
Direct numerical simulation of turbulence over
resolved and modeled rough walls with irregularly
distributed roughness

言語: eng

出版者: 

公開日: 2020-10-27

キーワード (Ja): 

キーワード (En): 

作成者: Kuwata, Yusuke, Kawaguchi, Yasuo

メールアドレス: 

所属: 

メタデータ

http://hdl.handle.net/10466/00017113URL



Direct Numerical Simulation of Turbulence over

Resolved and Modeled Rough Walls with Irregularly

Distributed Roughness

Y. Kuwataa,∗, Y. Kawaguchib

aDepartment of Mechanical Engineering, Osaka Prefecture University, 1-1 Sakai, Osaka
599-8531, Japan

bDepartment of Mechanical Engineering, Tokyo University of Science, 2641 Yamazaki,
Noda, Chiba 278-8510, Japan

Abstract

To simulate turbulent flow over a rough wall without resolving complicated

rough geometries, a macroscopic rough wall model is developed based on

spatial (plane) averaging theory. The plane-averaged drag force term, which

arises through averaging the Navier-Stokes equations in a plane parallel to a

rough wall, can be modeled using a plane porosity and a plane hydraulic di-

ameter. To evaluate the developed model, direct and macroscopic model sim-

ulations for turbulence over irregularly distributed semi-spheres at Reynolds

number of 300 are carried out using the D3Q27 multiple-relaxation time lat-

tice Boltzmann method. The results show that the developed model can be

used to predict rough wall skin friction. The results agree quantitatively with

standard turbulence statistics such as mean velocity and Reynolds stress pro-

files with the fully resolved DNS data. Since velocity dispersion occurs inside

the rough wall and is found to contribute to turbulence energy dissipation,
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which the developed model cannot account for, the developed model fails to

reproduce dispersion-related turbulence energy dissipation. However, it is

found that the plane-averaged drag force term can successfully recover the

deficiency of dispersion-related turbulence energy dissipation.

Keywords: Direct numerical simulation, Rough wall turbulence, Lattice

Boltzmann method, Macroscopic rough wall model

1. Introduction

In most geophysical and engineering flows, the underlying surface is hy-

draulically rough. From a geophysical perspective, flows over vegetated and

urban canopies, and natural river beds can be classified as rough wall tur-

bulence (Raupach, 1994; Finnigan, 2000; Cheng and Castro, 2002). Further-

more, wall roughness inevitably occurs in engineering devices due to imper-

fections in production processes, erosion or corrosion by aging, and organic

or inorganic fouling processes, which significantly increase friction, especially

in turbulent flow with high Reynolds number (Wahl, 1989; Bons et al., 2001;

Langelandsvik et al., 2008; Kirschner and Brennan, 2012). Hence, it is read-

ily recognized that predicting the influence of wall roughness on turbulence

is crucial in engineering design, meteorological, and geological applications.

The most important effect of wall roughness on turbulent flows is the

downward shift in the mean velocity profile, known as the roughness func-

tion, which is a consequent modification of friction factor (Hama, 1954;

Schlichting et al., 1960). The pioneering work on this effect was performed

by Nikuradse (1933). His large number of measurements of a pressure drop

in pipes with walls covered by sand grains revealed that the friction fac-
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tor only depended on an equivalent sand roughness in a sufficiently high

Reynolds number regime, and a logarithmic velocity profile could still be

used in the outer layer. Further extensions of this work was performed by

Colebrook et al. (1939), who investigated the friction factor for several in-

dustrial pipes. Moody (1944) consolidated those data as a Moody chart

for practical engineering applications. The Moody chart is certainly a pow-

erful tool for estimating the friction factor in roughened pipes. However,

an equivalent roughness is required in order to read a friction factor from

the Moody chart, thus application of the Moody chart is limited to rough

surfaces whose equivalent wall roughness is known a priori. Applicable ex-

amples include commercial steel pipes, glass, and concrete, while applying

readings from a Moody chart to naturally occurring roughness with unknown

equivalent roughness is very challenging.

Accordingly, many studies have dedicated their efforts to determining the

equivalent roughness (Schlichting et al., 1960; Dvorak, 1969; Dirling, 1973;

Coleman et al., 1984; Sigal and Danberg, 1990; Van Rij et al., 2002). Dirling

(1973) proposed a roughness parameter that includes a roughness density

and a shape parameter. The roughness density represents the solidity of

roughness elements, while the shape parameter accounts for the frontal area

and the windward wetted surface area of a single roughness element. This

roughness parameter was further extended and examined by Sigal and Dan-

berg (1990); Van Rij et al. (2002) by introducing ratio of the smooth surface

area before adding roughness to the total frontal area over rough surfaces.

Van Rij et al. (2002) reported that the proposed procedure could be also

applicable to walls with non-uniform, three-dimensional roughness with ir-
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regular geometry and arrangement. Although several roughness parameters

for determining the equivalent roughness have been examined, applying these

to complex, irregular rough walls is not always straightforward. A correlation

function based on statistical moments of surface elevation with the equivalent

roughness have been explored recently (Musker, 1980; Townsin et al., 1981;

Flack and Schultz, 2010). It was reported by Flack and Schultz (2010) that

the root-mean-square roughness height and the skewness of surface eleva-

tion were the most effective parameters in describing a surface hydraulically.

A review of hydraulic roughness parameters for determining the equivalent

roughness was given by Flack and Schultz (2010).

Many other roughness parameters for determining the equivalent rough-

ness were discussed in terms of a large amount of experimental data. How-

ever, most of them are based on empirical or phenomenological discussions

due to the difficulty in measuring flows near rough walls. Hence, fundamental

discussions on rough wall turbulence were primarily investigated using direct

numerical simulations (DNS) or large eddy simulations (LES) with fully re-

solved rough walls, e.g., simulations over spanwise extended transverse ribs

(Miyake et al., 2001; Leonardi et al., 2003; Ashrafian et al., 2004; Ikeda and

Durbin, 2007; Jin et al., 2015), three dimensional roughness (Bhaganagar

et al., 2004; Orlandi and Leonardi, 2008; Lee et al., 2011; Chatzikyriakou

et al., 2015; Kuwata and Suga, 2016b,c), or random roughness (Napoli et al.,

2008; Cardillo et al., 2013; Busse et al., 2015). However, since turbulent sim-

ulations with fully resolved roughness elements require fine grids to resolve

small scale turbulence proximate to the roughness elements and large com-

putational domain enough to capture large-scale turbulence structures, DNS
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of turbulent flows over complex rough walls such as moving plant canopies

is still beyond the power of modern supercomputers (Busse and Sandham,

2012).

In contrast to simulations with fully resolved roughness, simulations with

models or virtual rough walls are effective for predicting flows, saving consid-

erable computational costs and revealing the nature of rough wall turbulence.

A most simple approach to model rough walls is by modifying a wall bound-

ary condition (Tuck and Kouzoubov, 1995; Jäger and Mikelić, 2001; Orlandi

et al., 2003; Flores and Jimenez, 2006). Orlandi et al. (2003) carried out

DNS of turbulent channel flows with non-zero wall velocity disturbance. It

was reported that drag reduction occurred over the wall with the longitudi-

nal velocity disturbance, while the turbulence structure over the wall with

the wall-normal velocity disturbance was similar to those observed over the

rough wall turbulence, resulting in increased drag. They concluded that the

characteristics of rough wall turbulence reflected the presence of a non-zero

wall-normal velocity disturbance at the interface of rough walls.

Another way to reproduce rough wall turbulence is by adding an exter-

nal force term to the Navier-Stokes equations (Miyake et al., 2000; Scotti,

2006; Breugem et al., 2006; Busse and Sandham, 2012). Miyake et al. (2000)

introduced a Stokes drag force to model the influence of rough walls. They

reported that the predicted roughness function due to an increased friction

factor was qualitatively comparable to the experimental data. Furthermore,

they also reported that disappearing or reduction in thickness of a viscous

sublayer could be reproduced with the proposed model, which is known to oc-

cur experimentally. Busse and Sandham (2012) also introduced an extra force
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term that contained a roughness density, wall-roughness height, and shape

function of distance from a channel wall. They confirmed that turbulence

statistics over the modeled rough wall showed good qualitative agreement

with the experimental data based on simulations with a large number of pa-

rameter combinations, and the model could successfully reproduce several

features of turbulence near a rough wall. However, they commented that

the model must be carefully calibrated against experiments or rough wall

resolved DNS for use in practical applications. In a similar way but with a

more theoretical approach, Breugem et al. (2006) added a term with a spatial

derivative of porosity and an external drag force, which were theoretically de-

rived using spatial (volume) averaging theory (Whitaker, 1986, 1996). Their

simulation results including turbulence structures and turbulence statistics

were qualitatively consistent with experimental observations.

