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Lattice Boltzmann direct numerical simulation of turbulent open channel flows over
randomly distributed semi-spheres at Reτ = 600 is carried out to reveal the influence
of roughness parameters related to a probability density function of rough surface
elevation on turbulence by analyzing the spatial and Reynolds (double) averaged Navier–
Stokes equation. This study specifically concentrates on the influence of the root-mean-
square roughness and the skewness, and profiles of turbulence statistics are compared by
introducing an effective wall-normal distance defined as a wall-normal integrated plane-
porosity. The effective distance can completely collapse the total shear stress outside the
roughness sublayer, and thus, the similarity of the streamwise mean velocity is clearer
by introducing the effective distance. In order to examine the influence of the root-
mean-square roughness and the skewness on dynamical effects that contribute to an
increase in the skin friction coefficient, the triple-integrated double averaged Navier–
Stokes equation is analyzed. The main contributors to the skin friction coefficient are
found to be turbulence and drag force. The turbulence contribution increases with the
root-mean-square roughness/the skewness. The drag force contribution, on the other
hand, particularly increases with the root-mean-square roughness whereas an increase in
the skewness does not increase the drag force contribution because it does not necessarily
increase the surface area of the roughness elements. The contribution of the mean velocity
dispersion induced by spatial inhomogeneity of the rough surfaces substantially increases
with the root-mean-square roughness. A linear correlation is confirmed between the root-
mean-square roughness and the equivalent roughness while the equivalent roughness
monotonically increases with the skewness. A new correlation function based on the root-
mean-square roughness and the skewness is developed with the available experimental
and DNS data, and it is confirmed that the developed correlation reasonably predicts
the equivalent roughness of various types of real rough surfaces.

Key words:

1. Introduction

Most wall surfaces encountered in geophysical and engineering flows cannot be regarded
as hydraulically smooth. Vegetated and urban canopies, and natural river beds are
considered rough walls (Raupach 1994b; Finnigan 2000; Cheng & Castro 2002), and the
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wall roughness is inevitably generated in production processes owing to the imperfections
of surface finishing. Furthermore, erosion or corrosion by aging, and organic or inorganic
fouling processes make the surfaces rough, which is well known to cause a significant
rise in skin friction, especially at high Reynolds number turbulent flows (Wahl 1989;
Bons et al. 2001; Langelandsvik et al. 2008; Kirschner & Brennan 2012). This causes
a serious decrement in the performance of turbomachinery (Acharya et al. 1986; Bons
2010), and in the case of a ship’s hull roughness, substantially increases fuel consumption
(Townsin 2003; Schultz et al. 2011). It is thus crucial to estimate the rise in skin friction
in mechanical, marine, and aerospace engineering.
Wall roughness usually gives rise to significant skin friction, which increases turbulent

flows and leads to a downward shift of the mean velocity profile that is referred to as
the roughness function (Hama 1954; Schlichting et al. 1955). The pioneering work on the
skin friction coefficient in rough wall turbulence was performed by Nikuradse (1933). His
large number of measurements of a pressure drop in pipes with walls covered by sand
grains revealed that the skin friction coefficient only depended on an equivalent sand
grain roughness at a sufficiently high Reynolds number regime (fully rough). Further
extensions of this work were performed by Colebrook et al. (1939), who investigated the
skin friction coefficient for several industrial pipes. Moody (1944) consolidated those data
as a Moody chart for practical engineering applications. The Moody chart is certainly a
powerful tool for estimating pressure loss by the wall roughness as long as the equivalent
roughness for the roughness of interest is known a priori, such as that of commercial
steel pipes, glass, and concrete. However, in terms of naturally occurring roughness due
to erosion, corrosion, or fouling processes, the equivalent roughness is usually unknown.
Hence, to estimate the equivalent roughness to predict the skin friction, many studies
have dedicated their efforts to exploring a relation between equivalent roughness and
roughness topology (Schlichting et al. 1955; Dvorak 1969; Dirling 1973; Coleman et al.
1984; Sigal & Danberg 1990; Van Rij. et al. 2002).
For estimation of the equivalent roughness, Dirling (1973) proposed a roughness

parameter including a roughness density and a shape parameter. The roughness density
was represented as the ratio of the average element spacing to roughness height while
the shape parameter accounted for the frontal area and the windward wetted surface
area of a single roughness element. In order to extend the applicability of the roughness
parameter of Dirling (1973), Sigal & Danberg (1990) replaced the roughness density
with a ratio of the area of a smooth surface before adding the roughness and total
frontal area over rough surfaces. Van Rij. et al. (2002) proposed a more generalized
form by replacing the shape parameter of Dirling (1973) with a ratio of the total frontal
area to the total wetted area for all the roughness elements, and reported that the
proposed correlation could also be applicable to walls with nonuniform, three-dimensional
roughness with irregular geometry and arrangement. Furthermore, this correlation was
reported to provide a good estimation for real turbine blade roughness (Bons 2002).
Similar to the idea of Sigal & Danberg (1990), Acharya et al. (1986); Bons (2005)
introduced a parameter representing the forward-facing surface angle of the roughness
elevation, and demonstrated effectiveness of the parameter for characterizing real rough
surfaces.
Other types of correlations for the equivalent roughness based on statistical moments of

surface elevation have been explored (Musker 1980; Townsin et al. 1981; Flack & Schultz
2010; Flack et al. 2016). Musker (1980) proposed a correlation function for the equivalent
roughness for hull roughness using the standard deviation, skewness, and kurtosis of
the probability density function of the surface elevation. Flack & Schultz (2010) stated
that the standard deviation and the skewness were particularly effective parameters for
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describing a surface hydraulically, and proposed a correlation function including the
standard deviation and the skewness. Their proposed correlation function optimized
by using experimental data for a large number of irregular rough walls indicated that
positive skewness increased the equivalent roughness. However, their correlation function
was only valid for rough walls whose skewness was greater than 1.0. For application
to rough surfaces with significantly negative skewness, Flack et al. (2016) developed
a correlation for the grit blasting rough walls whose skewness ranged from -1.5 to
0.66. Their correlation function implied that negative skewness increased the equivalent
roughness, which was however in contrast to the proposition made by Flack & Schultz
(2010). They also mentioned that, to reveal what/how roughness characteristics affected
the equivalent roughness, a systematic study of the relation between the roughness
characteristics and the equivalent roughness was essentially required.

Numerical simulation, on the other hand, has been recognized as a very powerful tool
for discussing fundamental flow physics inside the roughness sublayer and to systemati-
cally investigate effects of roughness topological parameters on turbulence. Accordingly,
direct numerical simulation (DNS) or large eddy simulation (LES) for flows over spanwise
extended transverse ribs (Miyake et al. 2001; Leonardi et al. 2003; Nagano et al. 2004;
Ashrafian et al. 2004; Ikeda & Durbin 2007; Jin et al. 2015), three dimensional roughness
with regular arrangement (Bhaganagar et al. 2004; Orlandi & Leonardi 2008; Lee et al.
2011; Chatzikyriakou et al. 2015; Kuwata & Suga 2016b,c) have been performed.

Orlandi & Leonardi (2008) carried out DNS of turbulence over cubes, cylinders,
transversal wedges, and longitudinal wedges with staggered arrangement to explore a
new parameterization for turbulence over regularly distributed rough walls. They found
a proportionality between the root-mean-square of the wall-normal Reynolds stress at the
roughness peak and the roughness function. Further discussions were made by Orlandi
(2013). They stressed that the wall-normal Reynolds stress could be used to parameterize
turbulence structures, and demonstrated the possibility of a derivation of a new kind of
Moody diagram.

Fortunately, modern computer technology enables us to perform DNS of turbulence
over rough surfaces with complex geometries, including irregular/random roughness
(Napoli et al. 2008; De Marchis et al. 2010; Cardillo et al. 2013; Yuan & Piomelli 2014;
Bhaganagar & Chau 2015; Forooghi et al. 2017, 2018a). or scanned real surfaces Busse
et al. (2015, 2017); Forooghi et al. (2018b)

