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ABSTRACT This study involved an analysis of the influence of liquid sloshing on the dynamics of flexible 
space structures with liquid on-board by considering the main body of a spacecraft as a rigid tank, the 
flexible appendages as two elastic beams, and on-board liquid as an ideal liquid. The meniscus of the free 
surface of the liquid due to surface tension was considered. The Lagrangians of the main body of the 
spacecraft (rigid tank), liquid, and two beams (flexible appendages) were used in addition to assuming 
symmetric motion of the system; the frequency equations of the coupled system were obtained by applying 
the Rayleigh–Ritz method. The influence of sloshing motion on the motions of the main body and 

flexible appendages of the spacecraft was investigated. The results indicated that the vibration 
characteristics of the coupled system were dependent on the static contact angle of the liquid, irrespective of 
whether the angle was larger/smaller than 0 90 = . 
 
Keywords: Hydroelastic vibration; space structure; coupled system; liquid sloshing; zero-gravity 

 
1. Introduction 

Large space structures vibrate easily at low frequencies because they possess low structural rigidity, given 
their need to be lightweight. Attitude control or orbit modification through thruster injection could cause 
flexible appendages such as antennae and solar arrays, as well as the liquid fuel or wastewater on the space 
station, to vibrate and develop strong coupled vibrations that exert a complex effect on the dynamic 
behaviour of the main body. This poses a serious problem for high-attitude-accuracy satellites such as those 
used for precise astronomical photography. Therefore, it is essential to clarify the dynamic interaction 
behaviour of a flexible space structure with on-board liquid in advance, to improve the stability and 
reliability of space structures.  

Several researchers have examined the sloshing of liquids in containers in low-gravity environments 
theoretically. For example, in 1966, Abramson conducted a review of studies conducted up until 1966 [1]. 
Bauer et al. (1990 [2], 1990 [3]) conducted free vibration analyses of a liquid in a cylindrical or rectangular 
vessel taking into consideration the liquid meniscus due to surface tension. In 1993, Agrawal analysed the 
dynamic behaviour of liquid in a rotating space vehicle using a boundary-layer model [4]. In 1999, Komatsu 
investigated theoretically the sloshing frequency in a space vehicle tank using a mechanical model, and used 
potential flow models to obtain natural frequencies via a semi-empirical formula [5]. In 2002, Chiba et al. 
investigated the coupled natural vibration of an elastic membrane bottom and liquid in a cylindrical container 
with a rigid wall [6]. In 2004, Utsumi proposed mechanical models for sloshing in a tear-shaped 
axisymmetric tank [7]. In 2007, Yuanjun et al. carried out a nonlinear analysis of liquid sloshing in a 
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considering the static meniscus shape in low-gravity environments using an energy method under pitching 
excitation around the centre of gravity of the cylinder [8]. In 2007, Berglund et al. controlled the sloshing of 
liquid propellant in a Delta IV rocket using a pulse-suppression approach [9]. 

However, only a few experimental studies have focused on resolving the sloshing that occurs in 
low-gravity environments. In 2005, the Netherlands Agency for Aerospace, NIVR, launched a 130 kg 
miniature satellite called “Sloshsat Flevo” with an 87 l tank, with 33.5 l of water, to investigate the effect of 
sloshing behaviour on the motion of the satellite [10]. 

Additionally, with respect to the effects of sloshing on spacecraft motion, McIntyre et al. in 1982 revealed 
the relationship between the balance and stability of a flat, rotating spacecraft with liquid fuel on-board [11]. 
Santini et al. in 1978 and 1983 analysed the influence of motion around the centre of gravity on sloshing in 
orbital space structures through force balance, and discussed its stability [12, 13]. Jing et al., in 2005, 
analysed the vibration due to liquid motion in a rectangular tank with flexible appendages subjected to 
pitching excitation using the energy method under conditions of microgravity and gravity [14]. Buzhinskii, in 
2009, studied the effect of sloshing on rocket motion and modelled it as a thin-walled structure with liquid 
[15]. Recently, Farhat et al., in 2013, investigated the effect of fuel sloshing on a spacecraft and its flutter 
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characteristics [16]. 
A recent study constituted the initial step in clarifying the fundamental vibration characteristics of flexible 

space structures with on-board liquid by proposing a mechanical model, and theoretically analysing the 
axisymmetric coupled vibrations of a flexible structure with on-board liquid in zero-gravity environments 
[17]. The proposed model involved modelling the main body as a rigid mass, flexible appendages as two 
elastic beams, and on-board liquid as a "spring-mass" system (mechanical model). A single liquid sloshing 
mode (i.e. fundamental sloshing mode) was adopted in the mechanical model, and this helped in determining 
the fundamental vibration characteristics of the coupled system, i.e. the main body-flexible 
appendages-liquid system. The present study follows on from the aforementioned study as the second step, 
and includes a fluid model in which the liquid is modelled as an ideal liquid considering the meniscus due to 
surface tension. 
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2. Basic equations and boundary conditions 
2.1. Analytical model 

In the study, the free vibrations of a spacecraft in space were considered as shown in Fig. 1. The spacecraft 
included flexible appendages, such as solar arrays on both sides of the main body, and the liquid on-board. 
The main body of the spacecraft was modelled as a rigid tank, the flexible appendages as two elastic beams, 
and the on-board liquid as an ideal liquid. 

A rigid cylindrical tank with radius R  and length b  has a mass tm and a displacement represented by 

MY  in the inertia coordinate o .XY−  
The beams were modelled as uniform Euler–Bernoulli beams with length ,l  cross-sectional area ,A  

density b , Young’s modulus ,E  second moment of area ,I  and displacements corresponding to 

( )1 1,W x t  and ( )2 2,W x t . The on-board liquid was treated as an inviscid ideal-liquid with density f  and 
mass 2

f fm R h = , where h  denoted liquid height when the meniscus of the liquid is ignored. The 
velocity potential of the liquid ( ), , ,r z t  is introduced in the coordinate system o rz−  in which the 
origin is considered to be located on a flat liquid surface. In a zero-gravity condition, the surface tension was 
predominant on the liquid that produced an axisymmetric meniscus ( )0z r  as shown in Fig. 1(b) with 
contact angle 0  with respect to a side wall. Therefore, the free surface of the liquid is represented as

( ) ( ) ( )0, , , ,fZ r t z r Z r t = + . 
It was assumed that the two beams were arranged symmetrically with respect to the rigid tank, and that the 

mass centre of the rigid tank was located on the mid-surface of the beams. This enabled axisymmetric 
in-plane motion, i.e. movement along only the upward and downward directions in the plane of the figure. 
 