Although many other important attempts were made to model rough wall

turbulence, nearly all the models in the literature ignored or treated unknown

correlations without rigorous validation against fully resolved DNS. The aim

of this study is to develop a more elaborate rough wall model based on

the spatial averaging theory with a rigorous validation against DNS of fully

resolved roughness. Furthermore, a discussion on the underlying physics of

the wall turbulence was attempted by analyzing momentum and turbulent

transport budget terms.
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Nomenclature

AS : plane area of a representative elementary plane

ASf
: plane area of the fluid phase contained within a representative elemen-

tary plane

c : particle velocity: c = ∆/δt

cs : speed of sound: cs/c = 1/
√
3

Cf : Skin friction coefficient

CD
1 , C

D
2 : model coefficients in the plane-averaged drag force model

Dm : plane hydraulic diameter

fi : plane-averaged drag force

f : distribution function

f eq : equilibrium distribution function

F : external force term

gφi : inhomogeneous correction term

hmax : maximum height of a rough wall

hm : mean height of a rough wall

hrms : standard deviation of roughness elevation

k : macro-scale turbulence energy: k = Rkk/2
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kA : plane-averaged turbulence energy: kA = RA
kk/2

ℓ : circumference length of solid obstacles

Lx : streamwise length of the computational domain

Ly : wall-normal length of the computational domain

Lz : spanwise length of the computational domain

M : transformation matrix

p : pressure

rij : micro-scale Reynolds stress: φ⟨ũ′iũ′j⟩
f

Rij : macro-scale Reynolds stress: φ⟨u′i⟩
f⟨u′j⟩

f

RA
ij : plane-averaged Reynolds stress: φ⟨u′iu′j⟩

f

Reτ : friction Reynolds number: Reτ = uτδ/ν

Sk : skewness of roughness elevation

t : time

ui : velocity

uτ : averaged friction velocity at the rough wall

Ub : bulk mean velocity

wα : weight parameter

x : streamwise coordinate
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y : wall-normal coordinate

z : spanwise coordinate

δ : boundary layer thickness

∆ : grid spacing

∆U : roughness function

ν : kinematic viscosity

τij : subfilter-scale stress: τij = φ⟨ũiũj⟩f

ξα : discrete velocity

ρ : fluid density

φ : plane porosity: φ = ASf
/As

ϕ : variable

ω : superficial plane-averaged vorticity: ω = φ⟨∇ × u⟩f

ϕ : Reynolds averaged value of ϕ

ϕ′ : temporal fluctuation of ϕ : ϕ− ϕ

⟨ϕ⟩f : intrinsic plane-averaged value of ϕ

⟨ϕ⟩ : superficial plane-averaged value of ϕ

()+ : values normalized by the averaged friction velocity at the rough wall
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2. Numerical approach

Since the lattice Boltzmann method (LBM) allows us to accurately treat

a curved boundary with simple algorithms, the LBM was recognized as a

powerful tool for treating flows in complicated geometries (e.g., Hatiboglu

and Babadagli, 2008; Suga et al., 2009; Suga and Nishio, 2009; Beugre et al.,

2010; Parmigiani et al., 2011; Chukwudozie and Tyagi, 2013). Owing to this

advantage, it has been often applied to various complex turbulent flow prob-

lems, such as flows in porous media (e.g., Hasert et al., 2011; Krafczyk et al.,

2015; Kuwata and Suga, 2015b, 2016c) or over rough walls (e.g., Jin et al.,

2015; Tóth and Jánosi, 2015; Kuwata and Suga, 2016b, 2017). In addition,

since the accuracy of the LBM for turbulent flow was recently confirmed

from lattice Boltzmann DNS studies (e.g., Lammers et al., 2006; Chikata-

marla et al., 2010; Bespalko et al., 2012; Suga et al., 2015; Fattahi et al.,

2016; Wang et al., 2016; Gehrke et al., 2017), the present study uses the

LBM to solve flows over a rough wall. The lattice Boltzmann equation can

be obtained by discretizing the velocity space of the Boltzmann equation into

a finite number of discrete velocities ξα{α = 0, · · · , Q− 1}. Although there

are several discrete velocity models for three-dimensional flow simulations,

e.g., the D3Q15, D3Q19 and D3Q27 models, we chose the D3Q27 model be-

cause unphysical spurious currents can be reduced with this model (Kuwata

and Suga, 2015a). Applying the multiple-relaxation-time (MRT) scheme is

effective for ensuring numerical stability in high Reynolds number flow sim-

ulations (d’Humiéres et al., 2002). Hence, we used the D3Q27 MRT-LBM of

Suga et al. (2015) for our numerical scheme in this study. The time evolution
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of the distribution function in the MRT-LBM can be written as

| f(x+ ξαδt, t+ δt)⟩− | f(x, t)⟩ = − M−1Ŝ [| m(x, t)⟩− | meq(x, t)⟩]

+ M−1
(
I − Ŝ

2

)
M | F ⟩δt, (1)

where |f⟩ is |f⟩ = (f0, f1, · · · , fQ−1)
T and δt is the time step. Note that

Q = 27 in the D3Q27 model. The parameters for the D3Q27 model are listed

in Table 1. The matrix I is an identity matrix, and the matrix M is a Q×Q

matrix which linearly transforms the distribution functions to the moments

as follows: |m⟩ = M |f⟩. The equilibrium moment meq is |meq⟩ = M |feq⟩,

with

f eq
α = wα

(
ρ+ ρ0

[
ξα · u
c2s

+
(ξα · u)2 − c2s|u|2

2c4s

])
, (2)

where u is the fluid velocity and ρ is the sum of constant and fluctuation

values: ρ = ρ0 + δρ (He and Luo, 1997). The speed of sound is cs/c = 1/
√
3

with c = ∆/δt, where ∆ is the lattice spacing and the wα values are listed

in Table 1. The equilibrium moments and the transformation matrix are

shown in Tables 2 and 3, respectively. Note that there are a few typos to

be corrected in terms of the equilibrium moments and the transformation

matrix in the original paper by Suga et al. (2015), and the corrected values

are shown in Tables 2 and 3.

The collision matrix Ŝ is diagonal:

Ŝ ≡ diag(0, 0, 0, 0, s4, s5, s5, s7, s7, s7, s10, s10, s10, s13,

s13, s13, s16, s17, s18, s18, s20, s20, s20, s23, s23, s23, s26). (3)

11



The relaxation parameters are

s4 = 1.54, s5 = s7, s10 = 1.5, s13 = 1.83, s16 = 1.4,

s17 = 1.61, s18 = s20 = 1.98, s23 = s26 = 1.74. (4)

The relaxation parameters s5 and s7 are related to the kinematic viscosity ν

as follows:

ν = c2s

(
1

s5
− 1

2

)
δt = c2s

(
1

s7
− 1

2

)
δt. (5)

The term F is the external force term (Guo et al., 2002):

Fα = wαρ0

{
ξα · a
c2s

(
1 +

ξα · u
c2s

)
− a · u

c2s

}
, (6)

where a is an acceleration rate.

The presently applied scheme of the D3Q27 MRT-LBM was validated

by conducting DNS of the turbulent channel flow in Kim et al. (1987) at

Reτ = 180. The turbulence statistics, including the higher order turbulence

correlations such as the budget terms in the turbulence energy equation and

the predicted energy spectra, showed almost perfect agreement with those

obtained using the spectrum method. Thus, the accuracy of this D3Q27

MRT-LBM was found to be equivalent to that of the spectral method (see,

Suga et al. (2015)).

3. Macroscopic modeling of flows within rough walls

Spatial averaging is applied to the governing equations in order to macro-

scopically treat a flow inside a rough wall. In order to take account of

rough wall characteristics which vary drastically depending on the rough
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wall-normal coordinate, a representative elementary plane (REP) is consid-

ered parallel to the rough wall, as shown in Fig.1. Introducing the REP al-

lows us to describe local averaged flow variables over the REP. A similar idea

was introduced into the volume-averaged Navier-Stokes (VANS) model for

porous medium flows or canopy flows Dwyer et al. (1997); Watanabe (2004);

Breugem et al. (2006). The definition of the superficial plane-averaging of ϕ

is introduced as follows:

⟨ϕ⟩ =
1

AS

∫
S

ϕdS, (7)

where S and AS are the REP for spatial averaging and the plane area of

S, respectively. A variable ϕ can be decomposed into contributions from an

intrinsic (fluid phase) averaged value (⟨ϕ⟩f ) and a deviation from the intrinsic

averaged value (ϕ̃) as follows:

ϕ = ⟨ϕ⟩f + ϕ̃, (8)

where the following relationship exists between the superficial and intrinsic

plane-averaged values: ⟨ϕ⟩ = φ⟨ϕ⟩f . Here, the plane porosity φ is defined

as φ = ASf
/AS, where ASf

denotes plane area of the fluid phase contained

within the REP. Following Whitaker (1986), the plane-averaged continuity

and momentum equations for incompressible flows can be respectively derived

as

1

φ

∂φ⟨ui⟩f

∂xi
= 0 (9)
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∂⟨ui⟩f

∂t
+ ⟨ui⟩f

∂⟨uj⟩f

∂xj
= −1

ρ

∂⟨p⟩f

∂xi
+

1

φ

∂

∂xj

(
ν
∂φ⟨ui⟩f

∂xj

)

− 1

φ

∂

∂xj
φ⟨ũiũj⟩f︸ ︷︷ ︸

τij

− ν

φ

∂φ

∂xj

∂⟨ui⟩f

∂xj︸ ︷︷ ︸
gφi

−
(

1

ρASf

∫
L

p̃nidℓ−
ν

ASf

∫
L

nk
∂ũi
∂xk

dℓ

)
︸ ︷︷ ︸

fi

, (10)

where L is the obstacle perimeter within the REP, ℓ is the circumference

length of solid obstacles, and nk is its unit normal vector pointing outward

from the fluid to the solid phase. A stress term τij consisting of velocity dis-

persion ũ is a subfilter-scale stress, and an inhomogeneous correction term

gφi appears due to inhomogeneity of the plane porosity φ. The term fi is

the plane-averaged drag force, which is expressed as a line integral of the

dispersive viscous stress and the dispersive pressure. The unknown terms

τij and fi must be modeled in order to solve the plane-averaged equation.