Napoli et al. (2008) considered two-dimensional irregular corrugated walls to discuss
the influence of surface slope on turbulence. In their study, the roughness function for
the rough surfaces with an effective slope lower than a certain threshold increased with
the effective slope. However, the dependence on the effective slope got weaker for rough
surfaces with effective slopes higher than the threshold. The dependence of turbulence on
the effective slope has been also confirmed by experiments (Schultz & Flack 2009) and
systematic DNS studies on systematically varied sinusoidal wavy wall pipes (Chan et al.
2015) and surfaces with randomly distributed semi-ellipsoid/cone roughness (Forooghi
et al. 2017). Chan et al. (2015) additionally suggested the importance of the absolute
values of the roughness height amplitude to scale the roughness function as well as
the effective slope. The systematic DNS study on the influence of the solidity, which is
comparable to the effective slope (Napoli et al. 2008; Thakkar et al. 2017), on turbulence
was conducted by MacDonald et al. (2016). Their DNS results of turbulence over three-
dimensional transitionally rough sinusoidal surfaces suggested that an increase in the
solidity increased the roughness function in the sparse regime of roughness but decreased
in the dense regime. They also analyzed the integrated mean momentum balance and
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reached a conclusion that the decrease in the roughness function in the dense regime was
due to a reduction in the Reynolds shear stress.
In terms of the statistical moments, Bhaganagar & Chau (2015) found from their DNS

results on turbulence over three-dimensional irregular rough surfaces that the skewness
and the kurtosis could be effective for characterizing the roughness function although the
spacing between the roughness elements was not sensitive to the roughness function for
irregular rough walls. The importance of the skewness has been also reported by DNS
studies on surfaces with randomly distributed semi-ellipsoid/cone roughness (Forooghi
et al. 2017) and realistic rough surfaces (Yuan & Piomelli 2014). Note that, however,
they also stressed the importance of the effective slope (Napoli et al. 2008). Indeed, Yuan
& Piomelli (2014) stated that, as the statistical moments did not contain information
regarding the rough surface slope, the statistical moments were not suitable for the wavy
roughness. Recently, Thakkar et al. (2017) performed a large number of DNS studies
for irregular real surfaces in order to relate surface characteristics to the roughness
function in the transitionally rough regime. They found that the streamwise correlation
length non-dimensionalized by the mean peak-to-valley height was significantly effective
as well as the known parameters of the solidity, skewness, and the root-mean-square
roughness. Forooghi et al. (2017) suggested using the roughness parameter to characterize
the equivalent roughness based on DNS results of systematically varied roughness at fixed
values of the root-mean-square roughness, skewness, kurtosis, and effective slope. They
suggested that the peak size distribution could independently influence the equivalent
roughness, in addition to the peak-to-valley roughness, skewness, and effective slope.
Many other important numerical/experimental studies on turbulence over the rough

wall can be found in the literature, and a great deal of effort has been made to examine
the relation between roughness topological parameters and increase in skin friction.
However, detailed mechanisms describing the increase in skin friction have not been
proposed despite the fact that roughness induces many dynamical effects, namely, velocity
dispersion, turbulence, and pressure and viscous drags. Therefore, in the present study, to
better understand mechanisms of the skin friction modification due to the change in two
important roughness parameters, i.e., the root-mean-square roughness and the skewness,
we mathematically discuss mechanisms of the skin friction modification by performing
DNS of turbulence over systematically varied irregular rough surfaces. The dynamical
effects that contribute to an increase in the skin friction coefficient are discussed by
analyzing the integrated spatial and Reynolds (double) averaged Navier–Stokes equation.
Moreover, using the recent DNS and experimental data including the present results,
the present study attempts improvement of the correlation function for the equivalent
roughness based on the statistical moments (Flack & Schultz 2010). It should be remarked
however that this study does not intend to explore a universal correlation for the
equivalent roughness because the available DNS and experimental data are not enough
to comprehensively examine the influence of the roughness parameters on the equivalent
roughness.

2. Numerical approach

Owing to the simplicity of the curved boundary wall treatment, the lattice Boltzmann
method (LBM) has achieved considerable success in complex flow simulations (e.g.,
Hatiboglu & Babadagli 2008; Suga et al. 2009; Suga & Nishio 2009; B. et al. 2010;
Parmigiani et al. 2011; Chukwudozie & Tyagi 2013). In particular, as the LBM algorithm
inherently has high spatial and temporal locality, it is ideal in massive parallel computing
using the MPI and GPUs as reported by Xipeng et al. (2013); Huang et al. (2015).
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Additionally, the nature of its low numerical dissipation and dispersion leads to success
in DNS of fundamental turbulent flows (e.g., Lammers et al. 2006; Chikatamarla et al.
2010; Bespalko et al. 2012; Suga et al. 2015; Fattahi et al. 2016; Wang et al. 2016; Gehrke
et al. 2017). The above mentioned advantages enable us to apply the LBM to various
complex turbulent flow problems such as flows around porous media (e.g., Hasert et al.
2011; Krafczyk et al. 2015; Kuwata & Suga 2015b, 2016b,c, 2017) or around rough walls
(e.g., Jin et al. 2015; Tóth & Jánosi 2015).
The lattice Boltzmann equation can be obtained by discretizing the velocity space of

the Boltzmann equation into a finite number of discrete velocities ξα{α = 0, · · · , Q− 1}.
There are several discrete velocity models for three-dimensional flow simulations such as
the D3Q15, D3Q19, and D3Q27 models. It was reported that although unphysical spu-
rious currents were sometimes visible in the D3Q15 and D3Q19 models in axisymmetric
flows, they were effectively suppressed by the D3Q27 model (White & Chong 2011; Kang
& Hassan 2013; Kuwata & Suga 2015a). Furthermore, to ensure numerical stability for
high Reynolds number flows, it is effective to apply the MRT scheme (d’Humiéres et al.
2002). Accordingly, the present study employs the D3Q27 MRT-LBM of Suga et al.
(2015). The time evolution of the distribution function of the MRT-LBM can be written
as

| f(x+ ξαδt, t+ δt)⟩− | f(x, t)⟩ = − M−1Ŝ [| m(x, t)⟩− | meq(x, t)⟩] (2.1)

where |f⟩ is |f⟩ = (f0, f1, · · · , fQ−1)
T and δt is the time step. Note that for the D3Q27

model, Q = 27. The parameters for the D3Q27 model are listed in Table 1. The matrix
M is a Q×Q matrix that linearly transforms the distribution functions to the moments
as |m⟩ = M |f⟩. The equilibrium moment meq is obtained as |meq⟩ = M |feq⟩ with

feq
α = wα

(
ρ+ ρ0

[
ξα · u
c2s

+
(ξα · u)2 − c2s|u|2

2c4s

])
, (2.2)

where u is the fluid velocity and ρ is expressed as the sum of constant and fluctuation
values: ρ = ρ0 + δρ (He & Luo 1997). The sound speed is cs/c = 1/

√
3 with c = ∆/δt

where ∆ is the lattice spacing and the values of wα are listed in Table 1. The equilibrium
moments and the transformation matrix are shown in Tables 2 and 3, respectively. The
collision matrix Ŝ is diagonal:

Ŝ ≡ diag(0, 0, 0, 0, s4, s5, s5, s7, s7, s7, s10, s10, s10, s13,

s13, s13, s16, s17, s18, s18, s20, s20, s20, s23, s23, s23, s26). (2.3)

A set of relaxation parameters presently used is

s4 = 1.54, s5 = s7, s10 = 1.5, s13 = 1.83, s16 = 1.4,

s17 = 1.61, s18 = s20 = 1.98, s23 = s26 = 1.74. (2.4)

The relaxation parameters s5 and s7 are related to the kinematic viscosity ν:

ν = c2s

(
1

s5
− 1

2

)
δt = c2s

(
1

s7
− 1

2

)
δt. (2.5)

The presently applied scheme of the D3Q27 MRT-LBM was validated in the application
to the DNS of the turbulent channel flow at Reτ = 180. The turbulence statistics
including the higher-order turbulence correlations such as the budget terms of the
turbulence energy equation and the predicted energy spectra showed almost perfect
agreement with those by the spectrum method of Kim et al. (1987) (see, Suga et al.
(2015)).
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3. Flow conditions

Lattice Boltzmann DNS of turbulent open-channel flows over rough surfaces at friction
Reynolds number 600 as illustrated in Figure 1 are performed. The rough surfaces are
generated by randomly distributing semi-spheres on a reference solid plane allowing
meddling among semi-spheres. Simulated rough surfaces colored by the wall-normal
location are shown in Figure 1.

To perform simulations over various rough surfaces with practical computational cost,
we consider a turbulent open-channel flow system in which we apply the slip boundary
condition to the top boundary surface. Turbulence structure near the slip boundary is
naturally different from that in a channel center; however, the present study focuses
on turbulence modification near the wall roughness; the main conclusion of the present
study is expected to be independent of the choice of the flow type. The periodic boundary
conditions are applied to the streamwise and spanwise directions, and flows are driven by
imposing a pressure difference between the inlet and outlet boundary faces. To impose the
no-slip boundary condition to curved boundary surfaces, we apply a linear interpolated
bounce-back scheme which can satisfy second-order spatial accuracy. The computational
domain size Lx ×Ly ×Lz is set to 6.0δ(x)× δ(y)× 3.0δ(z). The domain size is validated
by comparing the skin friction coefficient with that obtained in the simulation with the
larger domain of 9.0δ(x)× δ(y)× 4.5δ(z). We confirm that the relative difference in the
skin friction coefficient is within 0.3%. Moreover, to check validity of the computational
domain size, we compute the two-point spatial correlation function of the streamwise
velocity fluctuations just above the roughness peak, and we confirm that the convergence
magnitude values of the streamwise and spanwise correlation functions are within 0.02.
Therefore, the present computational domain is expected to be sufficient for precisely
reproducing turbulent flows near the rough surfaces.

