis and greater than one, quit the design; other-
wise, proceed to the next step (Theorem 1).

(Step 2) b and c are set to new matrices such that (A, b, c) is
minimal.

(Step 3) If n(z) = cadj(zIm − A)b satisfies inequality (22), then
proceed to the next step; otherwise, return to (Step 2) or
quit the design ((c-3) in Lemma 5 and Lemma 6).

(Step 4) Calculate the zeros ẑ of n(ẑ) = 0. If we find at least
one ẑ > 1 such that an odd number of eigenvalues of
the matrix A are on the real axis and are greater than the
zero ẑ > 1, then return to (Step 2) or quit the design;
otherwise, proceed to the next step (Corollary 1).

(Step 5) For an even (odd) m, if we find at least one ẑ < −1
such that an odd (even) number of eigenvalues of the ma-
trix A are on the real axis and are greater than the zero
ẑ < −1, then return to (Step 2) or quit the design; other-
wise, proceed to the next step (Corollary 2).

(Step 6) Derive the range of gain k such that polynomial (18)
is stable ((c-1) in Lemma 5). If the range exists, then
proceed to the next step; otherwise, return to (Step 2) or
quit the design (Lemma 4).

(Step 7) If an odd (even) number of eigenvalues of the matrix
A are on the real axis and are greater than −1 for an even
(odd) m, then τ > 0 is set to a new odd number; other-
wise, it is set to a new number (Theorem 2). Proceed to
the next step.



Figure 2: Design procedure of k, τ, b, and c for inducing amplitude death

(Step 8) Derive the range of k where polynomial (19) is sta-
ble. If there exists a partial overlap between the ranges
in (Step 6) and (Step 8), then proceed to the next step;
otherwise, return to (Step 7) or quit the design (Lemma
4).

(Step 9) For k within the overlap range, find ρ̄ ∈ [1, 2] such
that g(z, ρ̄) is a stable polynomial ((c-2) in Lemma 5).

This procedure appears difficult because it has 10 steps. How-
ever, most steps can be checked easily. These steps reduce the
burden of design.

5. Numerical examples

Here, we confirm our analytical results using three types of
maps in numerical simulations.

5.1. Delayed logistic map networks
The following delayed logistic map [38, 39] is used as non-

linear map F with m = 2 in Eq. (1).

F(x) :=
[

x(2)
2.1x(2)

{
1 − x(1)

}] (24)

k

ρ

τ=1

stable

ρ=2

0.2 0.4 0.6 0.8
1

1.2

1.4

1.6

1.8

2

Figure 3: Stable region of g(z, ρ) for delayed logistic map (24) networks

The fixed points of this map are described by x∗a = [0 0]T and
x∗b = [0.5238 0.5238]T . In accordance with the proposed pro-
cedure, we design parameters k, τ, b, and c as follows.

For (Step 0), we see that x∗a,b are unstable because the eigen-
values of {A}x=x∗a,b are λ = 0, 2.1 and λ = 1/2 ± j

√
3.4/2, re-

spectively. For (Step 1), the eigenvalues of {A}x=x∗a satisfy the
odd number property; thus, amplitude death does not occur at
x∗a. In contrast, for another fixed point x∗b, the eigenvalues of
{A}x=x∗b do not satisfy the property. Therefore, we focus on x∗b.
For (Step 2), b = [1 0]T and c = [1 0] are fixed. It is easy to
check numerically that (A, b, c) is minimal. For (Step 3), we
have n(z) = z − 1, which satisfies inequality (22). For (Step 4),
we see that there does not exist the zero ẑ > 1 of n(ẑ) = 0. For
(Step 5), we also see that there does not exist the zero ẑ < −1 of
n(ẑ) = 0. For (Step 6), we analytically find that polynomial (18)
is stable for k ∈ (0.1000, 1.5500). For (Step 7), as in (Step 0),
the matrix {A}x=x∗b does not have real eigenvalues greater than
−1. Thus, delay time τ can be set to an arbitrary number; we
select τ = 4. For (Step 8), we cannot numerically determine k
for polynomial (19) to be stable. Therefore, we return to (Step
7) and reset it to τ = 1. We analytically obtain the stable range
k ∈ (0.1000, 0.7750). The overlap range in (Step 6) and (Step
8) is k ∈ (0.1000, 0.7750). For (Step 9), we find the largest pos-
sible ρ ∈ [1, 2], i.e., ρ̄, such that g(z, ρ̄) is stable. The gain range
within the overlap range for g(z, ρ) to be stable is estimated nu-
merically as ρ varies from 1 to 2 (Fig. 3). We find ρ̄ = 2, and
this fact indicates that the stabilization of equilibrium state (3)
occurs for any network E.