The contribution of velocity dispersion to momentum transfer near the ran-

domly distributed semi-sphere roughness was investigated by Kuwata and

Kawaguchi (2018), and they concluded that the dispersive shear stress gen-

erated by the mean velocity dispersion contribution was smaller compared

with the other stress terms, namely, the Reynolds shear stress, viscous stress,

and drag force contribution terms. Indeed, they reported that the contribu-

tion of the dispersive shear stress to the skin friction coefficient was 3% at

most. Another report on the dispersive shear stress profiles over a rough

graphite surface was provided by Busse et al. (2015), and their results also

confirmed the small contribution of the dispersive shear stress compared with

the other stress terms. In addition, verification of dropping τij for turbulence
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over cube roughness was also confirmed by Breugem and Boersma (2005);

Kuwata and Suga (2016c). Therefore, this study only models the plane-

averaged drag force (verification of dropping τij is discussed in §5.4). Since

the plane-averaged drag force term should vanish outside rough walls, the

transitional behavior of fi near the rough wall/clear fluid interface region

needs modeling. To model such behavior, Busse and Sandham (2012) intro-

duced the shape function which regulated an influence of fi with respect to a

distance from the wall. Another approach is assuming a porosity profile near

the interface region (Breugem et al., 2006; Kuwata and Suga, 2013; Kuwata

et al., 2014; Kuwata and Suga, 2015c). However, rigorous validity of those

treatments has yet to be confirmed. In this approach, in order to roughly

model the transitional behavior of fi, we consider flows through sparsely dis-

tributed random semi-spheres as illustrated in Fig.1. In such circumstances,

the mutual dependence among the drag force acting on each roughness el-

ement is negligibly small. Therefore, the plane-averaged drag force term fi

can be assumed to be the arithmetic spatial averaged force acting on the

two-dimensional solid circle of diameter D(n) in the REP:

ρfi ≈ 1

ASf

N∑
n=1

D(n)CD(n)
ρ

2
⟨ûi⟩f

√
⟨ûk⟩f⟨ûk⟩f , (11)

where N is the total number of the circles appearing in the REP, û is the

relative velocity to the rough surface (û = u − urough). Here, urough is the

moving velocity of the rough surface. Considering viscous and inertial effects,

the drag coefficient CD(n) can be modeled as follows:

CD(n) =
C1

ReD(n)
+ C2, (12)
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where C1 and C2 are the model constants that depend on the shape of the ob-

stacle. The Reynolds number based on the circle diameter ReD(n) is defined

as follows:

ReD(n) = D(n)

√
⟨ûk⟩f⟨ûk⟩f/ν. (13)

Substituting Eqs. (8) and (13) into Eq. (11), the plane-averaged drag force

can be written as

fi = ν
C1

2

N

ASf

⟨ûi⟩f +
C2

2
⟨ûi⟩f

√
⟨ûk⟩f⟨ûk⟩f

1

ASf

N∑
n=1

D(n). (14)

Since generic (not idealized) rough surfaces cannot always be assumed to be

the random semi-sphere cluster shown in Fig.1, prescribing a total number

of circles N and the circle diameter D(n) for generic rough surfaces is not

straightforward, thus an alternative parameter for D(n) is required. Hence,

the present model introduces the plane hydraulic (equivalent) diameter Dm,

defined as

Dm =
4Ssum

Lsum

, (15)

where Ssum and Lsum are the total area occupied by the obstacles and the

total wetted perimeter of the obstacles in the REP, respectively. They are

written as

Dm =
4Ssum

Lsum

= 4

(
N∑

n=1

πD(n)2

4

)
/

(
N∑

n=1

πD(n)

)

= 4(AS − ASf
)/

(
N∑

n=1

πD(n)

)
. (16)

Assuming that the total area occupied by the obstacles AS − ASf
can be

approximated as a product of the total number of circles N and the mean
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circle area is π
4
D2

m, we have

AS − ASf
= N ×

(π
4
D2

m

)
, (17)

With the help of Eqs.(17) and (16), the plane-averaged drag force of Eq.(14)

is further written as

fi = νCD
1 ⟨ûi⟩f + CD

2 ⟨ûi⟩f
√
⟨ûk⟩f⟨ûk⟩f , (18)

where the drag model coefficients for the linear and quadratic terms with

respect to the plane-averaged velocity are expressed in terms of the plane

porosity and plane hydraulic diameter as follows:

CD
1 =

2C1

π

(1− φ)

φD2
m

, CD
2 =

2C2

π

(1− φ)

φDm

. (19)

One should note that those model coefficients are only valid in the rough

wall/clear fluid interface region where the distribution of roughness elements

is sparse enough to neglect the mutual dependence among roughness ele-

ments. To correct the behavior of fi in densely distributed roughness ele-

ments (φ ≈ 0), correction functions fd
1 and fd

2 are introduced as follows:

CD
1 =

2C1

π

(1− φ)

φD2
m

fd
1 , CD

2 =
2C2

π

(1− φ)

φDm

fd
2 , (20)

where the model constants C1 = 71 and C2 = 0.79 are presently used, and

the correction functions are fd
1 = 1/φ and fd

2 = 1/φ1.5. All of these can be

determined by fitting the model coefficients CD
1 and CD

2 to the DNS results

(the model drag coefficients are discussed in §5.2). Although introduction of

the correction functions of fd
1 and fd

2 seems to be rather ad hoc, it should

be mentioned that the effects of those functions on turbulence over rough
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walls is insignificant since the effect of fd
1 and fd

2 becomes significant only

deep inside rough walls where fluid flows are nearly damped out. One should

also take caution because rough wall structures are usually anisotropic; the

model coefficients should vary depending on axial direction and should be

expressed in tensorial form. However, it was reported by Busse and Sandham

(2012) that the effect of the streamwise drag force on turbulence was the

most significant, and the effects of the other components were far weaker.

Therefore, the present model does not account for anisotropy in the drag

coefficients, but rather concentrates on modeling the in-plane components of

the drag force.

Since we assume the drag coefficient to be a function of the Reynolds

number as shown in Eq.(8), the present drag force model consists of two

contributing terms, namely, viscous drag (a linear term) and foam drag (a

quadratic term). This modeled form is the same as that of the modified

Ergun equation (Macdonald et al., 1979), which is the drag force model for

flows in porous media. Macdonald et al. (1979) confirmed that the modified

Ergun equation could reasonably capture the Reynolds number dependence

of the drag for several types of porous materials using a large amount of

experimental data for porous medium flows. However, they also stated that

suitable values of the model parameters in the modified Ergun equation were

dependent on the structure of the porous medium. From these observations,

one would expect that the present model also has the potential to reproduce

the Reynolds number dependence. However, the presently proposed model

constants and functions (C1, C2, f
d
1 , and f

d
2 ) may require modification when

one attempts to apply the model to the other types of rough surfaces. Further
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investigation for different types of rough surfaces will be required to extend

the applicability of the developed model.

4. Flow geometry and computational setup

In order to evaluate the developed macroscopic rough wall model, we per-

formed DNS of open channel flows over irregularly distributed semi-spheres,

as shown in Figure 2. Aside from simulations over the macroscopic rough

wall that solves the plane-averaged Navier-Stokes equations in the rough wall

region, DNS of fully resolved roughness is also carried out for rigorous model

evaluation. To discuss the difference of the rough wall treatment, turbulent

flow simulations over resolved and modeled rough walls are performed under

the same numerical conditions, except for the rough wall. Periodic boundary

conditions are applied to the streamwise and spanwise boundary faces, and

a slip boundary is considered for the top boundary face. The resolved wall

DNS imposes a non-slip boundary condition on the rough surfaces through a

linear interpolated bounce-back scheme, while the macroscopic model simula-

tion solves the plane-averaged momentum equation with the plane-averaged

drag force model defined in Eq.(18). The details of the numerical method

for the macroscopic model is described in Appendix A. For the bottom wall

in the model simulation, the non-slip boundary condition is imposed by ap-

plying the half-way bounce-back method. The computational domain size of

Lx × Ly × Lz is set to 6δ(x)× δ(y)× 3δ(z). The Reynolds number based on

the averaged friction velocity at the rough wall uτ and δ is set to 300. The

computational domain is decomposed into finer and coarser resolution do-

mains using the imbalance-correction zonal grid refinement method (Kuwata
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and Suga, 2016a). The twice-finer uniform grid (equilateral cube grid) block

is allocated near the rough wall region (y/δ ≦ 0.35), while the coarser uni-

form grid block is set away from the rough wall (0.35 < y/δ). The number

of grid nodes in the finer and coarser domains are 1201(x)× 70(y)× 601(z)

and 601(x) × 66(y) × 301(z), respectively. The resolution in the finer and

coarser grid regions are approximately 1.5 and 3.0 wall units, respectively.

This grid resolution is comparable to those used in other lattice Boltzmann

DNS studies (Lammers et al., 2006; Kuwata and Suga, 2016b,c; Gehrke et al.,

2017). Moreover, to ensure validity of the simulation results, grid indepen-

dence is carefully checked by comparing the turbulent intensities with those

obtained using a factor 1.5 finer mesh simulation along each direction. The

computational domain size is also confirmed to be sufficient by comparing

the simulation results with those obtained from a box simulation that was a

factor 2 larger.