The regular grid domain of 2015(x) × 116(y) × 1007(z) is allocated near the rough
surface of y/δ < 0.35 while the twice coarser grid domain of 1008(x)× 112(y)× 504(z) is
allocated to the other region of y/δ > 0.35 with an imbalance-correction grid refinement
method of Kuwata & Suga (2016a). The grid resolution near the rough surfaces is 1.9 wall
units, which is comparable to that in other lattice Boltzmann DNS studies (Lammers
et al. 2006; Kuwata & Suga 2016b,c; Gehrke et al. 2017; Kuwata & Suga 2017). At least
30(x) × 30(y) × 30(x) grid points are used to resolve each semi sphere. To validate the
grid resolution, a grid independence test is performed by comparing the skin friction
coefficient with that obtained by the simulation with a 1.5 times denser mesh, and we
confirm that the difference is within 0.04%.

The friction Reynolds number is based on the averaged friction velocity uτ and the
effective channel height δe defined as

δe =

∫ δ

0

φdy, (3.1)

where φ stands for the x− z plane-porosity defined as the ratio of the x− z plane area S
and the x− z plane area occupied by the fluid phase Sf : φ = Sf/S. The plane-porosity
is thus a function of the wall-normal coordinate, and varies from 0 (no fluid phase in a
certain x − z plane) to 1 (no solid phase in a certain x − z plane). Note that an origin
of wall-normal coordinate: y = 0 is set on the reference solid plane as shown in Figure
1. The averaged friction velocity is computed by the balance between the pressure drop
∆P and the averaged wall shear stress on the rough surface: τw = ρu2

τ as

Syz∆P = LxLzτw, (3.2)
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where Syz is the effective cross-sectional area expressed as Syz = Lzδe. Thus, uτ is given
as

uτ =

(
∆P

ρ

δe
Lx

)0.5

. (3.3)

In the following, the value with the superscript “()+” indicates the value normalized by
the averaged friction velocity uτ and the kinematic viscosity ν. To obtain turbulence
statistics, the Reynolds averaging is performed over time for 70δe/uτ after the flows have
reached fully developed states.

4. Rough walls

The rough surfaces considered in the present study are generated by randomly dis-
tributing a uniform size of semi-spheres on a reference solid plane allowing meddling
among semi-spheres. By changing the number of the semi-spheres N and their diameter
D, statistical moments of the roughness elevation such as the mean height: hm, the
standard deviation: hrms, the skewness: Sk and the kurtosis: Ku defined as

hm =
1

LxLz

∫ ∫
hdxdz, (4.1)

h2
rms =

1

LxLz

∫ ∫
(h− hm)

2
dxdz, (4.2)

Sk =
1

h3
rmsLxLz

∫ ∫
(h− hm)

3
dxdz, (4.3)

Ku =
1

h4
rmsLxLz

∫ ∫
(h− hm)

4
dxdz, (4.4)

are varied. Here, h represents rough surface elevation from the bottom solid wall. The
importance of these parameters has been reported Musker (1980); Flack & Schultz (2010);
Flack et al. (2016); Forooghi et al. (2017). On the other hand, as reported by many studies
(Napoli et al. 2008; Schultz & Flack 2009; De Marchis et al. 2010; Yuan & Piomelli
2014; Chan et al. 2015; Forooghi et al. 2017), one of the other important topological
characteristics that we should take account of is the slope of the roughness corrugation,
which is quantified as the effective slope (ES) and is defined as follows:

ES =
1

Lx

∫ ∣∣∣∣∂h∂x
∣∣∣∣ dx. (4.5)

Through systematic investigations for surfaces with three-dimensional pyramid rough-
ness, Schultz & Flack (2009) reported that the roughness function linearly increased
with the ES in wavy surfaces where the ES value was lower than the threshold value of
ES = 0.35. However, as a focus on the present study is the influence of two parameters,
namely hrms and Sk, on turbulence, the rough surfaces in the present study are confined
to the surfaces whose effective slope dependence is expected to be small (ES > 0.35).
To systematically examine the influence of hrms and Sk, we generate the first series

of the rough surfaces of cases R1∼R3 whose h+
rms are varied (20 ∼ 45) keeping Sk as

a constant value of Sk ≈ 0.0. The second series of the rough surfaces are cases S1∼S5
whose Sk are varied in a wide range from negative to positive values (-1.0 ∼ 1.0) keeping
h+
rms as a constant value of h+

rms ≈ 21. (Note that the rough wall cases R1 and S3 are
identical.) Snapshots of the generated rough surfaces colored by the wall-normal location
are depicted in Figure 1, and the rough surface height profiles are depicted in Figure
2. The controlling parameters for the roughness generation (D,N) and the resultant
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roughness parameters (hm, Sk,Ku,ES) are listed in Table 4. The first series of the
rough surfaces (from R1 to R3) are generated by increasing the semi-sphere diameter
while decreasing the number of spheres. the second series of the rough surfaces (from S1
to S5) are generated by decreasing the number of spheres with keeping the semi-sphere
diameter almost constant. As a result, as Sk increases, the semi-spheres are more sparsely
distributed and the roughness peaks become more prominent as observed in Figure 2. In
rough wall surface samples, the ES is larger than a threshold value of 0.35 except for the
case in S5 (ES = 0.31). However, it is apparent that small value of ES in case S5 is due
to the considerable sparseness of the roughness elements, and the rough surfaces of case
S5 is not categorized as a wavy surface whose wall friction is rather dominated by the
viscous drag (Napoli et al. 2008). Therefore, the dependence of the ES is expected to
be small in the present samples. It should be cautioned that there are many alternative
ways to systematically vary rough surface topology. However, since a goal of this study
is not to explore the universal roughness correlation, this study does not consider other
types of roughness structures as can be seen in the systematic DNS study by Forooghi
et al. (2017)

5. Results and Discussion

In order to statistically discuss flows near rough surfaces where mean flows become
spatially inhomogeneous in a x−z plane owing to the presence of the roughness elements,
we consider the spatial and Reynolds (double) averaged equations. For the spatial
averaging, a x − z plane is considered as a representative plane. The definition of the
superficial plane-averaging of fluid velocity u(x, y, z) is introduced as

⟨u⟩(y) = 1

S

∫ ∫
u(x, y, z)dxdz. (5.1)

The fluid velocity u(x, y, z) can be decomposed into a contribution from an intrinsic (fluid

phase) averaged value: ⟨u⟩f (y):

⟨u⟩f (y) = 1

Sf

∫ ∫
u(x, y, z)dxdz, (5.2)

and deviation from the intrinsic averaged value: ũ(x, y, z) as

u(x, y, z) = ⟨u⟩f (y) + ũ(x, y, z). (5.3)

A relation exists between the superficial and intrinsic plane-averaged values as: ⟨u⟩ =

φ⟨u⟩f . As flow variables also fluctuate in time, the Reynolds decomposition is considered
as

u(x, y, z) = u(x, y, z) + u′(x, y, z), (5.4)

where u(x, y, z) is the Reynolds averaged value and u′(x, y, z) denotes its fluctuation.

5.1. Effective wall-normal distance

We first discuss determination of an effective distance from a rough surface before
we discuss statistical results because defining the wall-normal distance from a rough
surface is not straightforward. Conventionally, in order to define the distance from a rough
surface, virtual origin for the rough surface has been introduced not only for discussing
flow physics (Perry & Li 1990) but also modelling rough wall turbulence (Durbin et al.
2001; Aupoix & Spalart 2003). When the roughness height is negligibly lower than the
boundary layer thickness, as in the case of experiments in a boundary layer (Schultz
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& Flack 2009; Flack et al. 2016), determination of the effective wall-normal distance is
not an essential issue. However, it is quite important for the current DNS study because
the mean roughness height occupies a relatively large fraction of the boundary layer
thickness: hm/δ = 0.022 ∼ 0.078.

One of the most reasonable and comprehensible approaches is shifting the origin to
fit a mean velocity profile to a log-low profile (Perry & Li 1990). This idea has been
also used in flows over porous walls or a vegetated and urban canopies, and the shifted
thickness is usually referred as a displacement thickness (Raupach 1994a). The other
approach suggested by Chan et al. (2015) is to collapse a total shear stress profile over
the rough surface regardless of the presence of the wall roughness, and they reported
that the virtual origin coincided with the position of the mean roughness height.

