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Abstract — To predict rough wall turbulence without resolving rough geometry, spatial and Reynolds (double)
averaged equations are modelled based on the two-component limit (TCL) second moment closure. The additional
terms, namely, double averaged drag force and inhomogeneous correction terms arise due to the double averaging
process. The double averaged drag force is modelled as the Darcy-Forchheimer form, and binomial expansion
is applied to model the effects of fluctuating velocity on the double averaged drag force. The influence of the
drag force on a pressure-strain term is modelled with TCL constraints. The developed model is calibrated in
turbulence over randomly distributed semi-spheres and spray paint surfaces. The modifications of the skin friction
in transitionally and fully rough regimes is confirmed to be successfully predicted by the developed model.

1. Introduction
Most wall surfaces encountered in geophysical and engineering flows cannot be regarded as
hydraulically smooth. In engineering context, the wall roughness is inevitably occurred in pro-
duction processes due to imperfections of surface finishing. Furthermore, erosion or corrosion
by aging, and fouling processes makes the surface rough, e.g., aerodynamic flows over airfoils
with icing, ship hull roughness due to organic fouling or turbine blade eroded by impinging
combustor air. Since the wall-roughness causes degradation of the machine performance due
to an increase in skin friction, accurate and reliable prediction of rough wall turbulence are of
great important issues in many engineering design.

The most primitive approach to account for roughness shape was including the blockage and
drag force effects of roughness elements to the mixing length turbulence model [1, 2]. However,
since the model validation was limited to flows over rib-type roughness, the model had a narrow
range of applicability for the other types of rough surfaces. For more elaborate approach, an
extension for the two-layer k − ε model was made by [3]. They modified the eddy viscosity
vicinity of the rough wall by introducing hydrodynamic roughness length scale and changed
the boundary conditions for the turbulence energy at the rough wall. Modification of the wall-
boundary conditions for k and ω depending on the roughness Reynolds number was also made
by [4]. In a similar approach, [5] extended the Spalart-Allmaras model assuming a non-zero-
eddy viscosity at the wall and changing the wall-normal distance to mimic roughness effect.
Comparison with experiments for sand papers, reproduced aged turbine blades and staggered
array of spheres confirmed general agreement of the rough wall skin friction. Although many
other important attempts on modelling the rough wall turbulence can be found in the literature,
most of the approaches were merely modified the wall-boundary condition based on the empir-
ical correlation of [6]. Furthermore, since all models have established by using the equivalent
roughness, those are incapable of applying turbulent flows over the naturally occurring rough
walls whose equivalent roughness is usually unknown.
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Another idea to model flows within complex structures such as porous media is employing
the spatial averaged equations [7, 8]. Recently, to demonstrate effectiveness of this approach
for rough wall turbulence, the present authors simulated turbulence over rough walls by solving
spatial averaged equation in the rough wall region, and we confirmed that an influence of rough
surfaces on turbulence could be reasonably captured by solving the spatial averaged equation
with a simple drag force model [9]. Accordingly, the present study extends this approach by
further applying the Reynolds averaging in addition to the spatial averaging, and attempts to
macroscopically model turbulence within rough walls without using the equivalent roughness
and the empirical correlation of [6]

2. Double-averaged Navier-Stokes equations
In order to statistically treat flows around roughness elements where the mean flows become
spatially inhomogeneous due to the presence of the roughness elements, the spatial averaging
is considered. Following [9], the representative elementary plane (REP) which is parallel to
the rough wall is introduced for the spatial averaging. The definition of the superficial plane
averaging of ϕ is introduced as

⟨ϕ⟩ =
1

AS

∫
S
ϕdS, (1)

where S and AS denote a representative elementary plane of the spatial averaging and plane
area of S, respectively. A variable ϕ can be decomposed into contribution from an intrinsic
(fluid phase) averaged value: ⟨ϕ⟩f :

⟨ϕ⟩f =
1

ASf

∫
S
ϕdS, (2)

and deviation from the intrinsic averaged value: ϕ̃ as

ϕ = ⟨ϕ⟩f + ϕ̃, (3)

where ASf
denotes plane area of fluid phase contained within S, and a relation exists between

the superficial and intrinsic plane-averaged values as: ⟨ϕ⟩ = φ⟨ϕ⟩f . Here, the plane porosity φ
is defined as φ = AS/ASf

To model turbulent flows over rough walls, the Reynolds decompo-
sition is also introduced a as