The average friction velocity at the rough wall uτ is given by the balance

between the pressure drop ∆P and the averaged wall shear stress of the rough

wall τw = ρu2τ as follows:

Sin∆P = LxLzτw, (21)

where Sin is the inlet boundary face area of fluid phase, which can be written

as Sin ≈ Lzδeff . Here, the effective boundary layer thickness is defined as

δeff =
∫ δ

0
φdy. Thus, uτ is

uτ =

(
∆P

ρ

δeff
Lx

)0.5

. (22)

The flow is driven by imposing a pressure difference in the streamwise di-

rection. Note that since the effective boundary layer thickness δeff depends
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on the plane porosity profiles, the streamwise pressure difference for all cases

are different, even though the friction velocity is fixed.

Solving the plane-averaged momentum equation using the LBM requires

including additional terms, e.g., the external force term in the lattice Boltz-

mann equation (Eq.(6)). Note that the relative velocity û in Eq.(11) is the

same as the fluid velocity ⟨u⟩f because the present roughness is stationary.

The rough walls we considered consist of irregularly packed semi-spheres,

as shown in Figure 2. The semi-sphere diameters follow a Gaussian distri-

bution, and the semi-spheres are irregularly packed at a solid wall. The key

roughness parameters in the developed drag force model are the plane poros-

ity and the plane hydraulic diameter. Hence, to systematically discuss the

influence of those parameters, the plane porosity and plane hydraulic diam-

eter are designed to significantly vary just below the roughness peak. The

mean diameter is µ/δ = 0.2, while the standard deviation of the Gaussian

distribution is varied in three cases: σ/µ = 0.0, 0.17, 0.33. The total number

of semi-spheres is chosen so that the generated rough surface samples have

nearly the same roughness parameters at the bottom wall.

Rough surfaces are generated with different roughness values and are

denoted case I, II, and III. The probability density function of the rough

surface height h(x, z) is shown in Figure 3. Characteristics parameters for

the rough wall, such as the number of semi-spheres Ns, maximum peak height

of the roughness elements hmax, and statistical moments of the surface height
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profiles, are defined as:

hm =
1

LxLz

∫ ∫
h(x, z)dxdz, (23)

hrms =

(
1

LxLz

∫ ∫
(h(x, z)− hm)

2 dxdz

)1/2

, (24)

Sk =

(
1

LxLz

∫ ∫
(h(x, z)− hm)

3 dxdz

)
/h3rms, (25)

all of which are listed in Table 4. Here, hm, hrms, and Sk represent the

mean height, standard deviation, and skewness of the roughness elevation,

respectively. It is found from Fig.3 that roughness elements of h+(x, z) ≈

25 primarily occupy the rough wall in case I, whereas higher and sparser

roughness elements increasingly exist in cases II and III. The presence of

the higher and sparser roughness elements is characterized by the large h+rms

and positive Sk values, as listed in Table 4, whereas the substantial negative

value of Sk in case I indicates the presence of intermittently distributed deep

valleys.

Before performing our simulations, we discuss an adequate physical size

of the REP that is required to compute the roughness parameters (i.e., the

plane porosity φ and plane hydraulic diameter Dm), both of which are re-

quired in the present macroscopic model. We consider the REP to be an

orthogonal plane to the wall-normal coordinate. The topological parameters

φ and Dm are expressed as a function of the wall-normal coordinate, whereas

the instantaneous flow variables obtained from Eqs. (9) and (10) vary de-

pending on not only the wall-normal coordinate but also the streamwise and

spanwise coordinates. When we select the sufficiently large REP such that

the averaged roughness parameters are independent of the size of the selected

plane, the topological parameters φ and Dm are simply expressed as a func-
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tion of the wall-normal coordinate, whereas the instantaneous flow variables

obtained from Eqs. (9) and (10) vary depending on not only the wall-normal

coordinate but also the streamwise and spanwise coordinates. Moreover, the

advantage of the choice of the sufficiently large REP is that we do not have to

consider the additional source terms related to the streamwise and spanwise

gradient of φ in the governing equations, and it is therefore computationally

efficient. By contrast, it is noted that choice of smaller REP is effective when

we apply the developed model to the streamwise or spanwise heterogeneous

rough surfaces whose roughness density significantly varied in streamwise or

spanwise directions (e.g., Anderson et al., 2015). Figure 4 shows the conver-

gence of the roughness parameters by increasing the size of the REP from

1
8
Lx(x) × 1

8
Lz(z) to Lx(x) × Lz(z). Fig.4(a) shows that the plane porosity

profiles in case I nearly overlap except for the result with an REP size of

1
8
Lx(x) × 1

8
Lz(z). In Fig.4(b), Dm exhibits a substantial dependence of the

REP near the bottom wall in case I, while Dm becomes large due to merged

semi-spheres. This occurs because the larger REP is essentially required to

correctly compute the larger hydraulic diameter. In this region, convergence

of Dm within 10% can be confirmed when the size of the REP is larger than

1
2
Lx(x) × 1

2
Lz(z), which includes approximately 400 semi-spheres. In case

III, one can see from Fig.4 (c) and (d) that the dependence of the REP

size on the roughness parameters is more prominent. The relative difference

in φ is less than 10% when we set the size of the REP to be larger than

1
2
Lx(x) × 1

2
Lz(z), which includes approximately 360 semi-spheres. Conver-

gence within 10% is also confirmed with respect to Dm near the bottom wall

region (0.0 < y/δ < 0.15). However, the relative difference in Dm is signif-
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icant as it departs from the bottom wall where the roughness elements are

sparsely distributed. Although we can determine the arbitrary size of the

REP, the present study determines the size of the REP as Lx(x) × Lz(z)

and simply treats the roughness parameters as a function of the wall-normal

coordinate only (see Appendix B for the discussion on the influence of the

REP size on the simulation results).

Figure 5 show the plane porosity φ and plane hydraulic diameter Dm

profiles when the REP size is set to Lx(x) × Lz(z). Since the roughness

elements vanish outside the rough wall region, φ and Dm converge to unity

and zero, respectively, outside the bottom rough wall. On the other hand,

φ decreases and Dm increase in the vicinity of the bottom of the rough

wall at y/δ = 0. As the wall-roughness increases from case I to III, the

convergence of φ to unity slows, as shown in Fig.5(a), and the region where

Dm plateaus (0.1 < y/δ < 0.15 in case II and 0.1 < y/δ < 0.2 in case III)

extends, as shown in Fig.5(b). These results indicate a moderate change in

the model coefficients for the plane-averaged drag force model. Furthermore,

the plane hydraulic diameter Dm in case III is found to show a peak below

the maximum rough wall height at y/δ ∼ 0.22, which is due the presence of

the larger and sparser roughness elements quantified by positive Sk, as listed

in Table 4.

5. Results and Discussions

5.1. Mean velocity and Reynolds stress

To discuss effects of the macroscopically modeled rough wall on stan-

dard turbulence statistics, we compared the streamwise mean velocity and
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Reynolds stress profiles between the DNS and model simulation results. Fig-

ure 6 shows the profiles of the superficial plane-averaged streamwise mean

velocity U+ = φ⟨u+⟩f . The DNS result in the smooth wall case is also plot-

ted for comparison. As the wall-roughness increases, the damping effect in

the streamwise mean velocity due to the rough surface is more pronounced,

and the streamwise mean velocity at the top slip boundary (y/δ = 1.0)

shows a lower value compared with the smooth wall case, which is due to

the increased skin friction coefficient on the rough wall. The downward shift

of U+, which is referred to as the roughness function ∆U+, the skin fric-

tion coefficient Cf = τw/(0.5ρU
2
b ), and the bulk mean Reynolds number

Reb = Ub(2δ)/ν are listed in Table 5. One can see that the significant in-

crease in ∆U+ and Cf in the DNS results is quantitatively captured by the

present model. Corresponding to the increase in ∆U+ and Cf , the bulk

mean Reynolds number decreases. The difference in Cf between the DNS

and model simulation results is 7.6% (case I) at most. This shows that the

increased rough wall skin friction coefficient is successfully reproduced in the

developed model. The present DNS results suggest that the influence of the

wall-roughness (quantified by ∆U+) increases as h+rms and Sk increase. This

finding agrees with the experimental observations reported in the literature

(Flack and Schultz, 2010), where the equivalent roughness was increased as

h+rms and Sk increased.

Figure 7 compares the superficial plane-averaged Reynolds stressesRA+
ij =

φ⟨u′iu′j⟩
f+

near the rough wall region. Note that RA
ij can be decomposed

into the macro-scale Reynolds stress Rij and the micro-scale (subfilter-scale)
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Reynolds stress rij as follows:

RA
ij = φ⟨u′iu′j⟩

f
= φ⟨u′i⟩

f⟨u′j⟩
f︸ ︷︷ ︸

Rij

+φ⟨ũ′iũ′j⟩
f︸ ︷︷ ︸

rij

. (26)

Since the DNS resolves the full details of turbulence near the roughness el-

ements, the plane-averaged Reynolds stress in the present DNS includes rij

and Rij. On the other hand, the developed model macroscopically treats

flows inside rough walls while neglecting the influence of velocity dispersion

û. Thus, RA
ij predicted by the present model does not include the contribu-

tion from rij. In Fig.7, as the wall-roughness increases from case I to III,

the damping effect in RA
ij due to roughness becomes more significant. In par-

ticular, the damping effect in the streamwise component in Fig.7(a) is more

pronounced than in the other components in Fig.7(b) and (c), which is con-

sistent with other experimental and DNS results (Ligrani and Moffat, 1986;

Krogstad et al., 2005; Flack et al., 2007; Kuwata and Suga, 2016b,c). As the

wall-roughness increases, the location of the maximum peak of RA
11 in Fig.7(a)

moves away from the bottom wall, and the maximum peak value decreases.