2.2. Basic equations and boundary conditions for liquid 

It is assumed that the liquid is incompressible, inviscid, and exhibits irrotational motion, based on which 
there exists velocity potential of the liquid ( ), , ,r z t  that satisfies the Laplace equation as follows: 

2 2 2

2 2 2

1 0
rr z

     
 = + + =

                 (1) 

The free surface of the liquid represents the meniscus 0 ( )z r  due to surface tension and vibrates with a 
small amplitude ( ), ,Z r t  around its equilibrium state; thus, the kinematic condition must be satisfied on 
the free surface as follows: 

 
( ) ( ) ( )0

02

1 0 , ,
z r

at z z r Z r t
z t r r r r


 

      
− − + − = = + 

         
(2) 

It is assumed that the motion is axisymmetric and has a small amplitude, and thus Eq. (2) reduces to the 
following expression:  

( ) ( )0
00

z rZ at z z r
z t r r

  
− − = =

              (3) 

However, the dynamic condition on the free surface is obtained from the Bernoulli equation as follows: 
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1 2

2cos1 1 1 , ,
2 M

f

Y t z at z z r Z r t
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
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(4) 

where 1R  and 2R  denote the mean curvatures, and the dot represents the derivative with respect to time. 
The right-hand side of Eq. (4) represents the inertial force due to the motion of the main body (tank). Bauer 
et al. introduced the following relationship on the curvature shown in Eq. (4) [2]: 

 

3
2 22 2

0 0 0
2 2

1 2

2cos cos cos1 1 1 11 1
r r

r
R R R r r R r Rr
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

 
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   

(5) 

Based on Eq. (4), Eq. (5), and the above assumptions, the following expression was obtained: 

 ( ) ( )
3

2 2
0

0
cos

1f f M
r Zr Y t z at z z r

t r r R r


 

       − − = − =           , 

(6) 

where the dot represents the derivative with respect to time.  
In the analysis, it is assumed that the bottom and side walls of the tank are rigid; thus it is necessary to 

satisfy the velocity matching conditions at the bottom and on the side walls as follows: 
 

0 at z h
z


= = −

               (7) 

0 at r R
r


= =

                             (8) 

Additionally, it is assumed that the contact angle did not change as given in the following expression: 

0Z at r R
r


= =

                           (9) 

The conservation of liquid volume is represented as follows: 

( )
2

0 0
, , 0

R
Z r t rdrd



  =                         (10) 

The meniscus of the free surface of the liquid caused by surface tension is represented by Bauer et al. [2] 
as a function of the contact angle 0  with respect to the side walls of the tank using the following 
expression: 

( ) ( )3 2
0 0

0 3
0 0

2 1 sin cos1
3cos cos

R rRz r
R

 

 

−  = − −  
                 (11) 

2.3. Boundary conditions of elastic beams 
The elastic beams that represent the solar array paddles, or antennae, were modelled as beams with a 

“mass-free” boundary condition, i.e. the mass is half of the sum of the tank mass tm , and liquid mass fm  is 
expressed as follows: ( ) 2t fM m m= + . At the mass-attached end, the shearing force of the beam was 
balanced with the inertia force of mass 2M , and the deflection angle was zero. At the free edge, the 
shearing force and the bending moment are zero and expressed as follows [17]: 
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2.4. Lagrangian 
The Lagrangian of the liquid, beams and the main body (tank) are now considered. 

 
2.4.1. Lagrangian of liquid 

The Lagrangian of liquid fL  is represented as a summation of the kinetic energy of the liquid due to 
rigid tank motions and the dynamic term that was introduced by Luke [18] as follows: 
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( )0at z z r=  
2.4.2. Lagrangian of beams and the main body (tank) 

The Lagrangian of the beams and the main body (tank) comprise kinetic energy T and potential energy 

U , and is expressed as follows [17]: 
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(14) 

2.4.3. Non-dimensionalisation 
This includes the introduction of the following non-dimensional parameters as given below: 
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(15) 

     

In the above parameters, tank mass ratio ,M  sectional area ratio of the beam and the main body (tank) ,  
ratio of length of the elastic beam and tank radius ,  surface tension parameter ,  liquid height ratio 0h , 
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and density ratio   are important parameters. 
Non-dimensionalised equations for liquid 

The non-dimensional forms of Eq. (1), Eq. (3), and Eq. (6) to Eq. (11). in which the dot represents the 
derivative with non-dimensional time .  are as follows: 

0 =  (1)’ 
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
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(11)’ 

 
The non-dimensional form of beam boundary conditions is represented as follows: 

3

3

2 3

2 3

( , ) ( , )
0, 0 0
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0, 0 1

i i i i
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ii
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i
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 
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Non-dimensional form of Lagrangian for liquid 

The non-dimensional Lagrangian of Eq. (13) is represented as 2 3 2 .f f b bL L Al  =  

( ) 

( )

3 31 2 2 22 2
0 00 0

0

2 1 1 cosf f M ML m y y d d

at

    
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     

  

    
= + − − +  

    

=

 

   (13)’ 

The non-dimensional form of the Lagrangian for beams and rigid tank is as follows: 
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(14)’ 

3. Method of solution 
3.1. Elimination of temporal terms 

It is assumed that the system undergoes small-amplitude harmonic motion with circular frequency   as 
follows: 

( )
( ) ( )
( ) ( )
( ) ( ) ( )

cos

, , , sin

, cos

, cos 1, 2

M M

i i i i

y y

w w i

 

       

     

   

= 

= − 

= 

=  =  

(16) 

Substituting Eq. (16) into the Lagrangian for the liquid in Eq. (13)’ and integrating for a period of 

vibration 0 2 / =   and 
2 /

0
f fL L d









=   gives the following expression: 

( ) 

( )

3 31 2 2 22 2 2 2 2
0 00 0

0

2 1 1 cosf f M ML m y y d d

at

   
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    

  

    =  −  + − +   
    

=

 

 

(13)’’ 

In the above integrations, the following formula is used: 
2 22 2

0 0
sin cosd d

  
   

 

 =  =
   

Similarly, from the Lagrangians for the beams and the main body (tank), the following expression is 
obtained: 

( ) ( )
1 12 2 2 2 2 2 2 2 2

1 1 1 2 2 20 0

2 22 22 21 11 2
1 22 20 0

1 2

1 1
2 2

2 2

tb t ML m y w d w d

w w
d d

      

 
 

 

=  +  + 

    
− −   

    

 

 
 

(14)’’ 

 
3.2. Lagrangian for liquid 

The liquid velocity potential that satisfies Laplace equation (1)’ and the boundary conditions in Eq. (3)’, 
Eq. (6) to Eq. (9)’, and the displacement of a free surface are assumed in the following form: 

( ) ( )
( )( )

( )
( ) ( )

0 0
0 0 0

0 0

0 0 0

cosh
,

cosh
d

d d
d d

e e
e

h
A J

h

a J

 
    