ϕ = ϕ+ ϕ′, (4)

where ϕ is the Reynolds averaged value and ϕ′ denotes its fluctuation.
Applying the plane and Reynolds (double) averaging to the momentum equation for incom-

pressible flows, the double averaged momentum equation can be written as

∂⟨ui⟩f

∂t
+

∂⟨uj⟩f⟨ui⟩f

∂xj

= −1

ρ

∂⟨p⟩f

∂xi

+
1

φ

∂

∂xj

(
ν
∂φ⟨ui⟩f

∂xj

)

− 1

φ

∂

∂xj

φ

⟨u′
iu

′
j⟩

f︸ ︷︷ ︸
RA

ij

+ ⟨ũiũj⟩
f︸ ︷︷ ︸

Tij

− ν

φ

∂φ

∂xj

∂⟨ui⟩f

∂xj︸ ︷︷ ︸
gφi

−f i (5)

where, RA
ij and Tij are the plane-averaged Reynolds stress and the plane-dispersive covariance,

respectively. Here, ũ is the velocity dispersion defined as: ũ = u − ⟨u⟩f . The plane averaged
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Reynolds stress is obtained by solving their transport equations while Tij is neglected in the
present model because its contribution is marginal compared with the other stress terms [9].
The inhomogeneous correction term gφi arise due to the spatial inhomogeneity of φ. The term
fi is the plane-averaged drag force term, which consists of the pressure and viscous drag terms,
and it is modelled as in [9]:

fi = νCD
1 ⟨u⟩fi + CD

2 ⟨ui⟩f
√
⟨uk⟩f⟨uk⟩f , (6)

where CD
1 and CD

2 are the dimensional model functions which are expressed as the function of
the plane-hydraulic diameter Dm and φ as

CD
1 =

2C1

π

(1− φ)

φ2D2
m

, CD
2 =

2C2

π

(1− φ)

φ2.5Dm

, (7)

where the model constants C1 = 71 and C2 = 0.79 are presently used.
When we apply the Reynolds averaging to Eq.(6), the second term on the right-hand-side of

Eq.(6) can be written as

⟨ui⟩f
√
(⟨uk⟩f )2 =

(
⟨ūi⟩f + ⟨u′

i⟩
f
){(

⟨ūk⟩f
)2

+ 2⟨ūk⟩f⟨u′
k⟩

f +
(
⟨u′

k⟩
f
)2}1/2

, (8)

Since the Reynolds averaged form could not be strictly expanded, then, [10] assumed that(
⟨ūk⟩f

)2
>>

(
⟨u′

k⟩
f
)2

and applied the binomial series expansion to
{(

⟨ūk⟩f
)2

+ 2⟨ūk⟩f⟨u′
k⟩

f
}1/2

as

{(
⟨ūk⟩f

)2
+ 2⟨ūk⟩f⟨u′

k⟩
f
}1/2

=
{(

⟨ūk⟩f
)2}1/2

1 + ⟨ūl⟩f⟨ul⟩f
′(

⟨ūm⟩f
)2

−1

2

⟨ūl⟩f⟨u′
l⟩
f(

⟨ūm⟩f
)2


2

+
1

2

⟨ūl⟩f⟨u′
l⟩
f(

⟨ūm⟩f
)2


3

. . .

 . (9)

Since the double averaged drag force f i can be

f i = νCD
1 ⟨ui⟩f + CD

2

⟨ui⟩f
√
⟨uk⟩f⟨uk⟩f +

⟨uk⟩f√
⟨ul⟩f⟨ul⟩f

RA
ik

 , (10)

2.1. Modelling the Reynolds stress

The plane-averaged Reynolds stress RA
ij = ⟨u′

iu
′
j⟩

f
can be decomposed into two parts:

RA
ij = ⟨u′

iu
′
j⟩

f
= ⟨u′

i⟩
f⟨u′

i⟩
f︸ ︷︷ ︸

Rij

+ ⟨ũ′
iũ

′
j⟩

f︸ ︷︷ ︸
rij

(11)

where Rij and rij denote the contributions by the macro-scale velocity fluctuation and the plane-
dispersive velocity fluctuation, respectively. Since Kuwata and Kawaguchi [9] reported that mo-
mentum transfer contribution by rij was far smaller than that by Rij , the present study assumes
RA

ij ≈ Rij and the transport equation of Rij is considered.
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The transport equation of Rij may be written as

∂Rij

∂t
+ ⟨uk⟩f

∂Rij

∂xk

= Dij +Πij + Pij − Fij +Gφ
ij − εij, (12)

The terms Dij , Πij , Pij , Fij , G
φ
ij and εij are the diffusion, pressure-correlation, mean shear

production, drag force, inhomogeneous correction and dissipation rate terms. The drag force
and inhomogeneous correction terms are respectively written as

Gφ
ij = − ν

φ

∂φ

∂xk

∂Rij

∂xk

, (13)

Fij = 2νCD
1 Rij +

CD
2 ⟨uk⟩f√

⟨um⟩f⟨um⟩f

(
2⟨uk⟩fRij + ⟨ui⟩fRjk + ⟨uj⟩fRik − cτRkl

∂Rij

∂xl

)
.