In contrast to the streamwise component, the wall-normal component in

Fig.7(b) is found to be less sensitive to differences in the wall-roughness. Al-

though the model simulation slightly underpredicts RA
22 and RA

33 inside the

rough wall in case III, the overall agreement with the fully resolved DNS

results is satisfactory, despite the fact that the model simulation ignores the

contribution from rij. This may suggest that even though dispersion-related

(micro-scale) turbulence may be slightly produced inside the rough walls,

its contribution is far smaller than the that due to the macro-scale velocity

fluctuations in the presently-tested rough walls.
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5.2. Plane-averaged drag force

In order to validate the plane-averaged drag force model, Figure 8 com-

pares the model coefficients for the linear (first) and quadratic (second) drag

force terms CD
1 and CD

2 . The lines indicate the profiles modeled with Eq.(20),

while the symbols are obtained by directly computing the plane-averaged

drag force with Eq.(10) from the DNS results. The DNS simulations are

performed at two Reynolds numbers in order to obtain the two model co-

efficients. Low Reynolds number laminar flow simulations are conducted to

obtain the model coefficient in the linear term CD
1 , which predominantly

works in the low Reynolds number regime. That in the quadratic term CD
2 is

obtained from the turbulent flow simulation, where the linear and quadratic

terms work. Fig.8 shows that both CD
1 and CD

2 drastically increase toward

the bottom solid wall (at y/δ = 0) because flows are completely damped

at the bottom wall. Even though CD
1 in case III exhibits very complicated

behavior, one can see that the present model for CD
1 can perfectly capture

the trend of the DNS results. Although the trends of CD
1 and CD

2 are roughly

similar, differences can be seen near the interface region (y/δ ≈ 0.25) in case

III. The profile of CD
1 in case III shows plateau near the interface region,

whereas CD
2 monotonically decreases as approaching to the maximum rough

wall height at y = hmax. Although the developed model over-predicts CD
2

in this region, as shown in Fig.8(b), the overall agreement with the DNS

data is confirmed. This emphasizes that the plane porosity and the plane

hydraulic diameter are considerably effective parameters for modeling the

plane-averaged drag force.

27



5.3. Turbulence structures

It is well-known that turbulence structures over a rough wall are very dif-

ferent from that over a smooth wall. Accordingly, the turbulence structures

over the modeled and resolved walls are compared in order to assess whether

the macroscopic model can reproduce turbulence.

Figure 9 shows snapshots of the instantaneous wall-normal vorticity fluc-

tuations at the position of the maximum roughness height (y = hmax). The

DNS and model simulation results show high and low speed streaks develop

over the rough wall of case I, which we usually observe in the vicinity of a

smooth wall, whereas streaky structures in cases II and III are less organized

and lose their strength. Although the turbulence structures over the modeled

rough walls of cases I and II (Fig.9(a) and (b), respectively) are very similar

to those over the resolved rough walls, clear difference can be observed in

case III, as shown in Fig.9(c). In case III shown in Fig.9(c), the streamwise

elongated structure over the resolved rough wall is very shredded, while that

over the modeled wall appears to be smoother and more interconnected.

To discuss the fluctuating vorticity intensity, Figure 10 compares the root

mean square of the superficial plane-averaged vorticity fluctuation defined as

ω = φ⟨∇ × u⟩f . The results confirm that these fluctuations lose strength

as the wall-roughness increases (cases II and III), although the pointed peak

of ω+
y,rms can be seen at the maximum roughness height in case I. This fact

substantiates the disappearing of the high-and low-speed streaks, as shown

in Fig.9 (b) and (c). However, the reduction in the streamwise and spanwise

components in cases II and III is less significant than that of the wall-normal

component. The vorticity fluctuations in all components are rapidly damped
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inside the rough wall for case I, whereas they increase and exhibit peak inside

the rough walls for cases II and III. This implies that turbulent vortex motion

inside the rough walls increases due to the roughness elements, although the

development of streaky structures over the rough wall is prevented in cases

II and III. The vorticity fluctuations predicted by the developed model in

case I agree well with the DNS data, whereas the developed model signif-

icantly under-predicts vorticity fluctuations inside the rough wall for cases

II and III. The possible explanation for this under-prediction is that the

vorticity fluctuation related to velocity dispersion, which is neglected in the

model simulation, is of significant inside the rough wall for cases II and

III. The instantaneous vorticity ω = ∇ × u inside the rough wall can be

also decomposed into the macro-scale part ∇ × ⟨u⟩f and the micro-scale

part (dispersion-related vorticity) ∇ × ũ. Inside the rough wall in cases II

and III, turbulent eddies penetrate deep inside the rough wall, break into

small-scale structures, and finally dissipate. Thus, it is expected that the

contribution from the micro-scale (dispersion-related) vorticity is not negli-

gibly small inside the rough wall for cases II and III. Indeed, due to the break

down into small-scale turbulent vortex motion, the turbulence structure over

the resolved rough wall is more shredded and disordered than that over the

modeled wall, as shown in Fig.9(c).

5.4. Momentum transfer

In order to confirm the validity of the developed model in more detail,

momentum transfer near the rough walls is examined by analyzing the plane

and Reynolds (double) averaged momentum equations. Applying integration

to the double averaged momentum equation over the wall-normal direction
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from 0 to y, the integrated momentum equation can be written as∫ y

0

D⟨u⟩f

Dt
dy = −1

ρ

∂⟨p⟩f

∂x

∫ y

0

φdy + ν
∂φ⟨u⟩f

∂y

−φ⟨ũ ṽ⟩f − φ⟨u′v′⟩f

−
∫ y

0

φgφxdy −
∫ y

0

φfxdy = 0, (27)

Note that the plane-averaged viscous stress, plane-averaged Reynolds stress,

and plane-dispersive covariance are assumed to be zero at the bottom wall.

Since those stress terms also become zero at the top boundary, we can obtain

the relationship by substituting y = δ into Eq. (27):

0 = −1

ρ

∂⟨p⟩f

∂x

∫ δ

0

φdy −
∫ δ

0

φgφxdy −
∫ δ

0

φfxdy. (28)

After subtracting Eq.(28) from Eq.(27), the stress balance can be written as

0 = −1

ρ

∂⟨p⟩f

∂x

(∫ δ

0

φdy −
∫ y

0

φdy

)
+ ν

∂φ⟨u⟩f

∂y︸ ︷︷ ︸
V S

−φ⟨ũ ṽ⟩f︸ ︷︷ ︸
DC

−φ⟨u′v′⟩f︸ ︷︷ ︸
fig7

−
(∫ y

0

φgφxdy −
∫ δ

0

φgφxdy

)
︸ ︷︷ ︸

IC

−
(∫ y

0

φfxdy −
∫ δ

0

φfxdy

)
︸ ︷︷ ︸

DF

, (29)

where the terms VS, DC, RS, IC, and DF are the plane-averaged viscous

stress, plane-dispersive covariance, plane-averaged Reynolds shear stress, in-

homogeneous correction contribution, and plane-averaged drag force contri-

bution terms, respectively. Figures 11 and 12 shows these terms normalized

by uτ . In Fig.11(a), the plane-averaged viscous stress (VS) exhibits a local

maximum value at the maximum roughness height in case I, while the VS
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profiles in cases II and III shown in Fig.11(b) and (c) exhibit peaks inside

the rough walls. As the wall roughness increases, the damping effect on U+

due to roughness is more relaxed, as shown in Fig.6. This reduces the mean

velocity gradient, and the maximum peak value of VS decreases accordingly.

The plane-averaged Reynolds shear stress (RS) becomes significant over the

rough walls, while it rapidly decays to zero deep inside the rough walls for

y/δ < 0.05, where the Reynolds normal stress exists in this region as shown

in Fig.7. This implies that the velocity fluctuations deep inside the rough

walls exits but it hardly contributes to the increase in the Reynolds shear

stress. The plane-dispersive covariant (DC) term is negligibly small in cases

I and II. In contrast, DC is slightly generated near y/δ = 0.15 for case III,

and the maximum DC value reaches roughly half that of VS. The present

model neglects DC, and a slight discrepancy can be observed in the RS pro-

file for case III. However, a comparison between the model simulation and

DNS results confirms almost perfect agreement of VS and RS for cases I and

II.

Although VS, RS, and DC do not contribute to momentum transfer deep

inside the rough walls, as shown in Fig.11, one finds in Fig.12 that the plane-

averaged drag force contribution (DF) and inhomogeneous correction contri-

bution (IC) terms predominantly work in this region. As the wall-roughness

increases, the contribution of IC inside the rough wall decreases while the DF

contribution increases. Corresponding to the moderate change of φ and Dm

in case III, as shown in Fig.5, generation of DF is more moderate compared

with those in cases I and II. The developed model over-predicts DF in case

III due to the over-predicted model coefficient for the quadratic drag force
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term CD
2 , as shown in Fig.8. However, this figure confirms that the present

model reasonably captures the DF and IC trends.