   

 + =

=



 , 

(17) 

where ( )0 0eJ    denotes the zeroth order Bessel function of the first kind, and 0d  denotes parameters 
that satisfy ( ) ( )( )0 0 1 0 0d dJ J  = − = . 
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Substituting Eq. (17) into the Lagrangian fL in Eq. (13)’’ results in the following expression: 

 ( )
( )
( )

( )( ) ( )  ( )

1 2 0 0 02 2 2 2
0 0 00 0

0 0

3 3
2 2 2

0 0 0 0 0 0 0 0 0

cosh ( )2
cosh

1 1 cos ( )

d
f f M d d

d d

e e e M e e
e e

h
L m y A J

h

a J y a J d d

   
  

 

 
             

  

 + =  − 

 
+ − +  

  

 

 
   (18) 

Here, the three terms in    in the above equation are expanded in the Dini series as follows: 

( ) ( ) ( )

( )

2 2 2

3
2 2

0 1 0 0 0 2 0 3 0 01 2

0 0

0 0 0

2

f f M

d di i e ei oi M i i
i d e

n n
n

L m y

A C J a C J y C J
d d

a J





 
      

    


 

= 

  
 + +   
  −

 
  

  
 


 

(19) 

where 

( )
( )( )

( ) ( ) ( )

( ) ( )  ( ) ( )

( ) ( )  ( ) ( )

( ) ( ) ( )

1 0 0 0
1 0 0 0 02 0

0 00 0

31 2 2
2 0 0 0 0 0 02 0

0 0

31 2 2
0 0 0 0 0 0 02 0

0 0

1

3 0 0 02 0
0 0

cosh2
cosh

2 1 1 cos

2 1 cos

2

d
di d i

di

ei e e i
i

i e e i
i

i i
i

h
C J J d

hJ

C J J d
J

J J d
J

C J d
J

  
     



         
 

         


     


 + =

 
= − 

  

 = − −

=








 

(20) 

Integrating Eq. (19) with respect to   and   results in the following equation for the Lagrangian: 

( )
3

2 2 2 2 2 2
0 0 0 0 1 0 2 3

2
f f M i i d di e ei M i

i d e
L m y a J A C a C y C  

  
 

 
=  −  + +  

 
  

 
(21) 

In the calculation, the orthogonality of the Bessel function is used as follows: 

( ) ( ) ( )2
1 0 0

0 0 0 00 2
i

e i ei

J
J J d


      = , 

(22) 

where in  denotes the Kronecker delta. 
This is followed by substituting Eq. (16) and Eq. (17) into the kinematic condition on the free surface as 

shown in Eq. (3)’, and using Eq. (22) to obtain the following expression: 

( ) ( ) ( ) ( ) ( )0
0

, ,
0 at

       
    

  

  
− − = =

    
(3)’’ 

( )
( )
( ) ( ) ( )

( ) ( )
( )
( ) ( ) ( )

1 0 0 0
0 0 0 0 0 0 02 0

0 0 0 0

1 0 0 00
0 0 0 0 0 02 20

0 0 0 00

sinh ( )2
cosh

cosh ( )cos2 0
cosh1 cos

d
d d d n n

dn d

d
d d e n

dn d

h
A J J d a

J h

h
A J J d

J h

  
      

 

   
      

  

 +  −

 +  − =
−

 

 
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 Finally, 0na  can be represented in terms of 0dA as follows: 

( )

0 0 0 4 0 0 5

0 0 4 5

n d d dn d d dn
d d

d d dn dn
d

a A C A C

A C C

 



= −

= −

 


 

(23) 

where 

( )
( )( )

( ) ( ) ( )

( ) ( )

( )( )
( ) ( ) ( )

1 0 0 0
4 0 0 0 02 0

0 00 0

1 0 0 00
5 0 0 0 02 0 2

0 00 0 0

sinh2
cosh

coshcos2
cosh1 cos

d
dn d n

dn

d
dn d n

dn

h
C J J d

hJ

h
C J J d

hJ

  
     



   
     

  

 + =

 +  =
−




 

(24) 

 
By using Eq. (23), the Lagrangian in Eq. (21) for the liquid is obtained as follows:  

                                                                                    (25) 
3.3. Lagrangian for the beams and the main body (tank) 

Substituting Eq. (16) into the boundary conditions in Eq. (12) results in the following expression: 

3
2

3

2 3

2 3

( ) ( )
0, 0 0

( ) ( )
0, 0 1

i i i i
M i

ii

i i i i
i

i i

w w
M y at

w w
at

 




 


 

 
 + = = =



 
= = =

   

(12)’’ 

Here, the beam displacements are represented as follows: 

( ) ( ) ( ) ( )1 1 1 1 2 2 2 2,m m m m
m m

w B w w C w   = = 
, (26) 

where mB  and mC  denote unknown constants, and ( ) : 1, 2im iw i =  denotes the eigenfunctions of the 
beam that satisfy the boundary conditions in Eq. (12)’’: i.e. mass-free [17]. 
 The Lagrangian for the beams and the main body (tank) is then obtained using Eq. (14)’’ as follows: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 2 2

1 12 2 2 2
1 1 1 1 1 2 1 2 2 20 0

2 21 1

1 1 1 1 1 2 2 2 2 20 0

1 1
2 2

2 2

tb t M

m n m n m n m n
m n m n

m n m n m n m n
m n m n

L m y

B B w w d C C w w d

B B w w d C C w w d



       

 
     

= 

+  + 

   − −

  

  
 

(27) 

Here, the two beams have identical geometrical and material properties, thus .m mB C=  resulting in the 

following expression: 

2 2 2 2 00 22
tb t M m n mn m n mn

m n m n
L m y B B X B B X

 
=  + − 

 
 

 
(28) 

( ) ( ) ( )

2 2 2

3
2 2 2
0 0 0 0 4 5 0 1 0 4 5 2 3

2

f f M

i j j ji ji d di d de de ei M i
i j d e

L m y

J A C C A C C C C y C



  
   

 

= 

  
− −  + − +   

  
   



11 

 

 
3.4. Lagrangian for the entire system 
 Finally, the Lagrangian for the entire system is obtained as follows: 

( ) ( )

( )

2 2 2 2 2 2 00 22

2
0 0 0 0 4 5

3
2 2

0 1 0 4 5 2 3

2

f tb

f M t M m n mn m n mn
m n m n

i j j ji ji
i j

d di d de de ei M i
d e

L L L

m y m y B B X B B X

J A C C

A C C C C y C




 



 
 



= +

 
=  +  + − 

 

− −

  
  + − +   

  

 

 

 
 

(29) 

Here, it is necessary for the displacement of the beam root end and that of the main body (tank) to be equal, 
as follows: 

( ) ( )0 0M i m im
m

y w B w= =
 

(30) 