(14)

where τ is the turbulent time scale: τ = k/ε, and the model constant c = 0.22 is applied.
Here, the turbulent kinetic energy is k = Rkk/2. As presented by Craft and Launder [12], TCL
constraints are applied to model the pressure-correlation due to the drag force. The resultant
form of ϕij,3 can be written as

ϕij,3 = −
(
4

10
+

3

80
A2

)(
−Fij +

1

3
Fkkδij

)
− 1

4
aijFkk

− 1

20

(
Fim

Rmj

k
+ Fjm

Rmi

k
+ δij

Rmn

k
Fmn

)
− 1

10

(
Rmn

k

Rmj

k
Fin +

Rmn

k

Rmi

k
Fjn −

1

4
δij

Rmn

k

Rnl

k
Flk

)
+

1

16

(
Rmi

k

Rnj

k
Fmn +

Rmj

k

Rni

k
Fmn + 2

Rij

k

Rmn

k
Fmn

)
, (15)

where A2 is the second invariant of the Reynolds stress tensor: aij = (Rij − 2/3δij)/k. For
the transport equation for the isotropic part of εij , the trace of the additional terms Fkk and Gφ

kk

are added by dividing the turbulent time scale τ . For the other terms which need modelling, the
TCL second moment closure of [11] is applied.

2.2. Modelling the energy dissipation
The transport equation of ε̃(= ε− 2ν(∂

√
k/∂xk)

2) can be written as

∂ε̃

∂t
+ ⟨uk⟩f

∂ε̃

∂xk

=
∂

∂xk

{
(νδkl + 0.18Rklτ)

∂ε̃

∂xl

}
+ cε1

Pkk +Gφ
kk

2τ
− cε2

ε̃

τ

− ε− ε̃

τ
+ Pε3 + Fε, (16)

where cε1 = 1.44, cε2 = 1.92 and the influence of the inhomogeneous correction term Gkk is
added by dividing the turbulence time scale. The drag force term is modelled as

Fε = −2νcfε1C
D
1 ε̃− cfε2

CD
2 ⟨uk⟩f√

⟨um⟩f⟨um⟩f

(
2⟨uk⟩f ε̃+

⟨uj⟩fRjk

τ
− cRkl

∂k

∂xl

)
, (17)

where the model coefficients are given as cfε1 = 2.3exp (−(Rt/25)
2) , cfε2 = 0.6. Here, Rt

denotes the turbulent Reynolds number: Rt = k2/(νε).
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Figure 1: Computational geometry of rough-walled open channel flows: (a)DNS (Direct nu-
merical simulation), (b) PANS (plane-averaged Navier-Stokes), (c) DANS (Double averaged
Navier-Stokes).
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Figure 2: Randomly distributed semi-spheres: (a) KS18, (b) KS35, (c) KS70.

3. Model calibration
The developed model is evaluated in turbulent open-channel flows over two types of rough
walls, namely, randomly distributed semi-spheres and spray paint rough surfaces. The predicted
results are compared with the direct numerical simulation results of turbulence over randomly
distributed semi-spheres in transitional rough regime [9] while the comparison with the experi-
mental data for turbulence over paint rough surfaces in fully-rough regime [13] is made.

3.1. Randomly distributed semi-spheres
The first model calibration is performed in turbulence over the randomly distributed semi-
spheres as shown in Fig.1. The predicted results solving the DANS (double-averaged Navier-
Stokes) are compared with the results of DNS and PANS (plane-averaged Navier-Stokes) sim-
ulation which macroscopically simulates three-dimensional time dependent flows in the rough
wall region solving the plane-averaged Navier-Stokes in the rough wall region [9]. Simulations
are performed at the constant friction Reynolds number of Reτ = 300. The non-uniform meshes
presently used have 120 nodes across the channel which is confirmed to be fine enough for grid
independent solutions by comparing with the results of twice dense meshes. For the rough walls,
the randomly distributed semi-spheres with different equivalent roughness of k+

s = 18, 35 and
70 which are respectively referred as KS18, KS35 and KS70 as shown in Fig.2 are tested. Note
that the values of k+

s = 18, 35 and 70 indicates that flows are all in the transitionally rough
regimes.