5.5. Turbulence transport

In this subsection, we take a closer look at the turbulent transport mecha-

nism near the resolved and modeled rough walls by analyzing the turbulence

energy budget terms. The turbulence energy in DNS includes the contri-

bution from velocity dispersion, whereas that for the model simulation does

not. Therefore, the transport equations of the volume-averaged turbulence

energy kA = RA
kk/2 = (Rkk + rkk)/2 and the macro-scale turbulence energy

k = Rkk/2 are considered in the DNS and the model simulation, respectively.

After applying volume averaging to the transport equation of the turbu-

lence energy, the following transport equation for kA can be derived:

DkA

Dt
= − ∂

∂xk

(φ
2
⟨u′iu′iu′k⟩

f
)

︸ ︷︷ ︸
Dt

kA

− ∂

∂xk

(
φ
⟨u′kp′⟩

f

ρ

)
︸ ︷︷ ︸

Dp

kA

+
∂

∂xk

⟨
φν

∂ 1
2
u′iu

′
i

∂xk

⟩f

︸ ︷︷ ︸
Dν

kA

− ∂

∂xk
φ
⟨
ũku′iu

′
i

⟩f︸ ︷︷ ︸
DT

kA

−φ
⟨
u′iu

′
k

∂ui
∂xk

⟩f

︸ ︷︷ ︸
P
kA

−φ

⟨
ν
∂u′i
∂xk

∂u′i
∂xk

⟩f

︸ ︷︷ ︸
ε
kA

, (30)

where Dt
kA , D

p
kA
, Dν

kA , D
T
kA , PkA , and εkA are the turbulent diffusion, pressure

diffusion, viscous diffusion, dispersion transport, production, and dissipation

terms for the volume-averaged turbulence energy, respectively. Although

further correlation terms are produced when the decomposition ui = ⟨ui⟩f+ũi
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is applied (Kuwata and Suga, 2013, 2015c), this study does not focus on those

correlations because those correlation terms make it difficult to compare the

results with those in the model simulation.

The macro-scale turbulence energy transport equation is discussed for

the model simulation. Multiplying Eq.(10) by ⟨u′i⟩
f and averaging over time

yields the transport equation of k:

Dk

Dt
= − ∂

∂xk

(φ
2
⟨u′i⟩

f⟨u′i⟩
f⟨u′k⟩

f
)

︸ ︷︷ ︸
Dt

k

− ∂

∂xk

(
φ
⟨u′k⟩

f⟨p′⟩f

ρ

)
︸ ︷︷ ︸

Dp
k

+
∂

∂xk

(
φν

∂

∂xk

(
⟨u′iu′i⟩

f

2

))
︸ ︷︷ ︸

Dν
k

+ν⟨u′iu′i⟩
f ∂2φ

∂x2k︸ ︷︷ ︸
Gφ

k

−φ⟨u′i⟩
f⟨u′k⟩

f ∂⟨ui⟩f

∂xk︸ ︷︷ ︸
Pk

−φν ∂⟨u
′
i⟩

f

∂xk

∂⟨u′i⟩
f

∂xk︸ ︷︷ ︸
εk

−φf ′
i⟨u′i⟩

f︸ ︷︷ ︸
Fk

, (31)

where Dt
k, D

p
k, D

ν
k , G

φ
k , Pk, εk and Fk are the turbulent diffusion, pressure dif-

fusion, viscous diffusion, inhomogeneous correction, production, dissipation,

and plane-averaged drag force terms for the macro-scale turbulence energy,

respectively. It should be stressed that the transport equation for k does

not include terms related to velocity dispersion but it includes the drag force

term Fk.

Figure 13 compares the turbulence energy production, dissipation and,

dispersion transport terms non-dimensionalized by u4τ/ν. The dispersion

transport DT
kA in the DNS is confirmed to be negligibly small in all cases,

suggesting that the mean velocity dispersion hardly contributes to turbu-

lence energy diffusion. The turbulence production PA
k in the DNS reaches
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its maximum over the rough wall for case I, while the maximum peak of PA
k

decreases inside the rough wall for cases II and III. Although a slight discrep-

ancy can be seen between the production terms from the model simulation

and DNS results inside the rough wall for case III, the overall agreement

with the DNS data is very reasonable. However, in contrast to the produc-

tion term, turbulence energy dissipation for the model simulation shows a

significantly lower value than that for the DNS. Since εkA can be decom-

posed into the energy dissipation for the macro-scale turbulence εk and the

micro-scale (dispersion-related) turbulence εm:

εkA = −φ

⟨
ν
∂u′i
∂xk

∂u′i
∂xk

⟩f

= −φ

⟨
ν
∂ũ′i
∂xk

∂ũ′i
∂xk

⟩f

︸ ︷︷ ︸
εm

−φν
∂⟨u′i⟩

f

∂xk

∂⟨u′i⟩
f

∂xk︸ ︷︷ ︸
εk

, (32)

the underestimated energy dissipation can be attributed to the deficiency

of εm, which the developed model fails to reproduce. This suggests that the

velocity dispersion does not significantly contribute to turbulence production

but plays an important role in energy dissipation. Greater turbulence energy

dissipation in the DNS results indicates that small-scale turbulent eddy mo-

tions are more active in the DNS than in the model simulation. This can

partly explain the under-prediction of vorticity fluctuations in Figs.9 and 10.

The smallest length scale of the resolved eddy related to turbulence dissipa-

tion (Kolmogorov scale, defined as η = (ν3/εmax)
1/4) in the DNS are η+ =1.45

(case I), 1.74 (case II), and 1.94 (case III), and the ratios η+model/η
+
DNS are 1.14

(case I), 1.11 (case II), and 1.14 (case III). The value of η+model/η
+
DNS = 1.14

in cases I and III indicates that the model simulation can be performed with

a factor 1.14 coarser mesh in each direction compared with the DNS, which

means that the developed model can save roughly 30% of the total num-
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ber of grid nodes in three dimensions. It is worth noting that, in spite of

the under-predicted turbulence energy dissipation, the sum of ε+k and F+
k

coincides with the energy dissipation from the DNS results. This suggests

that F+
k in the model simulation can recover the deficiency of the unresolved

micro-scale energy dissipation ε+m (ε+m ≃ F+
k ). In terms of the role of Fk in

energy transport, Pinson et al. (2007); Kuwata et al. (2014); Kuwata and

Suga (2016c) stated that Fk played an role of the energy transfer from the

macro-scale turbulence to the micro-scale turbulence. The present finding

of Fk ≈ εm implies that the energy transferred from the macro-scale turbu-

lence is locally balanced with εm. In other words, the micro-scale turbulence

reaches local equilibrium.

The pressure and turbulent diffusion terms and the viscous term (non-

dimensionalized by u4τ/ν) are compared in Figure 14. Note that the sum of

the inhomogeneous correction term Gφ+
k and viscous diffusion Dν+

k is plotted

as the viscous term for the model simulation. The turbulent, pressure dif-

fusion, and viscous terms change sign from negative to positive deep inside

the rough walls. This observation indicates that those terms carry turbu-

lence inside the rough walls. However, as the wall-roughness increases, those

terms become progressively smaller. This means that turbulence tends to

approach local equilibrium. The behavior of those terms is confirmed to be

quantitatively captured by the present model. Despite the fact that Dt
kA
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includes many correlations related to velocity dispersion

Dt
kA = − ∂

∂xk
φ
⟨
u′ku

′
iu

′
i

⟩f
= − ∂

∂xk
φ⟨u′k⟩

f⟨u′i⟩
f⟨u′i⟩

f︸ ︷︷ ︸
Dt

k

− ∂

∂xk
φ⟨u′k⟩

f⟨ũ′iũ′i⟩
f

− ∂

∂xk
2φ⟨ũ′kũ′i⟩

f⟨ui⟩f −
∂

∂xk
φ⟨ũ′kũ′iũ′i⟩

f
, (33)

Dt+
k and Dt+

kA
agree well. Hence, it can be concluded that the fluctuating

velocity dispersion hardly contributes to turbulence diffusion.

6. Concluding remarks

A macroscopic rough wall model was developed based on spatial (plane)

averaging theory in order to predict rough wall turbulence without resolving

complicated rough geometries. The plane-averaged drag force term, which

arises in the plane-averaged Navier-Stokes equations, is modeled with a plane

porosity and plane hydraulic diameter. In order to evaluate the developed

model, direct numerical simulation and macroscopic model simulation for tur-

bulence over irregularly distributed semi-spheres in the transitionally rough

regime are conducted using the D3Q27 multiple-relaxation-time lattice Boltz-

mann method. Three rough walls with different roughness are were chosen

for model evaluation. The remarks summarizing the present study are:

(1) The results confirm that the drag coefficients in the plane-averaged

drag force model can be successfully modeled using two characteristic rough

wall parameters, namely, the plane porosity and plane hydraulic diameter.

(2) The developed model can reproduce the significant increase in skin

friction at the rough wall, and agreement of the predicted mean velocity and

Reynolds stress profiles with the fully resolved DNS data is satisfactory.
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(3) Turbulence structures over the resolved and modeled walls are very

similar when the roughness is relatively small, whereas the turbulent struc-

ture over the resolved wall is more shredded and disordered compared with

that over the modeled wall as the wall roughness increases. This is due to

dispersion-related small scale vortex motion that is enhanced by the rough-

ness elements, which the developed model cannot account for.

(4) The contribution of the plane-averaged drag force term to momen-

tum transfer increases as the wall roughness increases. The plane-dispersive

covariance, which is dropped in the present macroscopic model, slightly con-

tributes to momentum transfer over surfaces with large roughness.