Given this, My  can be represented in terms of mB  and L  as follows: 

( ) ( ) ( )

( ) ( )

( ) ( )

2 2 2 2 00 2 22
1 1

2
0 0 0 0 4 5

3
2 2

0 1 0 4 5 2 1 3

0 0

2

0

f tb

f t m n m n m n mn m n mn
m n m n m n

i j j ji ji
i j

d di d de de ei m m i
d e m

L L L

m m B B w w B B X B B X

J A C C

A C C C C B w C

  


 



 
 



= +

= +  +  −

− −

  
  + − +   

  

  

 

  
 

(31) 

 

 ( ) ( ) ( )

( )( )

( )

( ) ( )

2

22 2 00
1 1

2
0 0 0 0 0 0 2 4 5 4 5

2 2
0 0 0 0 0 1 4 53

2 2
0 0 1 0 0 4 52

/

0 0 }

2 ( )

2 ( )

2 0 ( )

mn m n f t m n mn m n
m n m n

j d j d i ei de de ji ji
j d i e

j d j i di ji ji
j d i

j m j m i ji ji
j m i

L L

X B B m m w w X B B

A A J C C C C C

A A J C C C

A B w J C C C



   


 




 



=

= − + + +

− − −

−  −

−  −

 

 

 

  3i

 

(32) 

 
Hence, as indicated by the above discussion, the Lagrangian L  can be represented in terms of ojA  and 
.mB  

3.5. Rayleigh–Ritz method 
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The Rayleigh–Ritz method is applied here to obtain the following minimalised condition for L : 

0

0, 0
j m

L L
A B
 

= =
   

(33) 

( )( )

( )( )

( ) ( )

( )

2
0 0 0 0 0 2 4 5 4 5

0

2
0 0 0 0 2 4 5 4 5

2 2 2
0 0 0 0 1 4 5 0 0 0 1 4 53

2 2
0 1 0 02

2 { ( )

( ) }

2 { ( ) ( ) }

2 0 ( )

d j d i ei de de ji ji
d i ej

d j i ei je je di di
i e

d j i di ji ji d i ji di di
d i i

j m m i
m i

L A J C C C C C
A

J C C C C C

A J C C C J C C C

B w J C

   

  


   




 




= − − −



+ − −

−  − + −

− 

 



  

  ( )4 5 3 0ji ji iC C− =
 

( )( ) ( )( )

( ) ( )

( ) ( )

2
0 0 0 0 0 2 4 5 4 5 4 5 4 5

2 2
0 0 0 0 1 4 5 0 1 4 53

2 2
0 1 0 0 4 5 32

( ) { }

( ){ }

0 ( ) 0

d j d i ei de de ji ji je je di di
d i e

d i j di ji ji d ji di di
d i

j m m i ji ji i
m i

A J C C C C C C C C C

A J C C C C C C

B w J C C C

   


  




 



− − − + − −

−  − + −

−  − =

 

 

 
 

(34) 

 ( ) ( ) ( )

( ) ( )

22 2 00
1 1

2 2
1 0 0 0 0 4 5 32

2 2 0 0 }

2 0 ( ) 0

mn n f t m n mn n
n nm

m j j i ji ji i
j i

L X B m m w w X B
B

w A J C C C
 




= − +  + +



−  − =

 


 

 ( ) ( ) ( )

( ) ( )

22 2 00
1 1

2 2
1 0 0 0 0 4 5 32

0 0 }

0 ( ) 0

mn n f t m n mn n
n n

m j j i ji ji i
j i

X B m m w w X B

w A J C C C
 



− + + +

−  − =

 


 

(35) 

The above equations can be represented in the following matrix form as coupled equations in terms of 

0dA  and .mB  Thus, the problem can be reduced into an eigenvalue problem from which the coupled 
natural circular frequencies can be obtained as eigenvalues, and the vibration modes as eigenvectors in the 
following manner: 

 

2  
 − =  

 

B
K M 0

A , 
(36) 

where 

22 
=  
 

X 0
K

0 D
,  

00 T 
=  
 

X F
M

F G ,   T
mB=B , and  0

T
dA=A , 
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 

( ) 

( )

( )

2
0 0 0 0 2 4 5 4 5 4 5 4 5

22 22

2
0 0 0 4 5 1 0 4 5 13

2
0 0 0 4 5 3 12

00

( ) ( )( ) ( )( ) ,

,

( ) ( ) ,

( ) (0) ,

and

jd j d i ei de de ji ji je je di di
i e

nm nm

jd i j ji ji di d di di ji
i

jm i j ji ji i m
i

nm f t

D J C C C C C C C C C

X X

G J C C C C C C

F J C C C w

X m m w

  


  




 



= − − − + − −

= −

= − + −

= −

= − +







00
1 1(0) (0) .m n nmw X−

 

(37) 

( )1,2, , 1,2, , 1,2, , 1,2,d l j l n k m k= = = =  
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4. Numerical results 
A goal of this study included clarifying the influence of liquid-sloshing on the coupled hydroelastic vibration 
characteristics of the flexible space structure. This involved a step-by-step procedure beginning with 
determining the static meniscus of the liquid in a cylindrical tank, followed by treating the sloshing 
characteristics in both an anchored cylindrical tank and a freely floating cylindrical tank, and finally 
proceeding to a system tank with a beam and without a liquid. 

The effective range of system parameters, i.e. , , , ,tm     , etc. is shown in Appendix A. In the 
numerical calculations, the unknown parameters 0dA  and mB  in Eq. (36) included five terms for each 
parameter to satisfy the requirements for engineering data. 
 
4.1. Meniscus of free surface 

Meniscus shapes of the free surface for contact angles 0 0 , 30 , , 180 =   are shown in Fig. 2 based 
on Eq. (11)’ [2]. The liquid surface was flat for 0 90 , =   concave for 0 90   , and convex for 090 .   
It was assumed that the liquid surface vibrated around this meniscus shape with a small amplitude. 
 
4.2. Sloshing characteristics in an anchored tank without beam 

It is important to approximate the vibration characteristics of a liquid in an anchored cylindrical tank to 
compare with those of the coupled system floating in space, as shown later. In this case, the frequency 
equation was obtained by omitting the displacements of beams, i.e. B  in Eq. (36), and the system 
parameters in this case corresponded to 0 ,  0 ,h  ,  ,  and  , with 1 = , and the other four parameters 
were varied. 

Variations of the natural circular frequencies up to the third mode with contact angle 0  are shown in Fig. 
3(a) when 6

0 1, 1 10 , and 1.h  −= =  =  The maximum natural circular frequency occurred at 0 90 = , and 
it decreased with either increases or decreases in 0 , which was the same as the results obtained by Bauer et 
al. [2]. 