The present study attempts to analytically derive the effective distance starting from
the double averaged Navier–stokes equation for incompressible flows (Whitaker 1986):

∂⟨ui⟩f

∂t
+ ⟨uj⟩f

∂⟨ui⟩f

∂xj
= −1

ρ

∂⟨p⟩f

∂xi
+

1

φ

∂

∂xj

(
ν
∂φ⟨ui⟩f

∂xj

)
− 1

φ

∂

∂xj

φ⟨ũiũj⟩
f︸ ︷︷ ︸

Tij

+φ⟨u′
iu

′
j⟩

f︸ ︷︷ ︸
Rij


− ν

φ

∂φ

∂xj

∂⟨ui⟩f

∂xj︸ ︷︷ ︸
gφ
i

−
(

1

ρSf

∫
L

p̃nidℓ−
ν

Sf

∫
L

nk
∂ũi

∂xk
dℓ

)
︸ ︷︷ ︸

fi

,

(5.5)

where L represents the obstacle perimeter within an averaging x− z plane, ℓ represents
the circumference length of solid obstacles, and nk is its unit normal vector pointing
outward from the fluid to solid phase. The second moments Tij and Rij are the plane-
dispersive covariance and the plane-averaged Reynolds stress, respectively. The dispersive
covariance arises because of the spatial inhomogeneity of the mean velocity field. The
inhomogeneous correction term gφi arises because of the spatial inhomogeneity of the
plane-porosity φ. In the present study, the x − z plane is considered as the averaging
plane, and thus φ varies with respect to y below the roughness peaks. Hence, gφi has
non-zero contribution to the momentum transfer below the roughness peak (φ < 1).
The plane-averaged drag force fi consists of two integration terms. The first term is
expressed as the line integration of the pressure dispersion representing the form drag
while the second term consists of the dispersive mean velocity gradient representing the
viscous drag. By integrating equation(5.5) over the wall-normal direction from 0 to y, the
shear stress balance for the present flow system can be derived after some manipulation
(Kuwata & Kawaguchi 2017):

−1

ρ

∂⟨p⟩f

∂x
δe

(
1− 1

δe

∫ y

0

φdy

)
= ν

∂φ⟨u⟩f

∂y
−R12 − T12 −

(∫ y

0

φgφxdy −
∫ δ

0

φgφxdy

)

−

(∫ y

0

φfxdy −
∫ δ

0

φfxdy

)
. (5.6)

With the help of a definition of the friction velocity equation(3.3), the total stress on the
left-hand-side of equation(5.6) can be further written as

−1

ρ

∂⟨p⟩f

∂x
δe (1− ye/δe) = u2

τ (1− ye/δe) , (5.7)
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where the effective wall-normal distance from the rough surface is introduced as

ye =

∫ y

0

φdy. (5.8)

An expression for the total shear stress of equation(5.7) suggests that the total shear
stress is expressed as a function of the normalized effective distance ye/δe. To get more
insight from equation(5.7), we transform the effective channel height δe as

δe =

∫ δ

0

φdy = δ −
∫ yp

0

(1− φ) dy = δ − 1

LxLz

∫ yp

0

LxLz (1− φ) dy︸ ︷︷ ︸
V s

, (5.9)

where yp is the wall-normal location of the roughness peak. It is interesting to note that
an integration term in the second term on the right-hand-side can be interpreted as the
total volume of the solid phase (roughness elements) V s. The total volume V s can be
also written as an integral of the roughness height h with infinitesimal area dxdz as

V s =

∫ ∫
hdxdz. (5.10)

By inserting the definition of the mean roughness height hm of equation(4.1) into
equation(5.10), a simple relation can be derived from Eqs.(5.9) and (5.10):

δe = δ − hm. (5.11)

Additionally, since the plane-porosity is unity outside the rough wall y > yp, the effective
distance outside the rough wall becomes

ye =

∫ y

0

φdy = y −
∫ yp

0

(1− φ)dy = y − hm (5.12)

It is readily understood from Eqs.(5.9) and (5.12) that the normalized effective distance
ye/δe outside the rough wall coincides with the expression proposed by Chan et al. (2015)
who considered the virtual origin as hm to define the wall-normal distance: (y−hm)/(δ−
hm). However, it should be noted that, unlike the expression of Chan et al. (2015), as the
origin exactly indicates the points where there is no fluid phase, φ = 0, the streamwise
mean velocity strictly goes to zero at the origin ye/δe = 0 in the present expression.
To demonstrate the advantage of employing the effective distance ye, profiles of the

sum of the plane-averaged Reynolds shear stress −R+
12 and the plane-dispersive shear

stress −T +
12 for all the samples are compared between the scalings of y/δ, ye/δe and

y∗ = (y−hm)/(δ−hm) in Figure 3. For comparison, DNS results in smooth wall turbulent
channel flow at friction Reynolds number of 650 (Iwamoto et al. 2002) are also plotted.

Also, Figure 4 depicts profiles of U+ by defect form with reference to U+
e . Here, U+ = ⟨u⟩f

and U+
e denote U+ at the top slip boundary at y = δ. It is clear that the profiles of

−(R+
12 + T +

12 ) as a function of ye/δe > 0.15 and y∗ > 0.15 in Figure 3(b) and (c) collapse
very well, whereas the profiles as a function of y/δ in Figure 3(a) do not. Jiménez (2004)
pointed out that when the roughness height h occupied a relatively large fraction of
the boundary layer thickness, δ/h > 40, turbulence in the whole region was modified
by the roughness and then the similarity of the profiles outside the roughness sublayer
was not preserved. However, almost perfect similarity can be found in the mean velocity
defect with the scaling of ye/δe as shown in Figure 4(b) in the region of ye/δe > 0.15,
which substantiates that the outer layer similarity may be maintained in the present
rough surfaces with relatively high roughness height, δ/hm = 13 ∼ 45. The observation
of the similarity for the rough surfaces whose roughness height is a significant fraction
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of the boundary layer thickness is in accordance with the observations by the other
experimental study (Flack et al. 2007) and DNS studies (Chan et al. 2015; Forooghi
et al. 2018a). Moreover, the onset of the region ye/δe = 0.15 where the similarity of the
streamwise mean velocity can be clearly seen corresponds to ye/hm = 4.2. This supports
the previous finding that similarity outside a roughness sublayer extending 5h from the
wall (Raupach et al. 1991). The fact that good collapse can be observed outside the
roughness sublayer implies that hm can also be regarded as the displacement thickness,
which is usually computed to fit the mean velocity profile to the log-law profile. Although
good collapse outside the roughness sublayer can be confirmed with both scalings of ye
and y∗, a difference is obvious near the origin of the rough walls ye ≃ 0 and y∗ ≃ 0. As
mentioned above, as the origin of the effective distance is located at a position where
there is no fluid phase, φ = 0, The fluid velocity always goes to zero at ye = 0. In contrast
to that of ye, the scaling of y∗ assumes the origin to y = hm resulting in non-zero velocity
at the origin. It is noted that the perfect collapse can be confirmed among the rough wall
results in Fig.4(b) and (c) while the profile for smooth wall does not perfectly agree with
the rough wall results. This discrepancy is considered to be due to the difference in the
flow configurations. The present DNS is performed in the open-channel flow system while
the smooth wall result is obtained in the channel flow simulation, which may causes the
difference in the mean velocity profile in the core region.
To discuss profiles in the immediate vicinity of the origin, Figure 5 compares profiles

of −(R+
12 + T +

12 ) between the different scalings of y+ and y+e together with the smooth
wall result. The limiting behavior of the total shear stress toward the origin with the
scaling of y+ is not consistent, whereas a consistent trend can be found in the profiles
with y+e despite the fact that the characteristics of the rough surface geometry are
very different. This suggests that introduction of the effective distance ye enables us to
compare statistics from different rough surfaces, not only outside the roughness sublayer
but also in the immediate vicinity of the origin. This observation also suggests that use
of the effective distance is promising for modelling turbulence near the rough surfaces.
Noticeably, although the total shear stress for the rough wall is rapidly damped compared
with the smooth wall result in the region of y+e ≃ 10, the limiting behaviour of the total
shear stress toward the bottom wall (1 < y+e < 5) is found to be consistent albeit
there exists the wall-roughness. This observation suggests the overwhelming advantage
of employing the effective distance for modelling turbulence in the vicinity of a rough
wall.

5.2. Mean velocity

Figure 6 presents the x−z plane-averaged streamwise mean velocity U+ = ⟨u⟩f+ with
the logarithmic scaling of the effective wall-normal distance y+e together with the smooth
wall results. The profiles for the rough surfaces are significantly lower than the smooth
wall result, while the profiles seem to maintain the logarithmic profile away from the rough
walls of y+e > 100. The mean velocity profile near the channel center at y = δ for the
smooth wall case, however, exhibits different trend from that observed in the rough wall
results, which is primarily due to the use of the slip boundary condition to the channel
center instead of simulating the channel flow. The downward shift of the streamwise mean
velocity increases with h+

rms or Sk. This indicates rough wall skin friction increases with
increasing h+

rms or Sk. The values of the downward shifts of U+ referred to as roughness
function ∆U+ are calculated by comparing U+ at y+e ≃ 100 (ye/δe ≃ 0.167) with the
standard log low. Note that since the streamwise mean velocity defect in the region of
ye/δe > 0.15 are perfectly overlapped as discussed in Figure 4, the arbitrary choice of
y+e ∼ 100 does not affect the computed roughness function (The procedure for obtaining
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∆U+ is the same as that by Forooghi et al. (2017) ). The equivalent roughness k+s can
be uniquely determined based on the relation between ∆U+ and k+s in the fully rough
regime (Flack & Schultz 2010):

B −∆U+ +
1

κ
ln(k+s ) = 8.5. (5.13)