Using numerical simulations, we confirm that the designed
parameters induce the stabilization of state (3) in two types of
networks with eight maps (N = 8), i.e., an all-to-all network
and a ring network on two nearest neighbors (Fig. 4). From Fig.
3, we choose k = 0.3. Figures 4 (a) and (b) show time-series
data of the first variables in system states xi := [x(1)i x(2)i]T

(i = 1, . . . , 8) for the all-to-all network and the ring network,
respectively. For n < 100, each map without connection (k ≡ 0)
behaves independently. These maps are connected at n = 100.
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Figure 4: Time-series data of the first variables in system states xi :=
[x(1)i x(2)i]T (i = 1, . . . , 8) with the designed parameters (k = 0.3, τ = 1,
b = [1 0]T , c = [1 0]) for delayed logistic map (24) networks: (a) all-to-all
network and (b) ring network with two nearest neighbors

As can be seen, all maps converge on the fixed point x∗b. These
results indicate that the stabilization of state (3) is induced suc-
cessfully by the designed parameters.

5.2. Generalized Henon map networks

Consider a generalized Henon map with m = 3 [40] with
two fixed points, i.e., x∗a = [0.5235 0.5235 0.5235]T and x∗b =
[−1.6235 − 1.6235 − 1.6235]T .

F(x) :=


0.85 − x2

(2) − 0.1x(3)

x(1)
x(2)

 (25)

For (Step 0), x∗a,b are unstable because their eigenvalues are
λ = −0.0947, 0.0473± j1.0266 and λ = −1.8172, 0.0308, 1.7864.
The odd number property holds at x∗b; however, this property
does not hold at x∗a. For (Step 2), b = [1 0 0]T and c = [1 0 0]
are set, and then (A, b, c) is minimal. For (Step 3), n(z) = z2

does not satisfy inequality (22). Return to (Step 2). For (Step
2), b = [0 1 0]T and c = [1 0 0] are set, and then (A, b, c) is
minimal. For (Step 3), n(z) =

(
1.1 −

√
461/10

)
z − 0.1 satisfies

inequality (22). For (Step 4), n(ẑ) = 0 does not have the zero
ẑ > 1. For (Step 5), n(ẑ) = 0 does not have the zero ẑ < −1. For
(Step 6), polynomial (18) is stable for k ∈ [0.0536, 1.8717]. For
(Step 7), we see that A has one real eigenvalue λ = −0.0947
greater than −1 for odd m = 3. Thus, τ = 4 is set. For (Step
8), we find no stable range of k and return to (Step 7), where
τ = 2 is set. Consequently, we have the stable range k ∈
[0.0269, 0.8900]. The overlap range is k ∈ [0.0536, 0.8900].
For (Step 9), we numerically find ρ̄ = 1.944, as shown in Fig.
5. These steps suggest that the stabilization of equilibrium state
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Figure 5: Stable region of g(z, ρ) for generalized Henon map (25) networks

Figure 6: Four types of network topology and their ρ6: networks (a), (b), (c),
and (d) correspond to the same label in Fig. 5

0 1000 2000 3000 4000 5000
0.2

0.4

0.6

0.8

time n

Network(a) Network(b) Network(c) Network(d)

x (
1)

 i(
n)

  (
i=

1,
...