Variations in the natural circular frequencies with liquid height 0h  are shown in Fig. 3(b), when 
0 6

0 90 , 1 10 , and 1,  −= =  = in which the natural circular frequency increased with 0h  and converged to a 
constant value representing the same tendency as that in a tank on earth. 

Next, Fig. 3(c) represents the influence of the surface tension parameter   on the natural circular 
frequency when 0

0 01, 90 , and 1,h  = = =  while Fig. 3(d) represents the influence of density ratio   
when 0 1,h =  0 6

0 90 , and 1 10 .  −= =   
Finally, the variations of the vibration mode with contact angle 0  are shown in Fig. 4, when 0 1,h =  

61 10 , and 1. −=  =  In the figures, the meniscus shapes are denoted using dashed lines, and the vibration 
modes are normalized as maximum amplitudes to be unity. The influence of the contact angle 0  can be 
seen in the displacement near the side wall. 
 
4.3. Sloshing characteristics in a tank floating in space 

This section discusses a spacecraft floating in space when the beams are rigid, which corresponds to the 
system in which the solar paddles are undeveloped. In this case, the system parameters include ,  0 ,h  ,  
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0 ,  ,  ,  tm  and .fm  It was assumed that 10 =  and 1. =  
4.3.1. Influence of contact angle 

Figure 5 shows the variations of natural circular frequencies up to the third mode with contact angle 0  
when 6

0 1, 1 10 , 1,h  −= =  =  and 10.tm =  In this figure, solid lines represent the results in a floating 
tank, and dotted lines those in an anchored tank that corresponds to Fig. 3(a), with the former being only 
slightly higher than the latter. Additionally, even by changing tm  from 1 to 100, no influence of the tank 
mass ratio tm on the natural frequency was observed. 

 
4.3.2. Influence of contact angle on vibration mode 
 Vibration modes were obtained using the same parameters as shown in Fig. 4 when 

10, 1, and 10,tm  = = =  but the results were almost the same as Fig. 4 and thus are omitted here. 
 

4.3.3. Influence of system parameters on main body (tank) motion 
 This section focuses on the main body (tank) motion. In this case, the system parameters, ,  ,  and   
were assumed to be constant, while 0 ,h  ,  and tm  were varied. 
 
4.3.3.1. Influence of liquid height 0h  
 Figure 6 (a) shows the variations of the main body amplitude My  with liquid height 0h  for three contact 
angles: 0 60 , 90 , and100 ( 10).tm = =  In the figure, the amplitude of the main body motion My  was 
included when the maximum sloshing amplitude corresponded to unity. The solid line (blue) and dashed line 
(red) show the results for the first and second sloshing modes, respectively. It was observed that the former 
exceeded the latter at 0 60 , =  and the motions were opposed, while at 0 100 = , the directions were 
inter-changed through zero at 0 90 . =  It was found that the direction of motion of the main body due to 
sloshing was dependent on both the sloshing mode number and the contact angle either smaller or greater 
than 0 90 . =  That is, the influence of the sloshing motion on the main body corresponded to zero when 

0 90 . =  
 The maximum main-body amplitude was observed at 00.3 0.4h   for the first sloshing mode and at 

00.2 0.3h   for the second sloshing mode when 
0 60 = , and at 00.05 0.15h   for the first mode and at 

00.15 0.25h   for the second mode when 
0 100 = . That is, the maximum amplitude of the main modes 

was observed at low values of 0h . A similar phenomena was observed in experimental and theoretical 
studies on coupled sloshing motion in a cylindrical tank with an elastic bottom on the earth [19, 20]. 
 
4.3.3.2. Influence of tank mass ratio tm  
 Figure 6 (b) shows the variations of the main body amplitude My  with tank mass ratio tm  for three 
contact angles 0 060 , 90 , and100 ( 1).h = =  The results indicated that the amplitude of the main body 
motion increased with decreases in the tank mass ratio ,tm  that is, the main body with a small mass was 
easily influenced by the sloshing. 
 
4.3.3.3. Influence of density ratio   
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 The influence of the density ratio   was investigated in the range 7 50,   but the influence was not 
significant, and the results are omitted here. 
 Generally, as seen in the aforementioned results, the influence of the sloshing motion on the main body was 
significant when the mass of the main body (tank) was small, and the contained liquid height was also small. 
The vibration modes of the liquid surface and the amplitude of the main body are illustrated in Fig. 7 when 
(a) 0 060 , and 0.3,h = =  and (b) ( )0 0100 , and 0.15 1, 1 .th m = = = =  In the figures, two arrows indicate 
the origin of the coordinate in the inertia reference, and the dotted line indicates the difference between the 
horizontal inertia reference and the liquid height line corresponding to the amplitude of the main body. The 
red line on the right-hand side corresponds to the beam, although it is rigid in this case. In both cases, the 
main body displacement was larger in the first sloshing mode, and their directions were opposite to each 
other as shown in the results in Fig. 6. In comparison with Fig. 4 which shows the results of an anchored tank, 
the influence of sloshing motions on the main body is clearly shown in Fig. 7. 

 
4.4. Coupled system without liquid 
  Next a coupled spacecraft system in which the liquid is empty in the tank is considered, which 
corresponds to a scenario in which the spacecraft runs out of fuel. 
 The system parameters in this case include beam length ratio ,  and tank mass ratio .tm  The liquid 
displacement vector A  was omitted from the frequency equation (36). 
 Variations of the coupled natural circular frequency   with mass ratio M ( f t tM m m m= + =  in the case) 
are shown in Fig. 8. As the mass ratio is defined as 2t bM m Al= , the reduction of M  corresponded to 
either a decrease in tank mass tm  (keeping the length of the beams), or an increase in the length of beams 
(keeping the tank mass tm constant). In the figure, the natural circular frequencies of a clamp-free beam are 
depicted with dashed lines. From Fig. 8, with an increase in M , the natural circular frequency tends to 
correspond to that of a clamp-free beam ( 3.516, 22.03, and 61.69 = ), while a decrease in M  causes the 
natural circular frequency to tend to correspond to that of a free-free beam with length 2l  
( 0 5.593, 30.22, and 74.63 = ).  

Variations of the corresponding vibration mode on the right-hand side of beam are shown in Fig. 9, with 

M = 0, 0.5, 1, 5, 10, and 100, from which the influence of M  is evident. When 0,M =  the point at 0 =  
corresponded to the middle point of the beam with length 2l , and this point vibrated significantly as a loop 
of vibration. Increases in ,M decreased the displacement of the main body of the spacecraft fixed at this point, 
and it tended to zero when 100,M =  i.e. a point at 0 =  is a clamped condition, from which it was 
observed that the amplitude of the main body increased when the tank mass ratio ( )tM m  and the liquid 
mass fm  were low. 
 It should be noted here that when M  was low, the main body (at 0 = ) moved in a negative direction in 
the first and the third modes, while it moved in a positive direction in the second mode. 
  