Here, κ and B respectively stand for von Kármán constant and log-law intercept for a
smooth wall, and the values of κ = 0.4 and B = 5.0 are chosen in the present study. The
computed roughness functions ∆U+ and k+s are listed in Table 5. The roughness function
ranges from 5.9 to 10.4, and the corresponding inner-scaled equivalent roughness ranges
from 47 to 248. The lowest value of k+s = 47 in case S1 roughly corresponds to the onset
of the fully rough regime according to an experimental report on turbulent boundary
layers over a packed sphere bed (Ligrani & Moffat 1986) that the transitionally rough
regime spanned 15 < k+s < 50. Hence, the present simulations are all expected to be in
the fully rough regime. It is confirmed from table 5 that k+s increases with increasing
h+
rms or Sk. Although the increase in h+

rms and Sk both give rise in k+s , the effects of the
h+
rms and Sk on U+ profiles near the rough surface y+e < 50 are very different. In Figure

6(a), as h+
rms increases, the blockage effect on the U+ profiles near the rough surface

y+e < 50 is more significant. In contrast, Figure 6(b) confirms that the blockage effect is
relaxed in the positively skewed rough wall of case S5, resulting in an increase in U+ in
the vicinity of the rough wall y+e < 20. These observations suggest that, although the
increase in h+

rms and Sk have the same effects on ∆U+, the driving mechanism differs.

5.3. Reynolds stress and dispersive covariance

Profiles of the x− z plane-averaged Reynolds normal stresses R+
ij , which appear in the

double averaged momentum equation equation(5.5), are shown in Figure 7. The location
of the roughness peak is also indicated in the figure. In Figures 7(a), (c), and (e), as
h+
rms increases, the Reynolds stresses are damped below the roughness peak. Reduction

in the streamwise and spanwise components is pronounced in Figure 7(a) and (e) whereas
R+

22 in Figure 7(c) is insensitive to the change in the rough surface geometry, indicating
that turbulence tends to approach an isotropic state with increasing h+

rms. These trends
are consistent with the other experimental and DNS observations (Ligrani & Moffat
1986; Krogstad et al. 2005; Flack et al. 2007; Kuwata & Suga 2016b,c; Forooghi et al.
2018a). In Figure 7(a), (c), and (e), R+

11 and R+
33 take the maximum peak just above the

roughness peak, and then they are damped below the roughness peak. The significance
of the damping effect depends on h+

rms, but the limiting behavior of R+
ij toward the

most bottom wall is found to be similar. In Figure 7(b), (d), and (f), as Sk increases,
damping of R+

11 and R+
33 just below the roughness peak is more significant whereas the

modification of R+
22 is marginal, which is the same trend in cases R1 ∼ R3. However, in

contrast to cases R1 ∼ R3, the trends of R+
11 and R+

33 in the vicinity of the bottom wall
ye/δe < 0.025 are different. As Sk increases, R+

11 and R+
33 gain strength in the vicinity of

the bottom wall. This is beacause the number of semi-spheres decreases with increasing
Sk as seen in Figure 1, and the blockage effect is consequently relaxed. Another important
observation in the figure is that although the behavior of the Reynolds normal stresses
near the rough surfaces of ye/δe < 0.1 strongly depends on the roughness geometry,
almost perfect collapse with the smooth wall result can be found in R+

22 and R+
33 at

ye/δe = 0.15; however, a slight discrepancy can be still found in R+
11 at the same location.

Unlike in flows over a smooth wall, mean velocity becomes spatially inhomogeneous
near rough surfaces owing to the presence of roughness elements. Hence, mean velocity
dispersion defined as ũ(x, y, z) = u(x, y, z) − ⟨u⟩f (y) exists, and the plane-dispersive
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covariance, Tij = ⟨ũiũj⟩, accordingly arises in the double averaged momentum equation
as well as Rij in equation(5.5). To compare the intensities of the mean velocity dispersion
and the velocity fluctuation, the plane-dispersion kinetic energy, K+ = T +

kk/2, and the
turbulent kinetic energy, k+ = R+

kk/2, are compared in Figure 8. For comparison, the
turbulent kinetic energy profile for the smooth wall case is also plotted. The figure
confirms that K+ in Figure 8(c) and (d) takes the maximum peak below the roughness
peak and it steeply decreases as it separates from the wall while k+ in Figure 8(a) and
(b) takes the maximum peak above the roughness peak. The maximum peak value of K+

is found to be far larger than that of k+ in all cases, indicating that the magnitude of the
mean velocity dispersion overwhelms the velocity fluctuation below the roughness peak.
Although K+ steeply decreases outside the rough surfaces, it still has a meaningful value
even away from the rough wall at ye/δe = 0.15. This implies that a spatial inhomogeneity
of the mean velocity exists far away from the rough wall. The maximum peak of K+

slightly increases as h+
rms increases in Figure 8(c), whereas the consistent trend between

the maximum peak of K+ and Sk cannot be confirmed in Figure 8(d). The pronounced
peak of K+ can be seen in the positively skewed rough surface case of S5, which may be
due to an increase in the streamwise mean velocity in the vicinity of the rough surface
in Figure 6.

To investigate the influence of the mean velocity dispersion on the momentum transfer,
Figure 9 shows the contributions by the plane-averaged Reynolds shear stress −R+

12 and
the plane-dispersive covariance −T +

12 in the double averaged momentum equation (5.5).
The plane-dispersive covariance −T +

12 in Figure 9(c) and (d) takes the maximum peak
just above the roughness peak, which is similar to the trend for the plane-dispersion
kinetic energy K+ in Figure 8. However, the maximum peak value of −T +

12 is found to
be far smaller than that of −R+

12 despite the fact that the peak value of K+ overwhelms
k+ in Figure 8. The same observation was reported in DNS studies (Busse et al. 2015;
Kuwata & Kawaguchi 2018). Busse et al. (2015) reported that the wall-normal velocity
dispersion was about one-order smaller than the streamwise velocity dispersion, and
the plane-dispersive shear stress accordingly showed a smaller value compared with the
Reynolds shear stress. In Figure 9(a) and (c), the plane-dispersive shear stress in cases R2
and R3 has an appreciable value away from the rough surface of ye/δe = 0.15, whereas
−R+

12 in cases R2 and R3 shows a lower value in that region compared with its value
in the smooth wall case. However, it should be recalled that the sum of the two shear
stresses, −(R+

12 + T +
12 ),collapses irrespective of the rough geometry as seen in Figure 3.

The collapse of −(R+
12 + T +

12 ) indicates the collapse of the viscous shear stress, which
results in the collapse of the streamwise mean velocity defect. Therefore, it can be said
that the spatial inhomogeneity of the mean velocity distribution does not alter the plane-
averaged streamwise mean velocity profile but alters the plane-averaged Reynolds shear
stress profile.

For a better understanding of the influence of the mean velocity dispersion on the
Reynolds stress, production terms for R+

ij are discussed. In the double averaged system,
two production terms, namely the mean shear production P s

ij and the mean dispersion-

related production P d
ij ,

P s
ij = −Rik

∂⟨uj⟩f

∂xk
−Rjk

∂⟨ui⟩f

∂xk
, (5.14)

P d
ij = −φ

⟨(
ũ′
j ũ

′
k + ⟨u′

k⟩
f
ũ′
j + ũ′

k⟨u′
j⟩

f
) ∂ũi

∂xk

⟩f
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−φ

⟨(
ũ′
iũ

′
k + ⟨u′

k⟩
f
ũ′
i + ũ′

k⟨u′
i⟩

f
) ∂ũj

∂xk

⟩f

, (5.15)

can be defined (Kuwata & Suga 2016c). The production term of P s
ij is the turbulence

generation due to the mean shear of the plane-averaged mean velocity, and the compo-
nents of P s

11 and P s
22 remain in the present flow system because ⟨u⟩f/∂y exists. On the

other hand, the production of P d
ij termed as the mean dispersion-related production is

the production term due to the dispersive mean velocity gradients, and all components
P d
11, P

d
22, P

d
33 and P d

12 have possibility to appear near the rough surfaces. It should be
mentioned that P d

ij also appears in the transport equation of Tij with an opposite sign

(Kuwata & Suga 2016c), and thus P d
ij is interpreted as a energy transfer term between

Tij and Rij . The contributions of those productions (P s
ij and P d

ij) normalized by uτ and
ν in case R3, in which the mean velocity dispersion intensity is the most significant as
shown in Figure 8, are compared in Figure 10. The productions due to the mean shear
P s
11 and P s

12 are found to be the dominant contributors to the generation of R11 and R22.
In terms of the production terms for R11 and R22, the sign of the mean dispersion-related
production P d

ij is the opposite sign of P s
ij near the roughness peak 0.075 < ye/δe < 0.13.