,6
)

Figure 7: Time-series data of the first variables in system states xi :=
[x(1)i x(2)i]T (i = 1, . . . , 6) with the designed parameters (k = 0.4, τ = 2,
b = [0 1 0]T , and c = [1 0 0]) for the four types of Henon map (25) network
consisting of six maps (N = 6) shown in Fig. 6

(3) can occur for any E under the restriction of ρN ≤ ρ̄ = 1.944.



To confirm the designed parameters numerically, we em-
ploy four types of networks consisting of the six maps (N = 6)
shown in Fig. 6. According to the above steps, parameters
k = 0.4, τ = 2, b = [0 1 0]T , and c = [1 0 0] are fixed. As can
be seen from Fig. 5, the designed parameters can induce the sta-
bilization for networks (a), (b), and (c). This fact suggests that
the stabilization can be maintained even when the connections
in the network are rewired at long intervals. In other words,
the stabilization is robust against such network rewiring, and
our analysis is useful to know the permitted types of rewiring.
Figure 7 shows the time series data4 of all the maps when the
network topology is switched as follows: no connection for
n ∈ [0, 1000), the network in Fig.6 (a) for n ∈ [1000, 2000),
the network in Fig.6 (b) for n ∈ [2000, 3000), the network in
Fig.6 (c) for n ∈ [3000, 4000), and the network in Fig.6 (d) for
n ∈ [4000, 5000). As can be seen, all maps that behave oscil-
latory without connection converge on equilibrium state (3) for
networks (a), (b), and (c) but behave oscillatory again for net-
work (d). These numerical results agree well with our analysis.

5.3. Piecewise linear map networks

is used: Here, the following piecewise linear map with m =
3 [41, 42]

F(x) :=

 f (x(1), 1.9) + 0.4x(2) − 0.5x(3)
0.1x(1) + f (x(2), 1.8)

0.1x(1) − 0.2x(3)

 , (26)

where

f (x, p) =


p(x + 1) (x < −0.5)
px (−0.5 ≤ x ≤ 0.5)
p(x − 1) (0.5 < x)

.

This map has seven fixed points. Note that all the points have
the same Jacobi matrix A.

For (Step 0), the matrix A, which has the eigenvalues λ =
−0.1757, 1.6331, and 2.0426, is unstable. For (Step 1), A has
two real eigenvalues greater than 1; thus, the odd number prop-
erty is not satisfied. For (Step 2), b = [1 0 0]T and c = [0 0 1]
are set. (A, b, c) is minimal. For (Step 3), n(z) = 0.1(z − 1.8)
satisfies inequality (22). For (Step 4), as can be seen, there ex-
ists one real eigenvalue λ = 2.0426 greater than the zero ẑ = 1.8
of n(ẑ) = 0. Thus, return to (Step 2). For (Step 2), b = [1 0 0]T

and c = [0 1 0] are set, and we confirm that (A, b, c) is min-
imal. Proceed to (Step 3). For (Step 3), n(z) = 0.1(z + 0.2)
satisfies inequality (22). For (Step 4), n(ẑ) = 0 does not have
the zero ẑ > 1. For (Step 5), n(ẑ) = 0 does not have the zero
ẑ < −1. For (Step 6), we cannot find the stable range of k for
polynomial (18), and give up the design of (k, τ, b, c).

4The small uniformly distributed random noises within[
−1.0 × 10−4, 1.0 × 10−4

]
are added to all maps to confirm the local sta-

bility of the equilibrium state (3).

6. Discussion

This section accurately surveys the relationship between the
present study and previous studies on amplitude death in discrete-
time map networks. In addition, we briefly discuss bifurcation
analysis.