4.5. Coupled system 
 Finally, a flexible spacecraft with liquid on-board was considered. The system parameters included 1,tm =  

10, =  10, =  and 0 1.h =  
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4.5.1. Coupled natural frequency 
 First, variations of the coupled natural circular frequencies with density ratio   are shown in Fig. 10(a), 
in which coupled natural circular frequency curves are represented as solid lines, those when beams are 
assumed to be rigid using dashed lines, and the coupled natural circular frequency curve when the liquid is 
empty by dotted lines. From Fig. 10(a), the marked region, which represents the coupled frequency curves 
crossing area, was magnified in Fig. 10(b). 
 It was observed that with an increase in ,  the coupled natural circular frequency curves decreased along 
the dashed lines that corresponded to those when the beams were rigid, and the frequency curves of this type 
corresponded to those in which liquid sloshing was predominant. Additionally, in another type of vibration 
curve parallel to dotted line, the beam vibration was predominant. At some points, these two vibration curves 
crossed each other. 
 The natural circular frequency curves for the case where 0 90 =  exhibited a similar tendency. 
 
4.5.2. Coupled vibration mode and CEV 
 Figure 10(b) shows the variation of vibration modes at the region where the two frequency curves crossed. 
The term coupling evaluation value (CEV) [17] was introduced to observe the coupling strength between 
beam motion and liquid motion as follows: 

( )1CEV w  =  ,                                (38) 
which was composed of displacements at the free end of the beam and the maximum displacement of the 
liquid. Additionally, an increase in the above value increased the strength of the coupling between the beam 
motion and the liquid motion. In Eq. (38),   was divided by   to compare two displacements, since the 
non-dimensional displacement of beam w  was normalized by l  while the non-dimensional displacement 
of the free surface was normalized by .R  
 Variations of vibration mode and CEV are shown in Fig. 11. In this region, coupling existed between the 
second mode and the third mode; the CEV is represented in the upper diagram. 
 The first mode involved the first sloshing mode that was independent of the   value, and neither beam 
motion nor main body motion was observed. In contrast, in the second mode and the third mode, all the 
beams, the free surface, and the main body were observed to have motion. In the second mode, the beam 
motion was predominant at 1.95  , and the free surface motion was predominant at 2.1 .  While in the 
third mode, the free surface motion was predominant at 1.95  , and the beam motion was predominant in 
the 2.1   region, which suggested that the exchange of the predominant mode occurred at 2.0.   
 With respect to the CEV, the CEV of the second mode was higher, up to 1.95, =  and that of the third 
mode was higher in the region greater than 2.1. =  Additionally, the CEV was high in the vicinity of the 
crossing point at 2.0.   In the actual satellite motion, given these system parameters, the main body 
motion was significant when the beam motion was predominant. 
 Similar diagrams for 0 90 =  are shown in Fig. 12. This is contrary to the results for 0 60 =  shown in 
Figure 11, as no motion was observed on the free surface in the second mode in which beam motion was 
predominant. Furthermore, the exchange of vibration modes appeared in a very narrow region, 
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2.4 2.45,   and therefore CEV corresponded to zero along the whole   value, which indicated that 
there was no coupling except for a very narrow region when 0 90 = . 
 It should be noted that the tendency for the 0 100 =  case was similar to that for 0 60 =  case (the 
results are omitted here). 
 
4.5.3. Influence of liquid height 
 In an actual spacecraft, the volume of liquid on-board will decrease during the mission (i.e. with time). The 
influence of the liquid height 0h  on the coupled natural frequency and vibration mode are investigated in 
this section. 
 Figures 13(a) and 13(b) represent the variations of the coupled natural circular frequency with liquid height 

0h  for the 0 60 =  and 90  cases, respectively ( 41, 1 10 , 10, 10, and 1tm   −= =  = = = ). In each 
figure, variations of the coupled natural frequency curves up to the fifth mode are shown on the left-hand 
side as (ⅰ). Additionally, the magnified view around the crossing region of the second sloshing mode (pink) 
and the first beam mode curves are shown on the right-hand side as (ⅱ). In both figures, given that the two 
frequency curves crossed near 0 0.17h =  for 0 60 , =  and near 0 0.08h =  for 0 90 , =  with decreases 
in the liquid height coupling between the liquids, the main body (tank) and the beams motions were expected 
to be significant. The crossing region for 0 60 =  in Fig. 13(a)(ⅱ) is wider than that for 0 90 =  in Fig. 
13(b)(ⅱ). 
 Vibration modes for three liquid heights in the 0 60 =  case in Fig. 13(a) are shown in Fig. 14(a). At 

0 0.17h = , the liquid motion and the beam motion indicated strong coupling, and the main body motion was 
significant when the beam motion was high, and the exchange of vibration modes occurred at this liquid 
height. 
Similar results are shown in Fig. 14(b) when 0 90 , =  in which the exchange of vibration modes occurred 

at 0 0.08h = . This differs from Fig. 14(a) when 0 60 , =  and coupling between the liquid motion and the 
beam motion was zero as shown in Fig. 12 when 0 90 . =  
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5. Conclusions 
This study involved the analysis of the influence of liquid sloshing on the dynamics of flexible space 

structures with on-board liquid in zero-gravity conditions. The main body of the spacecraft was modelled as 
a rigid tank, the flexible appendages as two elastic beams, and the on-board liquid as an ideal liquid. The 
obtained results are summarized as follows: 

 
ⅰ) Sloshing characteristics in an anchored tank without beam 
・ Maximum natural sloshing frequency was observed at a contact angle 0 90 , =  while the natural 

frequency decreased with decreases or increases in 0  from 0 90 = . 
・ With an increase in the liquid height 0 ,h  the natural frequency increased and reached a saturation value. 
Both the above results corresponded to those obtained by Bauer et al [2]. 
・ The sloshing vibration mode showed slight variations with respect to contact angle 0 . 
 
ⅱ) Sloshing characteristics in a tank floating in space 

The results that varied from those in the case of the anchored tank mentioned above included the 
following: 
・ Natural sloshing frequencies were slightly higher than those in the anchored tank.  
・ The sloshing motion of the liquid influenced the freely floating main body and caused its motion. The 

direction of the main body was opposite in the 0 90  , and 090   cases and was different from the 
vibration mode of sloshing. However, at 0 90 , =  liquid sloshing did not influence the motion of the 
main body. 

・ The influence of the sloshing motion on the main body motion increased with decreases in the tank mass 
ratio tm  and liquid height 0h . 