This indicates that P d
ij acts as a sink term forRij near the roughness peak. The magnitude

of the peak values of P d+
11 and P d+

12 near the roughness peak reach 44% of P s+
11 and 50%

of P s+
12 , respectively. Although the terms P d

11 and P d
12 substantially reduce R11 and R22

near the roughness peak region of 0.075 < ye/δe < 0.13, it is observed that they work
as a source in the other region. In contrast to P d

11 and P d
12, the other components P d

22

and P d
33 do not work as sink terms, but their contributions are found to be small. The

significance of P d
11 and P d

12 partly explain the noticeable reduction in the streamwise
Reynolds stress and the Reynolds shear stress near the roughness peak as observed in
Figure 7. Furthermore, this also explains the discrepancies in R+

11 and R+
12 even away

from the rough wall of ye/δe = 0.15 in figures 7 and 9 because the significance of P d
11

and P d
12, which are generated due to the dispersive mean velocity gradients, strongly

depends on the roughness topology. Additionally, considering that P d
12 appears in the

transport equation of T12 with an opposite sign, it can be said that a reduction in R12

leads to the generation of T12. This may also explain the observation that the sum of
−(R+

12 + T +
12 ) collapses in all cases irrespective of the significance of T +

12 as shown in
Figures 3 and 9. However, to give a complete answer, full budget term analysis for Tij
and Rij is essentially required.

5.4. Drag force and inhomogeneous correction terms

The plane-averaged Reynolds shear stress and the plane-dispersive covariance are
damped as approaching the bottom wall at ye/δe = 0, while the inhomogeneous correction
contribution (ICC) and the drag force contribution (DFC) in equation (5.5) defined as

ICC = −

(∫ y

0

φgφxdy −
∫ δ

0

φgφxdy

)
,

DFC = −

(∫ y

0

φfxdy −
∫ δ

0

φfxdy

)
, (5.16)

are generated below the roughness peak instead. To investigate the contribution of ICC
and DFC defined in equation(5.16), the terms (DFC and ICC) are normalized by uτ (
Figure 11). The drag force term DFC in Figure 11(a) and (b) increases toward the most
bottom wall of ye/δe = 0 and it reaches almost unity because the other stress terms
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become negligibly small at the bottom wall. However, in case S5, as the viscous stress
slightly exists at the bottom wall (it is not shown here), DFC shows a lower value at
ye/δe = 0 compared with those in the other cases. In contrast to DFC, the contribution
of ICC in Figure 11(c) and (d) is negligibly smaller compared with DFC. As h+

rms

or Sk increases, the location of the roughness peak scaled with the effective distance
moves away from the most bottom wall, and then the influence of DFC and ICC extend
away from the most bottom wall. The term ICC at the most bottom wall is found to
consistently decrease with Sk or h+

rms.

5.5. Skin friction coefficient

This subsection discusses the contribution of the stress terms in equation(5.6) to the
skin friction coefficient Cf defined as Cf = τw/(2ρU

2
b ). Here, the bulk mean velocity is

computed with the mass flow rate Q divided by the effective cross-sectional area Syz

as Ub = Q/Syz. Applying further double integration over the wall-normal direction to
equation(5.6) with normalization of δ and 2Ub, the FIK identity (Fukagata et al. 2002)
for the double averaged system can be derived as

Cf =
δe
δC ′

4

Reb︸ ︷︷ ︸
laminar

+
8

C ′

∫ 1

0

(1− y) (−R12) dy︸ ︷︷ ︸
turbulence

+
8

C ′

∫ 1

0

(1− y) (−T12) dy︸ ︷︷ ︸
dispersion

+
8

C ′

∫ 1

0

(
y − 1

2
y2
)(

φfx

)
dy︸ ︷︷ ︸

drag

+
8

C ′

∫ 1

0

(
y − 1

2
y2
)
(φgφx) dy︸ ︷︷ ︸

inhomogeneous correction

,

(5.17)

where Reb is the bulk mean Reynolds number, and constant C ′ is expressed as

C ′ =
δ

δe

∫ 1

0

(
y − 1

2
y2
)
φdy. (5.18)

In addition to the laminar and turbulence contributions, the dispersion, drag, and
inhomogeneous correction contribution terms appear as contributors to Cf owing to the
presence of a rough surface. (see appendix A for the detailed derivation of equation(5.17).
) As well as the turbulence contribution, the dispersion contribution is expressed as an
integration of the weighted plane-dispersive covariance: (1 − y)T12, which suggests that
T12 near the bottom wall contributes more to the skin friction coefficient. Unlike R12 and
T12, the weighting function for fx and gφx : (y− 1

2y
2) increases with the distance from the

most bottom wall, suggesting that fx and gφx away from the most bottom wall contributes
more to the skin friction coefficient. Additionally, unlike the FIK identity for the turbulent
channel or pipe flows as discussed by Fukagata et al. (2002), the constant C ′ appears in
the denominator of each contribution. Hence, all contributions are consistently affected
depending on the value of C ′. When we consider the smooth channel flow (i.e., φ = 1 for
the entire region and δe = δ), C ′ takes 1/3 and equation(5.17) consequently reduces to the
FIK identity for the fully-developed turbulent channel flow. In the presently tested rough
surfaces, however, variation in C ′ is not significant; C ′ vary in the range from 0.34(case
S5) to 0.35(case R3). Hence, the value of C ′ is not a key parameter that determines Cf

in the presently tested cases.
The contribution terms in equation(5.17) are presented in figure 13. It is revealed that

the most dominant contribution to Cf is turbulence, and the second contribution is the
drag force in all cases. The laminar contribution is almost independent of the change in
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h+
rms or Sk, and the inhomogeneous correction term is found to hardly contribute to an

increase in Cf . The dispersion contribution increases with increasing h+
rms in Figure 13(a)

and its contribution in case R3 reaches 37% of the turbulence contribution. In contrast,
as shown in Figure 13(b), the dispersion contribution is far smaller compared with the
turbulence contribution, and the dispersion contribution takes almost an constant value
irrespective of the change in Sk. In terms of the turbulence and drag force contribution
terms, the turbulence and drag force contribution terms in Figure 13(a) increase with
h+
rms. In particular, the increase in the drag contribution is found to be prominent (the

drag contribution in case R3 is 3.3 times larger than that in case R1). In contrast, it is
observed in Figure 13(b) that an increase in Sk dose not significantly affect an increase
in the drag contribution while the turbulence contribution increases with Sk. Hence, it is
understood that the impacts of h+

rms and Sk on the drag force contribution are different.
To identify the reason for these observations, Figure 12 shows the integral function for

the drag force contribution defined as follows:

Fd(y) =
8

C ′

(
y − 1

2
y2
)(

φfx

)
. (5.19)

Corresponding to an increase in the roughness peak height scaled with the effective
distance with h+

rms or Sk, the influence of Fd is extended away from the bottom wall
with h+

rms or Sk. However, it is observed that the maximum peak of Fd in Figure 12(b)
steeply decreases with increasing Sk while the maximum peak of Fd in Figure 12(b)
gradually increases with h+

rms. The primary reason for the decrease in the maximum
peak Fd with Sk is a decrease in the surface area of the roughness element. Since the
pressure and viscous drag terms are expressed as the sum of the surface integration of the
viscous stress and the pressure per a certain x− z plane as in equation(5.5), the decrease
in the surface area directly results in a decrease in the drag force. As Sk increases,
the number of semi-spheres decrease, keeping the semi-sphere diameter almost constant,
which obviously decreases the surface area, as can be seen in Figure 1 resulting in the
decrease in Fd.

5.6. Improvement of a correlation function for the equivalent roughness

This subsection concentrates on a relation between the equivalent roughness and
the statistical moments, namely h+

rms and Sk. However, it should be cautioned that
equivalent roughness is not a physical property but a flow property, and the equivalent
roughness is not necessarily guaranteed to have a relation with the roughness topological
parameters. Figure 14 shows the variation in k+s with h+

rms in case R1 ∼ R3. For
comparison, we also plot data for the rough surfaces of Sk ≃ 0 and ES > 0.35 in the fully
rough regime, namely two-dimensional irregular wavy walls (De Marchis et al. 2010)and
three-dimensional sinusoidal rough walls (Chan et al. 2015). Furthermore, shown for
linear lines with slopes of 3.0, 5.0, and 7.0. It is observed that k+s in the present data
linearly increases with h+

rms, and the factor of the proportionality is approximately 5.0.
The results in two-dimensional irregular wavy walls by De Marchis et al. (2010) are close
to the present results of cases R1 and R2 whereas the data of Chan et al. (2015) are
substantially larger than the present results. The discrepancy can be partly explained by
the difference in the roughness arrangement. The rough surfaces in this study and the
rough surfaces of De Marchis et al. (2010) are irregular while the roughness corrugations
of Chan et al. (2015) are regularly aligned with the staggered arrangement. Forooghi
et al. (2017) reported that the staggered arrangement of the roughness elements resulted
in the higher equivalent roughness compared with the randomly distributed roughness
elements. Another implication in terms of the discrepancy is the presence of more suitable
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roughness height parameters. Indeed, although the present study chooses hrms as the
roughness height parameter, there are different possible choices for the roughness height
parameter (e.g., mean peak height, peak-to-valley height, or roughness height amplitude).
However, as the data are not sufficient to explore the alternative parameter to hrms, we do
not discuss it here. (See Flack & Schultz (2010); Flack et al. (2012); Forooghi et al. (2017);
Thakkar et al. (2017) for detailed discussions on the peak-to-valley height, De Marchis
et al. (2010); Chan et al. (2015) for the roughness height amplitude). In terms of the
relation between hrms and ks, Flack & Schultz (2010) derived a correlation by fitting a
large number of experimental data, including several kinds of real rough surfaces:

ks = 4.43hrms(1 + Sk)1.37. (5.20)