(5)Velocity and pressure dispersion do not contribute to the production

and diffusion processes, while velocity dispersion considerably contributes to

turbulence energy dissipation. However, the plane-averaged drag force term

in the model can successfully recover deficiencies in unresolved turbulence

energy dissipation.

Appendix A: Implementation of the macroscopic model

For the macroscopic model simulation, the modeled plane-averaged equa-

tions being solved are rewritten as follows:

∂⟨ui⟩f

∂xi
+

⟨ui⟩f

φ

∂φ

∂xi︸ ︷︷ ︸
Sc

= 0, (A1)
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∂⟨ui⟩f

∂t
+ ⟨ui⟩f

∂⟨uj⟩f

∂xj
= −1

ρ

∂⟨p⟩f

∂xi
+

∂

∂xj

(
ν
∂⟨ui⟩f

∂xj

)

+
ν

φ

∂2φ

∂x2j
⟨ui⟩f + 2

ν

φ

∂φ

∂xj

∂⟨ui⟩f

∂xj
− gφi − fi︸ ︷︷ ︸

Sm,i

,

(A2)

where Sc and Sm,i are respectively the additional source term in the continu-

ity and momentum equations, and the macroscopic rough wall model can be

implemented by adding the source terms Sc and Sm,i to the governing equa-

tions. Although the present study employs the lattice Boltzmann method

for the model simulation, the proposed model can be applied with the other

standard Navier–Stokes solvers such as a finite volume method and finite

difference method. Moreover, for the Navier–Stokes solvers an introduction

of the additional terms Sc and Sm,i is much easier than resolving directly

the rough geometry, and thus it can be said that the Navier–Stokes solvers

takes more advantage of the macroscopic model compared with the lattice

Boltzmann method. For the lattice Boltzmann method, the introduction of

the mass source terms Sc is not straightforward. Hence, to remove the mass

source term from the governing equation, the present study alternatively

solves the superficial plane-averaged equations:

∂⟨ui⟩
∂xi

= 0, (A3)
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∂⟨ui⟩
∂t

+ ⟨ui⟩
∂⟨uj⟩
∂xj

= −1

ρ

∂⟨p⟩
∂xi

+
∂

∂xj

(
ν
∂⟨ui⟩
∂xj

)
+
⟨p⟩
ρφ

∂φ

∂xi
− ∂

∂xj

[(
1− 1

φ

)
⟨ui⟩⟨uj⟩

]
− gφi − fi︸ ︷︷ ︸

S′
m,i

.

(A4)

The additional source term S ′
m,i is calculated with a central difference scheme

and introduced to the lattice Boltzmann equation with the external force

model of Eq.(6). It is cautioned that gφi and fi should be evaluated with the

intrinsic plane-averaged velocity ⟨ui⟩f , which is computed as ⟨ui⟩f = ⟨ui⟩/φ.

Appendix B: Size of the representative elementary plane

In order to examine the influence of the size of the REP on the simulation

results, we compare the simulation results in case III with two different REP

of Lx(x)×Lz(z) and
1
8
Lx(x)× 1

8
Lz(z). As mentioned in §4, when we choose

the smaller size of the REP as 1
8
Lx(x)× 1

8
Lz(z), the roughness parametersDm

and φ vary not only in the wall-normal direction but also in the spanwise and

streamwise directions as can be observed in Fig.B1. For the simulation with

the smaller REP, flow conditions are the same as in §4 but only the profiles of

the roughness parameters Dm and φ differ. Figures B2 and B3 compare the

plane-averaged mean velocity and turbulent intensity profiles. We confirm

in Fig.B2 that the predicted mean velocity profiles with the smaller REP

marginally shifts downward, indicating a slight increase in the rough wall skin

friction coefficient. In Fig.B3, the simulation with the larger REP slightly

overpredicts the streamwise turbulence intensity around y/δ = 0.2 relative

to the resolved DNS data while underpredicts deep inside the rough wall for
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y/δ < 0.1, and moreover, the predicted wall-normal turbulence intensity is

slightly smaller inside the rough wall. Interestingly, clear improvement is

confirmed in the simulation results with the smaller REP.

Finally, Fig.B4 depicts a comparison of the plane-averaged Reynolds shear

stress RS, plane-dispersive covariance DC, and plane-averaged drag force con-

tribution DF terms with the resolved DNS data. Figure B4 (a) confirms that

the prediction of the plane-averaged Reynolds shear stress is improved by

the smaller REP, corresponding to the improvement of the streamwise and

wall-normal turbulence intensities as show in Fig.B3. The plane-dispersive

covariance is slightly generated due to the streamwise and spanwise inho-

mogeneity of the roughness parameters as observed in Fig.B1; however, the

predicted values are found to be far smaller relative to the resolved DNS

results. In Fig.B4 (b), it is found that the plane-averaged drag force is not

improved even with the smaller REP. These results suggest that the use of

the smaller REP can slightly improve the turbulent intensity although the

prediction of the mean velocity dispersion is hardly improved even with the

streamwise and spanwise varied roughness parameter, and the use of the

smaller REP hardly affects the prediction of the drag force.
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Figure 1: Sketch of the REP (representative elementary plane) for plane averaging.
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Figure 2: Computational geometry of rough-walled open channel flows.
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case I

case II

case III

Figure 3: Probability density function of the rough surface height.
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(a) (b)

(c) (d)

Figure 4: Influence of the size of REP on the roughness parameters: (a) φ in case I, (b)

Dm in case I, (c) φ in case III, and (d) Dm in case III.
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(a)                                                    (b)

case I

case II

case III

case I

case II

case III

Figure 5: Characteristic parameters of the rough walls: (a) plane porosity φ and (b) plane

hydraulic diameter Dm.

case I

case II

case III

Rough wall

Rough wall

Rough wall

(case III)

(case II)

(case I)

Figure 6: Comparison of the superficial plane-averaged streamwise mean velocity profiles.
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(case III) (case II) (case I)

smooth wall (DNS)

Figure 7: Comparison of the superficial plane-averaged Reynolds normal stresses: (a)

streamwise, (b) wall-normal, and (c) spanwise components. The vertical solid line indicates

the position of the roughness peak y = hmax.
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d
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case II
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Figure 8: Comparison of the model coefficients for the plane-averaged drag force mode:

(a) linear term coefficient and (b) quadratic term coefficient.
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Figure 9: Comparison of instantaneous wall-normal vorticity fluctuations at the maximum

rough wall height of y = hmax: (a) case I, (b) case II, and (c) case III.
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streamwise      wall-normal      spanwise

Model

DNS

(a) 

(b)

(c)

Rough wall

Rough wall

Rough wall

Figure 10: Comparison of the superficial plane-averaged vorticity intensities: (a) case I,

(b) case II, and (c) case III. The vertical solid line indicates the position of the roughness

peak y = hmax.
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VS

total

Figure 11: Comparison of the profiles of the plane-averaged Reynolds shear stress, viscous

stress, and plane-dispersive covariance: (a) case I, (b) case II, and (c) case III. The vertical

solid line indicates the position of the roughness peak y = hmax.
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Figure 12: Comparison of the profiles of the plane-averaged drag force and inhomogeneous

correction terms: (a) case I, (b) case II, and (c) case III. The vertical solid line indicates

the position of the roughness peak y = hmax.
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Figure 13: Comparison of the production, dissipation, dispersion transport, and drag force

terms in the transport equation of the turbulence energy: (a) case I, (b) case II, and (c)

case III. The vertical solid line indicates the position of the roughness peak y = hmax.
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Figure 14: Comparison of the pressure diffusion, turbulent diffusion, and viscous terms in

the transport equation of the turbulence energy: (a) case I, (b) case II, and (c) case III.

The vertical solid line indicates the position of the roughness peak y = hmax.
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Figure B1: Plane porosity distribution at a center plane of x/Lx = 0.5 for case III with

the smaller REP size of 1
8Lx(x)× 1

8Lz(z)

case III

Figure B2: Comparison of the superficial plane-averaged streamwise mean velocity profiles

for case III with the different REP size.
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Figure B3: Comparison of the superficial plane-averaged turbulence intensities for case III

with the different REP size: (a) streamwise component, (b) wall-normal component. The

vertical solid line indicates the position of the roughness peak y = hmax.
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(a)                                                              (b)
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total

Figure B4: Comparison of the budget terms in the plane-averaged momentum equation

for case III with the different REP size: (a) plane-averaged Reynolds shear stress RS and

plane-dispersive covariance DC, (b) the plane-averaged drag force term DF . The vertical

solid line indicates the position of the roughness peak y = hmax.
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Table 1: Parameters in the D3Q27 discrete velocity model.