 
ⅲ) Coupled system without liquid 
・ When the tank mass ratio tm  was high, the main body did not show any motion, and the natural 

frequency tended to correspond to that of a clamp-free beam. 
・ When the tank mass ratio tm  was low, the natural frequency tended to correspond to that of a free-free 

beam with length 2 ,l  in which the vibration mode (as the main body was located at the middle of the 
free-free beam) took the root of vibration, and the amplitude increased. The direction of motion of the 
main body was in the negative direction for the odd-order vibration mode, and in the positive direction 
for the even-order vibration mode, given that the amplitude of the free end of the beams was in the 
positive direction. These corresponded to the same results as those obtained in a mechanical model in a 
previous study [17]. 

 
ⅳ) Coupled system 
・ In a mechanical model [17] in which the on-board liquid was modelled as a “spring-mass” system, there 

was only one natural sloshing frequency. However, in the present model in which the on-board liquid 
was modelled as an ideal fluid, infinite numbers of natural sloshing frequencies existed. Therefore, an 
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infinite number of coupling regions existed between the liquid motion and beam motion. 
・ For example, in the diagram illustrating variations of the coupled natural frequency with density ratio 

,  two natural frequency curves, namely one in which the liquid motion was predominant and the 
other in which the beam motion was predominant, intersected each other. In the crossing region at which 

0 90 , =  the coupling region in which the liquid motion and beam motion coupled was very narrow. In 
contrast, when the contact angle corresponded to 0 90 ,  (for example, 0 60 , and 100 , = ) the two 
motions coupled with each other in a wide region. 

・ During the operation of satellites, decreases in fuel may lead to the crossing of two natural frequencies 
that would introduce strong coupling of the two motions, i.e. liquid sloshing and beam vibration. 

・ In the coupled vibration mode in which the beam motion was predominant, the main body motion 
became significant at a lower tank mass ratio .tm  The direction of motion of the main body depended 
on the order of vibration of the beam: i.e. in the odd-order mode, the direction was opposite relative to 
the beam tip motion, and in the even-order mode, the direction corresponded with that of the beam tip 
motion. 

・ With respect to the free surface motion during coupling, the free surface did not move when 0 90 =  
even if the main body (tank) moved, while at 0 90  , a vibration appeared on the free surface, i.e. 
sloshing occurred. 
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Appendix A. Eigenfunctions of the beam [17] 
 

The eigenfunctions of the beam that satisfy the boundary conditions in Eq. (12)’’, i.e. mass-free: 
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where m  denotes the parameters that satisfy the following frequency equation: 

( )sinh cos cosh sin 1 cos cosh 0m m m m m m mM      + + + =  (A2) 

Eigenfunction ( )im iw   has the following characteristics in its integration: 
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Appendix B. System parameters range 
 
 Table B1 shows the specifications of a few Japanese satellites and the corresponding estimated values for 

,M  ,  and  . In the table, radius R  of the cylinder in the model was obtained as half of the satellite’s 
length in the crosswise direction, and the mass of paddles and ratio of the mass were estimated assuming that 
the power generation of the solar array paddle was in the range of 20 100−  W/kg. The tank mass was 
estimated assuming that 20% of the launch mass of the satellite corresponded to liquid fuel, and the tank 
mass ratio tm  was obtained by subtracting the fuel mass and the paddle mass from the launch mass. The 
thickness of the solar array paddle was assumed as 12.5 mm for all the satellites. Three types of liquid, i.e., 
hydrazine, nitrogen peroxide, and water, are considered in Table B2. 
・ Tank mass ratio tm  : From Table B1, 4.97 137,tm = −  and subsequently 1 100.tm = −  
・ Density ratio   : From Table B2, 7.6 48.1, = −  and subsequently 7 50. = −  
・ Area ratio of beam and tank   : From Table B1, 8.58 101.0, = −  and subsequently 10 100. = −  
・ Ratio of the length of elastic beam and the tank radius  : From Table B1, 2.46 13.9, = − and 

subsequently 1 10. = −  
・ Bending rigidity of beam: It was assumed that the beam was sandwiched between two face skins with 

an aluminium honeycomb core (see Fig. B1). The bending rigidity of the core was ignored, and it was 
assumed that the two skins had the same thickness and were of the same material to obtain the bending 
rigidity of the sandwich beam EI from Eq. (B1) as follows: 

2 3

2 6
f f f fE t h E t

EI b
  = + 
                    (B1) 

where 

1 2

2
f f

c

t t
h t

+
= +

                   (B2) 

where ct  denotes core thickness and ft  denotes skin thickness. Furthermore, when the skins are thin, the 
following expression is obtained: 

2

2
f fE t bh

EI =
                    (B3) 

 Here, the skin was assumed to be made of CFRP(Carbon Fibre Reinforced Plastics) with Young’s modulus 

55 560 GPafE = −  and thickness 0.1 mm.ft =  The estimated bending rigidity and the surface tension 
parameter   are shown in Table B3. From Table B3, ( ) 60.287 35.4 10 −= −   and subsequently

7 410 10 . − −= −  The range of system parameters is summarized in Table B4. 
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Tab. 1 Nomenclature：(non-dimensional) 

A  

b  

E  

h  

 

I  

l  

fm  

tm  

 

M  

 

o XY  

o r z  

 

R  

t  

MY  

 

 ,i iW x t  

Cross sectional area of beam 

Length of tank 

Young’s modulus of beam 

Equivalent liquid height 

 0: /h h R   

Second moment of area of beam 

Length of beam  l R   

Mass of liquid  : / 2f f bm m Al   

Mass of rigid tank 

 : / 2t t bm m Al   

Summation of fm  and tm  

 : f tM m m    

Coordinate system for spacecraft 

Coordinate system for tank 

 : o    

Radius of rigid tank 

Time  : bt    

Displacement of rigid tank 

 : /M My Y l   

Displacements of beams 

 : /i iw W l   

0 ( )z r  

 , ,Z r t  

 

 , ,fZ r t  

 , , ,r z t  

 

0  

f  

b  

  

 

  


 

b
 

 

i  

  

 

Static liquid free surface  0 0: /z R   

Amplitude of liquid surface 

 : /Z R    

Displacement of liquid free surface 

Liquid velocity potential 

 2: / bR    

Static contact angle of liquid 

Density of liquid 

Density of beam 

Coefficient of free surface tension 

:  2R l EI   

Area ratio of beam and tank  2 2R A  

Density ratio  f b    

Natural circular frequency of beam 

 4
bEI Al  

Non-dimensional coordinate: ( / )ix l   

Coupled natural circular frequency 

 b    

 

 

 

Table A1 Specifications of satellite and parameters 

Satellite  
Launch 
mass 
[kg] 

Dimensions [m] Power 
[W] 

Dimension 
of paddle 

[m] 