The correlation suggests that the proportionality constant become 4.43 for Sk = 0,
which is found to be close to the value obtained by the present DNS. The other reports
on the relation between ks and hrms state that ks ∼ 3hrms for honed surfaces (Shockling
et al. 2006) and ks ∼ 1.6hrms for a commercial steel pipe (Langelandsvik et al. 2008),
whose proportionality constants are significantly lower than those obtained in this study.
However, it should be cautioned that those proportionality constants were not for the
rough surfaces of Sk = 0.
To see the influence of Sk on k+s , Figure 15 shows ks/hrms versus Sk. For comparison,

we also plot experimental data for pyramid roughness (Schultz & Flack 2009), and other
DNS data for randomly distributed semi-spheres/cones (Forooghi et al. 2018a), graphite
roughness (Busse et al. 2017), grit-blasted roughness (Busse et al. 2017), numerically
generated sand grain (Yuan & Piomelli 2014) and combustion chamber deposits (Forooghi
et al. 2018b) with ES > 0.35. The dashed line indicates the correlation function of
equation(5.20) by Flack & Schultz (2010), and the solid line displays the best fitted
curve:

ks/hrms = 4.0 (1 + 0.17Sk)
4
. (5.21)

Clearly, all the results suggest that k+s monotonically increases with Sk in the range
−1 < Sk < 3. This observation is in line with the correlation of Flack & Schultz (2010)
whereas it is in contrast to the findings by Flack et al. (2016) that an increase in Sk
slightly reduces ks. It should be noted that the finding by Flack et al. (2016) was however
based on the experimental data for the grit blasted surfaces with the negative skewness,
and not the implication for the generic rough surface. The correlation function by Flack
& Schultz (2010) reasonably works in the range of −0.5 < Sk < 0.5; however, the
correlation function is found to overestimate the influence of the Sk in the rough walls
with significantly positive/negative skewness Sk < −0.5, Sk > 0.5. One possible reason
for the discrepancy is the influence of the small short wavelength undulation. Besides
the numerically generated rough surfaces in Forooghi et al. (2017); Chan et al. (2015)
and the presently used samples, the real rough surfaces usually include short and long
wavelength undulations. Howell & Behrends (2006) reported in terms of measurements
on real rough surfaces that sampling interval and sampling length had significant effects
on roughness statistics. The rough surface samples used in the DNS (Busse et al. 2017;
Forooghi et al. 2018b) were filtered to remove uninfluential undulation by the low-pass
filter. Additionally, it should be noted the DNS can completely reflect the scanned rough
surface geometry even though they contain some measurement uncertainty originating
from insufficiency of resolution, sampling interval, or sampling length. On the other
hand, as the samples used in Flack & Schultz (2010) were not filtered, the influence
of the short wavelength undulation or the measurement condition may emerge. Another
possible reason for the underprediction of ks/hrms for the rough surfaces with Sk < −0.5
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by Flack & Schultz (2010) is that there were only two samples in the samples used in
Flack & Schultz (2010) which had negative skewness, and both were relatively mild (Sk =
−0.455,−0.19). The values ks/hrms are inconsistent even though Sk are the same, which
is clearly seen in the results by Schultz & Flack (2009); Forooghi et al. (2018b). This points
out the fact that ks/hrms is not simply expressed as a function of Sk, but other roughness
parameters should be included to take account of the other roughness characteristics such
the slope or the solidity. Indeed, Forooghi et al. (2017) demonstrated that peak height
distribution independently affected the equivalent roughness as well as the skewness and
the effective slope, and Thakkar et al. (2017) presented the significant impact of the
streamwise correlation length on the equivalent roughness. Since the presently used data
are limited, it is unknown whether the correlation function of Eq.(5.21) successfully works
for another type of rough surface or for rough surfaces with significantly higher equivalent
roughness. Further examination is essentially required to derive a universal correlation
for the equivalent roughness. Another important finding from Figures 14 and 15 is that
even though the presently considered rough surfaces have inconsistent kurtosis as seen in
table 4, the consistent trend of k+s can be clearly confirmed in the present DNS results.
This observation supports the statement by Flack & Schultz (2010) that the kurtosis
of the surface elevation distribution does not have strong correlation with k+s compared
with h+

rms and Sk.

6. Concluding remarks

The influence of roughness parameters related to a probability density function of rough
surface elevation on turbulence is studied by means of direct numerical simulation (DNS)
of turbulent open channel flows over randomly distributed semi-spheres. A series of DNS
studies is carried out at friction Reynolds number 600 by the D3Q27 multiple-relaxation-
time lattice Boltzmann method. The present study specifically focuses on two roughness
parameters, namely, the root-mean-square roughness and the skewness. Starting from
the spatial and Reynolds averaged Navier–Stokes equation, an effective wall-normal
distance from a rough surface is defined as a wall-normal integration of plan-porosity, and
flow physics near systematically varied rough surfaces is discussed. The contribution of
dynamical effects to the skin friction coefficient is discussed by analyzing the integrated
double averaged Navier–Stokes equation. Finally, we attempt to improve a correlation
function for the equivalent roughness based on the statistical moments and validate in
various types of rough surfaces
It is found that similarity of the streamwise mean velocity is clearly observed by

introducing the effective distance. Furthermore, the Reynolds shear stress profile in the
vicinity of the origin of the rough surface can be reasonably scaled by the inner-scaled
effective distance irrespective of the rough surface geometry. Near the roughness peak, the
streamwise velocity fluctuation is significantly suppressed by increasing the root-mean-
square roughness/the skewness, whereas the wall-normal velocity fluctuation is found to
be insensitive to the change in the roughness geometry. Below the roughness peak, mean
velocity dispersion arises owing to spatial inhomogeneity of the mean velocity, and the
magnitude of the mean velocity dispersion is more significant than that of the turbulent
velocity fluctuation. It is found that the mean velocity dispersion near the roughness
peak reduces the streamwise Reynolds stress and the Reynolds shear stress by generating
negative turbulence production. By analyzing the integrated Navier–Stokes equation, we
can conclude that the main contributors to the skin friction coefficient are turbulence
and the drag force. The turbulence contribution increases with the root-mean-square
roughness/the skewness. The drag force contribution, on the other hand, significantly
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increases with the root-mean-square roughness, whereas an increase in the skewness does
not increase the drag force contribution because the increase in the skewness does not
necessarily increase the surface area of the roughness elements.
A relation between topological parameters and the equivalent roughness is examined

to better understand the precise estimation of the equivalent roughness. The examination
confirms a linear correlation between the root-mean-square roughness and the equivalent
roughness while the equivalent roughness monotonically increases with the skewness.
The new correlation function, which is expressed as a function of the root-mean-square
roughness and the skewness, is developed with the available experimental and DNS data,
and it is confirmed that the correlation reasonably predicts the equivalent roughness of
various types of real rough surfaces. However, it is also confirmed that the equivalent
roughness cannot simply be expressed as a function of the root-mean-square roughness
and the skewness. This implies that other roughness parameters should be took into
account for a universal correlation, and further examination is essentially required.
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Appendix A

The integrated streamwise plane and Reynolds averaged momentum equation can be
written as

−1

ρ

∂⟨p⟩f

∂x

(∫ δ

0

φdy −
∫ y

0

φdy

)
= ν

∂φ⟨u⟩f

∂y
−R12 − T12

−

(∫ y

0

φgφxdy −
∫ δ

0

φgφxdy
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−

(∫ y

0
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∫ δ

0

φfxdy

)
. (A.1)

Using the definition of skin friction coefficient, which is defined as

Cf =
τw

0.5ρU2
b

= −∂⟨p⟩f

∂x

δe
0.5ρU2

b

, (A.2)

the integrated momentum equation normalized by the channel half width δ and twice
the bulk mean velocity 2Ub can be written as

Cf

8
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δe

(∫ 1

0

φdy −
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0
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=
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Reb
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)
−
(∫ y

0

φfxdy −
∫ 1

0

φfxdy

)
. (A.3)
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Here, all variables without superscripts denote normalized values. By applying further
double integration to equation(A.3), the resultant form can be expressed as

Cf

8

δ

δe
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0

∫ y

0
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)
dydy.