Model cs/c ξα/c wα

D3Q27 1/
√
3 (0, 0, 0) 8/27(α = 0)

(±1, 0, 0), (0,±1, 0), (0, 0,±1) 2/27(α = 1, · · · , 6)

(±1,±1, 0), (±1, 0,±1), (0,±1,±1) 1/54(α = 7, · · · , 18)

(±1,±1,±1) 1/216(α = 19, · · · , 26)
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Table 2: Equilibrium moments.

meq
0 = ρ ≡

∑26
α=0 f

eq
α meq

13 = ψx ≡ 9
2

∑26
α=0

(
ξ2αx + ξ2αy + ξ2αz

)2
ξαxf

eq
α

meq
1 = jx ≡

∑26
α=0 f

eq
α ξαx meq

14 = ψy ≡ 9
2

∑26
α=0

(
ξ2αx + ξ2αy + ξ2αz

)2
ξαyf

eq
α

meq
2 = jy ≡

∑26
α=0 f

eq
α ξαy meq

15 = ψz ≡ 9
2

∑26
α=0

(
ξ2αx + ξ2αy + ξ2αz

)2
ξαzf

eq
α

meq
3 = jz ≡

∑26
α=0 f

eq
α ξαz meq

16 = ε ≡ 3
2

∑26
α=0

(
ξ2αx + ξ2αy + ξ2αz

)2
feqα

meq
4 = e ≡

∑26
α=0

(
ξ2αx + ξ2αy + ξ2αz

)
feqα meq

17 = e3 ≡ 9
2

∑26
α=0

(
ξ2αx + ξ2αy + ξ2αz

)3
feqα

meq
5 = XX ≡

∑26
α=0

(
2ξ2αx − ξ2αy − ξ2αz

)
feqα meq

18 = XXe ≡ 3
∑26

α=0

(
2ξ2αx − ξ2αy − ξ2αz

) (
ξ2αx + ξ2αy + ξ2αz

)
feqα

meq
6 =WW ≡

∑26
α=0

(
ξ2αy − ξ2αz

)
feqα meq

19 =WWe ≡ 3
∑26

α=0

(
ξ2αy − ξ2αz

) (
ξ2αx + ξ2αy + ξ2αz

)
feqα

meq
7 = XY ≡

∑26
α=0 (ξαxξαy) f

eq
α meq

20 = XYe ≡ 3
∑26

α=0 (ξαxξαy)
(
ξ2αx + ξ2αy + ξ2αz

)
feqα

meq
8 = Y Z ≡

∑26
α=0 (ξαyξαz) f

eq
α meq

21 = Y Ze ≡ 3
∑26

α=0 (ξαyξαz)
(
ξ2αx + ξ2αy + ξ2αz

)
feqα

meq
9 = ZX ≡

∑26
α=0 (ξαzξαx) f

eq
α meq

22 = ZXe ≡ 3
∑26

α=0 (ξαzξαx)
(
ξ2αx + ξ2αy + ξ2αz

)
feqα

meq
10 = φx ≡ 3

∑26
α=0

(
ξ2αx + ξ2αy + ξ2αz

)
ξαxf

eq
α meq

23 = τx ≡
∑26

α=0 ξαx
(
ξ2αy − ξ2αz

)
feqα

meq
11 = φy ≡ 3

∑26
α=0

(
ξ2αx + ξ2αy + ξ2αz

)
ξαyf

eq
α meq

24 = τy ≡
∑26

α=0 ξαy
(
ξ2αz − ξ2αx

)
feqα

meq
12 = φz ≡ 3

∑26
α=0

(
ξ2αx + ξ2αy + ξ2αz

)
ξαzf

eq
α meq

25 = τz ≡
∑26

α=0 ξαz
(
ξ2αx − ξ2αy

)
feqα

meq
26 = XY Z ≡

∑26
α=0 (ξαxξαyξαz) f

eq
α

ρ: density, jx, jy, jz : momentum, e : kinetic energy, XX,WW ,XY ,Y Z,ZX

: second-order tensors, φx, φy, φz : energy flux, ψx, ψy, ψz : square of the

energy flux, ε : square of the energy, e3 : cube of the energy, XXe,WWe

: product of XX and WW by the energy, XYe, Y Ze, ZXe : extra-diagonal

second-order moments of energy, τx, τy, τz : third-order pseudo vector, XY Z

: third-order totally antisymmetric tensor.
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Table 3: 27× 27 transformation matrix.

M =



1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 1 0 -1 0 0 0 1 -1 -1 1 1 0 -1 0 1 0 -1 0 1 -1 -1 1 1 -1 -1 1

0 0 1 0 -1 0 0 1 1 -1 -1 0 1 0 -1 0 1 0 -1 1 1 -1 -1 1 1 -1 -1

0 0 0 0 0 1 -1 0 0 0 0 1 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1

-2 -1 -1 -1 -1 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

0 2 -1 2 -1 -1 -1 1 1 1 1 1 -2 1 -2 1 -2 1 -2 0 0 0 0 0 0 0 0

0 0 1 0 1 -1 -1 1 1 1 1 -1 0 -1 0 -1 0 -1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 -1 1 -1 0 0 0 0 0 0 0 0 1 -1 1 -1 1 -1 1 -1

0 0 0 0 0 0 0 0 0 0 0 0 1 0 -1 0 -1 0 1 1 1 -1 -1 -1 -1 1 1

0 0 0 0 0 0 0 0 0 0 0 1 0 -1 0 -1 0 1 0 1 -1 -1 1 -1 1 1 -1

0 -4 0 4 0 0 0 -1 1 1 -1 -1 0 1 0 -1 0 1 0 2 -2 -2 2 2 -2 -2 2

0 0 -4 0 4 0 0 -1 -1 1 1 0 -1 0 1 0 -1 0 1 2 2 -2 -2 2 2 -2 -2

0 0 0 0 0 -4 4 0 0 0 0 -1 -1 -1 -1 1 1 1 1 2 2 2 2 -2 -2 -2 -2

0 4 0 -4 0 0 0 -2 2 2 -2 -2 0 2 0 -2 0 2 0 1 -1 -1 1 1 -1 -1 1

0 0 4 0 -4 0 0 -2 -2 2 2 0 -2 0 2 0 -2 0 2 1 1 -1 -1 1 1 -1 -1

0 0 0 0 0 4 -4 0 0 0 0 -2 -2 -2 -2 2 2 2 2 1 1 1 1 -1 -1 -1 -1

4 0 0 0 0 0 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1 1 1 1 1

-8 4 4 4 4 4 4 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 1 1 1 1 1 1 1 1

0 -4 2 -4 2 2 2 1 1 1 1 1 -2 1 -2 1 -2 1 -2 0 0 0 0 0 0 0 0

0 0 -2 0 -2 2 2 1 1 1 1 -1 0 -1 0 -1 0 -1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 -2 2 -2 2 0 0 0 0 0 0 0 0 1 -1 1 -1 1 -1 1 -1

0 0 0 0 0 0 0 0 0 0 0 0 -2 0 2 0 2 0 -2 1 1 -1 -1 -1 -1 1 1

0 0 0 0 0 0 0 0 0 0 0 -2 0 2 0 2 0 -2 0 1 -1 -1 1 -1 1 1 -1

0 0 0 0 0 0 0 1 -1 -1 1 -1 0 1 0 -1 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 -1 -1 1 1 0 1 0 -1 0 1 0 -1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 -1 1 -1 -1 1 -1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 -1 1 -1 -1 1 -1 1
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Table 4: Rough wall characteristics and parameters.

Case hm/δ h+rms Sk hmax/δ Ns

I 0.072 7.8 -1.7 0.095 1,650

II 0.079 9.8 -0.73 0.18 1,600

III 0.094 14 0.21 0.28 1,450

Table 5: Flow characteristics of turbulence over rough walls.

Case Cf ∆U+ Reb (CDNS
f − Cmodel

f )/CDNS
f

smooth 0.0070 – 10500

I(DNS) 0.0113 3.5 7970 –

I(Model) 0.0105 2.9 8280 +7.6%

II (DNS) 0.0145 5.1 7040 –

II(Model) 0.0140 4.8 7180 -3.6%

III(DNS) 0.0201 6.8 5980 –

III(Model) 0.0201 6.8 5980 0.0%
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R., 2016. Lattice Boltzmann methods in porous media simulations: From

laminar to turbulent flow. Comput. Fluids 140, 247–259.

Finnigan, J., 2000. Turbulence in plant canopies. Ann. Rev. Fluid Mech. 32,

519–571.

Flack, K., Schultz, M., Connelly, J., 2007. Examination of a critical roughness

height for outer layer similarity. Phys. Fluids 19, 095104.

Flack, K.A., Schultz, M.P., 2010. Review of hydraulic roughness scales in

the fully rough regime. J. Fluids Engrg. 132, 041203.

Flores, O., Jimenez, J., 2006. Effect of wall-boundary disturbances on tur-

bulent channel flows. J. Fluid Mech. 566, 357–376.

Gehrke, M., Janßen, C., Rung, T., 2017. Scrutinizing lattice boltzmann

methods for direct numerical simulations of turbulent channel flows. Com-

put. Fluids 156, 247–263.

Guo, Z., Zheng, C., Shi, B., 2002. Discrete lattice effects on the forcing term

in the lattice Boltzmann method. Phys. Rev. E 65, 046308.

Hama, F.R., 1954. Boundary layer characteristics for smooth and rough

surfaces. Trans. Soc. Nav. Arch. Marine Engrs. 62, 333–358.

Hasert, M., Bernsdorf, J., Roller, S., 2011. Lattice Boltzmann simulation of

non-Darcy flow in porous media. Procedia Computer Science 4, 1048–1057.

Hatiboglu, C.U., Babadagli, T., 2008. Pore-scale studies of spontaneous

imbibition into oil-saturated porous media. Phys. Rev. E 77, 066311.

62



He, X., Luo, L.S., 1997. Lattice Boltzmann model for the incompressible

Navier-Stokes equation. J. Stat. Phys. 88, 927–944.

Ikeda, T., Durbin, P.A., 2007. Direct simulations of a rough-wall channel

flow. J. Fluid Mech. 571, 235–263.
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