Mass of 
paddle [kg] 

tm  
 2t bm Al  

  
( )l R  

  
 2 2R A  

ETS-VIII Large 2800 2.35×2.45×7.3 7500 約 17×2 75 ~ 375 4.97 ~ 28.9 13.9 57.5 
DRTS Large 2800 2.2×2.4×2.2 2100 7.3×2.4 21 ~ 105 20.3 ~ 106 6.10 44.0 

TRMM Large 3620 3.0×3.5×5.1 3300 4.3×2.1 33 ~ 165 16.6 ~ 86.8 2.46 101.0 
EOS-PM

1 
Large 3100  4860  49 ~ 243 9.21 ~ 50   

ALOS Large 4000 3.5×4.0×6.2 7000 8.9×3.1 70 ~ 350 8.14 ~ 44.7 4.45 90.9 
GOSAT Large 1650 2.4×2.6×2.7 3300 約 6×3 33 ~ 165 7 ~ 39 4.62 41.6 
WINDS Large 2700 2.0×3.0×8.0 5200 約 6×3 52 ~ 260 7.31 ~ 40.5 4.00 40.0 
OICETS Middle 570 0.78×1.1×1.5 1220 約 4×2 12.2 ~ 61 6.48 ~ 36.4 7.27 8.58 
SWAS Small 102  59  1 ~ 3 26.7 ~ 137   
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Table A2 Specifications of liquid 

Material 
Density 

orf b  [kg/m3] 

Coefficient of surface 

tension  [mN/m] 

Density ratio 

( )f b    

Hydrazine 1004 66.5 7.7～33.5 

Nitrogen peroxide 1443 25.1 11.1～48.1 

Water 1000 71.7 7.6～30 

Al honeycomb 30～130 ―  

 

Table A3 Bending stiffness of honeycomb beam and corresponding surface tension parameters: 

 Al EI  ( 12.5mm, 0.1mmfh t  ) 

Satellite 

Bending 
stiffness

310EI   
[Nm2] 

 ×10-6 

Hydrazine Nitrogen peroxide Water 

ETS-VIII 0.873~8.89 3.23~32.9 1.22~12.4 3.48~35

.4 DRTS 1.05~10.6 1.39~14.1 0.523~5.33 1.49~15

.2 TRMM 0.917~9.34 0.817~8.32 0.308~3.14 0.881~8

.97 ALOS 1.35~13.8 1.69~17.2 0.638~6.50 1.83~18

.6 
GOSAT 1.31~13.3 1.14~11.6 0.430~4.38 1.23~12

.5 WINDS 1.31~13.3 1.14~11.6 0.430~4.38 1.23~12

.5 OICETS 0.873~8.89 0.760~7.74 0.287~2.92 0.819~8

.34  

Table A4 Range of parameters 

Parameter Range 

tm  2t bm Al  1 100   

0h   h R  0 1  

   f b   7 50  

   Al EI  8 510 10 
  

   
2 2R A  10 100   

   l R  1 10   
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(a)  Spacecraft with two appendages. 

 

(b)  Cylindrical tank.  

 

Fig. 1 Flexible spacecraft model with liquid tank.; (a) Spacecraft with two appendages.; (b) Cylindrical tank. 
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Fig. 2 Meniscus in a cylindrical tank with contact angle 0 . 
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Fig. 3 Natural sloshing frequencies in an anchored cylindrical tank (without beam： 1 = ).;  
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Fig. 4 Variations of sloshing mode with contact angle 0  ( 6
0 1, 1 10 , 1, 1h   −= =  = = ).;  

(a) 0 60 =  ; (b) 0 90 =  ; (c) 0 100 =   
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Fig. 5 Variations of natural circular frequency with contact angle 0 （floating tank）：

6
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Fig. 6 Influences of liquid height 0h : (a) and mass ratio tm : (b) on main body (tank) motion 
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Fig. 7  Liquid sloshing mode and displacement of spacecraft main body (neglecting flexibility of beams) 

( 61 10 , 1, 1, 1, 10tm   −=  = = = = ).; (a) 0 60 = ( 0 0.3h = ); (b) 0 100 = ( 0 0.15h = ) 
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Fig. 8  Influence of mass ratio M  on natural circular frequency of rigid tank with flexible beam 

(without liquid)： ---：clamp - free beam. 
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Fig. 9  Vibration mode of beam with rigid mass M  at its center : Influence of M  

( 0, 0.5, 1, 5, 10, 100M = ).; (a) 1st mode; (b) 2nd mode; (c) 3rd mode 
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(a)  Natural circular frequency curves. (b)  Magnified view. 

Fig. 10  Variation of coupled natural frequency with density ratio   ( 4
0 060 ,h 1, 1 10 ,  −= = =   

10, 10, 1tm = = = ).; (a) Natural circular frequency curves.; (b) Magnified view. 
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Fig. 11  Variation of coupled vibration mode and coupling evaluate value CEV with   ( 4
0 060 , 1, 1 10 , 10, 10, 1th m   −= = =  = = = ).; 

 (a) 1.9 = ; (b) 1.95 = ; (c) 2.1 = ; (d) 2.15 = ; (e) 2.2 =  
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Fig. 12 Variation of coupled vibration mode with   ( 4
0 090 , 1, 1 10 , 10, 10, 1th m   −= = =  = = = ).; 

 (a) 2.3 = ; (b) 2.35 = ; (c) 2.4 = ; (d) 2.45 = ; (e) 2.5 =  
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(ⅰ)  Natural circular frequency curves. (ⅱ)  Magnified view. 

Fig. 13(a) Variation of coupled natural circular frequency with liquid height 0h  ( 0 60 , 1, = =  

41 10 , 10, 10, 1tm  −=  = = = ).; (ⅰ) Natural circular frequency curves.; (ⅱ) Magnified view. 
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(ⅰ)  Natural circular frequency curves. (ⅱ)  Magnified view. 

Fig. 13(b) Variation of coupled natural circular frequency with liquid height 0h  

( 0 90 , 1, = = , 41 10 , 10, 10, 1tm  −=  = = = ).; 

 (ⅰ) Natural circular frequency curves.; (ⅱ) Magnified view. 
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Fig. 14(a) Coupled vibration mode with liquid height 

0h ( 4
0 60 , 1.0, 1 10 , 10, 10,    −= = =  = = , 1tm = ).; (ⅰ) 0 0.16h = ; (ⅱ) 0 0.18h = ; (ⅲ) 0 0.5h =  
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Fig. 14(b) Coupled vibration mode with liquid height 0h  ( 6
0 90 , 1.0, 1 10 , 10, 10,    −= = =  = =  

1tm = ).; (ⅰ) 0 0.06h = ; (ⅱ) 0 0.08h = ; (ⅲ) 0 0.5h =  
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Fig. B1 Sandwich beam 

 

 

 

 

 

 

 