(A.4)

The multiple integration of the plane-porosity can be transformed by applying the partial
integration as
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As in equation(A.5), the multiple integration of the plane-averaged drag force can be
also transformed to∫ 1

0

∫ y
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φfxdy −
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2
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)
φfxdy. (A.6)

The inhomogeneous contribution can be also transformed in the same way. By substi-
tuting multiple integration terms for single integration expressions, the triple integrated
streamwise plane and Reynolds averaged moment equation becomes

Cf
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Defining C ′ as

C ′ =
δ

δe

∫ 1

0

(
y − 1

2
y2
)
φdy, (A.8)

equation(5.17) can be now derived as
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Figure 1. Computational geometry and simulated rough surfaces.
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Figure 2. Rough surface height profiles in cases S1, S3(R1), S5, and R3.
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Figure 3. Sum of the plane-averaged Reynolds shear stress and the plane-dispersive shear stress
profiles with different scalings: (a) profiles with y/δ, (b) profiles with ye/δe, and (c) profiles with
y∗ = (y−hm)/(δ−hm). The dashed thin line indicates the smooth wall result by Iwamoto et al.
(2002).

smooth             S1              S2            S3(R1)             S4             S5             R2             R3

+
+
-
U

U
e

+
+
-
U

U
e

+
+
-
U

U
e

+
+
-
U

U
e

+
+
-
U

U
e

(a)                                                                                        (b)                                                                                            (c)     

Figure 4. Streamwise mean velocity profiles with defect form: (a) profiles with y/δ, (b) profiles
with ye/δe, and (c) profiles with y∗ = (y − hm)/(δ − hm). The dashed thin line indicates the
smooth wall result by Iwamoto et al. (2002).
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Figure 5. Sum of the plane-averaged Reynolds shear stress and the plane-dispersive shear
stress profiles in vicinity of the origin: (a) profiles with y+, (b) profiles with y+e .
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Figure 6. Plane-averaged streamwise mean velocity profiles with semi-logarithmic wall-scaling
y+e : (a) cases R1∼R3; (b) cases S1∼S5. The dashed thin line indicates the smooth wall result
by Iwamoto et al. (2002).
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Figure 7. Plane-averaged Reynolds normal stress profiles: (a) streamwise component in cases
R1∼R3; (b) streamwise component in cases S1∼S5, (c) wall-normal component in cases R1∼R3,
(d) wall-normal component in cases S1∼S5, (e) spanwise component in cases R1∼R3, and (f)
spanwise component in cases S1∼S5. The location of the roughness peak is also indicated as the
thin lines. The dashed thin line indicates the smooth wall result by Iwamoto et al. (2002).
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Figure 8. Plane-averaged turbulent kinetic energy and plane-dispersion kinetic energy profiles:
(a) turbulent kinetic energy in cases R1∼R3, (b) turbulent kinetic energy in cases S1∼S5, (c)
plane-dispersion kinetic energy in cases R1∼R3, and (d) plane-dispersion kinetic energy in cases
S1∼S5. The location of the roughness peak is also indicated as the thin lines. The dashed thin
line indicates the smooth wall result by Iwamoto et al. (2002).
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of the roughness peak is also indicated as the thin lines. The dashed thin line indicates the
smooth wall result by Iwamoto et al. (2002).
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Figure 13. Contribution terms to the skin friction coefficient in equation (5.17): (a) cases
R1∼R3, (b) cases S1∼S5.
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Figure 14. Variation of k+s with h+
rms; data of De Marchis et al. (2010) are for two-dimensional

irregular wavy walls and data of Chan et al. (2015) are three-dimensional sinusoidal rough walls.



DNS of turbulence over systematic varied irregular rough surfaces 29

(       )
(       )

(       )
(        )
(        )

Figure 15. Variation ks/hrms against Sk; data of Schultz & Flack (2009) are for pyramid
roughness, data of Yuan & Piomelli (2014)are for numerically generated sand grain, data of
Busse et al. (2017) are for graphite roughness and grit-blasted roughness, data of Forooghi et al.
(2018a) are for randomly distributed semi-spheres/cones, data of Forooghi et al. (2018b) are for
combustion chamber deposits, the dashed line indicates the correlation of equation(5.20) (Flack
& Schultz 2010), and the solid line indicates the fitted curve of equation(5.21).
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Table 1. Parameters of the D3Q27 discrete velocity model.

Model cs/c ξα/c wα

D3Q27 1/
√
3 (0, 0, 0) 8/27(α = 0)

(±1, 0, 0), (0,±1, 0), (0, 0,±1) 2/27(α = 1, · · · , 6)
(±1,±1, 0), (±1, 0,±1), (0,±1,±1) 1/54(α = 7, · · · , 18)

(±1,±1,±1) 1/216(α = 19, · · · , 26)
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Table 2. Equilibrium moments.
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ρ: density, jx, jy, jz : momentum, e : kinetic energy, XX,WW ,XY ,Y Z,ZX : second-
order tensors, φx, φy, φz : flux of the energy, ψx, ψy, ψz : flux of the square of the
energy, ε : square of the energy, e3 : cube of the energy, XXe,WWe : product of
XX and WW by the energy, XYe, Y Ze, ZXe : extra-diagonal second-order moments of the
energy, τx, τy, τz : third-order pseudo vector, XY Z : third-order totally antisymmetric tensor.
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Table 3. 27× 27 transformation matrix.

M =



1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 0 -1 0 0 0 1 -1 -1 1 1 0 -1 0 1 0 -1 0 1 -1 -1 1 1 -1 -1 1 0
0 1 0 -1 0 0 1 1 -1 -1 0 1 0 -1 0 1 0 -1 1 1 -1 -1 1 1 -1 -1 0
0 0 0 0 1 -1 0 0 0 0 1 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 0
-1 -1 -1 -1 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 -2
2 -1 2 -1 -1 -1 1 1 1 1 1 -2 1 -2 1 -2 1 -2 0 0 0 0 0 0 0 0 0
0 1 0 1 -1 -1 1 1 1 1 -1 0 -1 0 -1 0 -1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 -1 1 -1 0 0 0 0 0 0 0 0 1 -1 1 -1 1 -1 1 -1 0
0 0 0 0 0 0 0 0 0 0 0 1 0 -1 0 -1 0 1 1 1 -1 -1 -1 -1 1 1 0
0 0 0 0 0 0 0 0 0 0 1 0 -1 0 -1 0 1 0 1 -1 -1 1 -1 1 1 -1 0
-4 0 4 0 0 0 -1 1 1 -1 -1 0 1 0 -1 0 1 0 2 -2 -2 2 2 -2 -2 2 0
0 -4 0 4 0 0 -1 -1 1 1 0 -1 0 1 0 -1 0 1 2 2 -2 -2 2 2 -2 -2 0
0 0 0 0 -4 4 0 0 0 0 -1 -1 -1 -1 1 1 1 1 2 2 2 2 -2 -2 -2 -2 0
4 0 -4 0 0 0 -2 2 2 -2 -2 0 2 0 -2 0 2 0 1 -1 -1 1 1 -1 -1 1 0
0 4 0 -4 0 0 -2 -2 2 2 0 -2 0 2 0 -2 0 2 1 1 -1 -1 1 1 -1 -1 0
0 0 0 0 4 -4 0 0 0 0 -2 -2 -2 -2 2 2 2 2 1 1 1 1 -1 -1 -1 -1 0
0 0 0 0 0 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1 1 1 1 1 4
4 4 4 4 4 4 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 1 1 1 1 1 1 1 1 -8
-4 2 -4 2 2 2 1 1 1 1 1 -2 1 -2 1 -2 1 -2 0 0 0 0 0 0 0 0 0
0 -2 0 -2 2 2 1 1 1 1 -1 0 -1 0 -1 0 -1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 -2 2 -2 2 0 0 0 0 0 0 0 0 1 -1 1 -1 1 -1 1 -1 0
0 0 0 0 0 0 0 0 0 0 0 -2 0 2 0 2 0 -2 1 1 -1 -1 -1 -1 1 1 0
0 0 0 0 0 0 0 0 0 0 -2 0 2 0 2 0 -2 0 1 -1 -1 1 -1 1 1 -1 0
0 0 0 0 0 0 1 -1 -1 1 -1 0 1 0 -1 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 -1 -1 1 1 0 1 0 -1 0 1 0 -1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 -1 1 -1 -1 1 -1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 -1 1 -1 -1 1 -1 1 0



Table 4. Characteristics parameters of the rough walls; D is the semi-sphere diameter, N is
the number of semi-spheres, hm, hrms, Sk and Ku are the statistical moments in equations4.1
∼ 4.4, ES is the effective slope.

case D/δ N hm/δ h+
rms Sk Ku ES

R1 0.086 750 0.038 20.5 0.01 3.28 0.47
R2 0.13 318 0.063 33.3 -0.01 3.25 0.48
R3 0.18 179 0.083 44.5 0.00 3.27 0.49

S1 0.10 1096 0.064 20.8 -1.00 26.8 0.52
S2 0.087 892 0.063 20.5 -0.32 6.15 0.52
S3 0.086 750 0.040 20.5 0.01 3.28 0.47
S4 0.086 576 0.029 20.3 0.30 2.22 0.44
S5 0.094 285 0.019 20.1 1.00 2.44 0.31
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