Masoller and Martı́ observed that amplitude death can occur
in one-dimensional map networks with random delay connec-
tions [31]. Their results have been investigated analytically in
view of multiple delayed feedback control [32] and examined
numerically for regular and random topologies [33, 35]. Gong
et al. investigated amplitude death in one-dimensional map net-
works with distributed delay connections analytically and nu-
merically [34]. Han reported oscillation death in coupled one-
dimensional maps with local and global no-delay connections
[49]. Masoller and Atay investigated transitions between an
oscillatory synchronization state and an amplitude death state
in one-dimensional map networks with delay connections [50].
Shekatkar and Ambika proposed a dynamic lattice for stabiliz-
ing coupled high-dimensional map lattices [51]. Based on the
characteristic polynomial (10) with m = 1, Atay and Karaba-
cak [30] provided the necessary and sufficient condition un-
der which amplitude death occurs in one-dimensional map net-
works with uniform delay connections. This condition revealed
the following: (i) amplitude death never occurs for ρN = 2
and (ii) odd time delays can induce amplitude death but not
for even time delays. Fact (i) agrees with our previous study
[28]. Note that fact (ii), which was also mentioned in a previ-
ous study [32], is invalid for high-dimensional map networks,
as discussed in Subsection 5.2. Moreover, study [30] mentioned
stability analysis for high-dimensional map networks. Our con-
ference paper [36] dealt with high-dimensional map networks
with uniform delay time and provided a primitive procedure
for designing only the connection parameters. This primitive
procedure required heavy trial-and-error tasks when designing
connections. On the other hand, the present paper provides an
advanced procedure for designing connection parameters and
the input-output matrices. This procedure does not require such
heavy trial-and-error tasks because we find several sufficient
conditions for instability and necessary conditions for stability.

This paper has dealt with only the stability analysis of equi-
librium state (3) and the design procedure for stabilization; how-
ever, we did not examine them from the viewpoints of bifurca-
tion theory. Our concern is to reveal the stabilization mech-
anism of equilibrium state (3). Our conference paper numeri-
cally observed the stabilization induced via the Neimark-Sacker
bifurcation and the period-doubling bifurcation [52], while bi-
furcation analysis of the stabilization is still lacking.

7. Conclusion

We have analytically investigated amplitude death in net-
works consisting of one or more dimensional nonlinear maps
with time delay connections. We have demonstrated that the
well-known odd number property remains in map networks.
We have obtained several sufficient conditions for death state
to be unstable. Some necessary conditions for stability and the



concept of the convex direction have been also derived. Based
on our analytical results, a design procedure for system param-
eters, which consists of 10 steps, has been provided. This pro-
cedure has been confirmed by three numerical examples, i.e.,
networks with delayed logistic maps, three-dimensional gen-
eralized Henon maps, and three-dimensional piecewise linear
maps.
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Appendix A. Convex direction

Consider the following family of m-order polynomials:

δ(z) = {µδ1(z) + (1 − µ)δ2(z) : µ ∈ [0, 1]} ,
=

{
δ2(z) + µδ̂(z) : µ ∈ [0, 1]

}
,

(A.1)

where δ̂(z) := δ1(z)− δ2(z) is a polynomial whose degree is less
than m. For family (A.1), the convex direction is defined as
follows:

Definition 1 ([37, 53]). A polynomial δ̂(z) is called a convex
direction for stable polynomials of degree m if, for every poly-
nomial δ2(z), the stability of δ2(z) and δ2(z) + δ̂(z) implies the
stability of the family δ(z).

From this definition, we note that if the edges of the family
δ1,2(z) are stable and δ̂(z) is a convex direction, then the family
δ(z) is stable. Although the stability of δ1,2(z) can be checked
easily by some popular analytical tools, it is difficult to check
the convex direction of δ̂(z). A simple checking procedure is
given below.

Theorem 3 ([37, 53]). If the inequality

∂ arg
{
δ̂
(
e jθ

)}
∂θ

≤ m
2
+

∣∣∣∣∣∣∣∣
sin

(
2 arg

{
δ̂
(
e jθ

)}
− mθ

)
2 sin θ

∣∣∣∣∣∣∣∣ , (A.2)

θ ∈
{
ϕ ∈ (0, π); δ̂

(
e jϕ

)
, 0

}
, (A.3)

holds, then δ̂(z) is a convex direction.
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An overview, Phil. Trans. R. Soc. A 368 (2010) 303 – 304.

[27] V. Flunkert, I. Fischer, and E. Schöll, Dynamics, control and information
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