Figure 3 compares the superficial plane-averaged streamwise mean velocity profiles. The
steramwise mean velocity near the rough wall is significantly damped due to the drag force and
the mean velocity away from the rough wall shifts downward with increasing the equivalent
roughness k+

s which is due to an increase in skin friction coefficient Cf . The predicted mean
velocity by the present model (DANS) agree well with the DNS and PANS results. Also, the



6 Turbulence, Heat and Mass Transfer 9

P P

(a)KS18                                                          (b)KS35                                                         (c)KS70

P

Figure 3: Comparison of superficial plane-averaged streamwise mean velocity profiles: (a)
KS18, (b) KS35, (c) KS70.
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Figure 4: Comparison of superficial plane-averaged Reynolds normal stress profiles : (a) KS18,
(b) KS35, (c) KS70.

skin friction coefficient predicted by the present model also show good agreement with the
DNS results. Difference in Cf between the DANS and DNS is 10% at most (case KS18). This
confirms that the developed model can successfully reproduce the increase in skin friction.

The superficial plane-averaged Reynolds normal stress profiles are compared in Figure 4.
Location of the maximum roughness height is also shown. The Reynolds stresses are damped
due to the drag force effect inside the rough wall region. As k+

s increases, the damping effect
tends to be more relaxed and turbulence can penetrate deeply inside the rough wall. The max-
imum peak of the streamwise component is significantly reduced with increasing k+

s while the
other components do not change so much. Those trends are reasonably captured by the devel-
oped model. However, it is confirmed in Fig.4(c) that the present model underpredict turbulence
deeply inside the rough wall of y/δ < 0.1.

3.2. Spray marine paint rough surfaces
The second calibration is performed in turbulence over spray marine paint rough surfaces (case
P1, P2, P3 and P4) as shown in Fig.5. The rough walls have almost the same root-mean-
square height hrms but significant difference in the skewness Sk. The positive and negative
Sk indicates the peak-dominated and valley-dominated rough surfaces, respectively. The rough
wall of case P1 has sharp peaks while the rough wall of case P2 has rounded peaks which are
both characterized by the positive Sk. The rough wall in case P3, in contrast, has the intermittent
deep valley which is characterized by the negative Sk. Simulations are performed at the bulk
mean Reynolds number of Reb = 105 ∼ 106 which corresponds to the fully-rough regimes
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Figure 5: Paint rough surfaces.

because the equivalent roughness varies in the range of k+
s = 200 ∼ 6, 000. For the comparison

with the experimental data, the half channel height is set to 5.0mm. The non-uniform meshes
presently used have 120 nodes across the channel which is confirmed to be fine enough for grid
independent solutions by comparing with the results of twice dense meshes.

Figure 6 presents the roughness function ∆U+ versus k+
s . The roughness function is the

downward shift of the streamwise mean velocity scaled with the friction velocity:

U+ =
1

κ
ln(y+) +B −∆U+, (18)

where κ and B respectively denote the Kármán constant and the log-law intercept for a smooth
wall. The equivalent roughness ks/δ, which takes a unique value depending on the rough sur-
face topology, is determined by fitting ∆U+ in case of Reb = 105 to the following relation ship
[6] in the fully rough regime:

B −∆U+ 1

κ
ln(k+

s ) = 8.5. (19)

It is confirmed in Fig.6 that all data reasonably collapse well to the correlation of Eq.(19) in-
dicating that the Reynolds number dependence of the roughness function in the fully rough
regime is successfully predicted by the present model.

To evaluate the predicted skin friction coefficient, Fig.7 compares the skin friction increasing
ratio: Cf/Cf0 at Rec = 25, 000 with the experimental data of [13]. Here, Rec is the Reynolds
number based on the mean velocity at the slip wall and Cf0 denotes the skin friction coefficient
in a smooth wall case. Note that since the experimental values were obtained in the Taylor -
Couette flow whose inner wall was made of the rough wall, the quantitative comparison may not
be meaningless; however the trend of Cf/Cf0 can be worthwhile to compare. The experimental
data suggests that Cf/Cf0 in case P1 takes a maximum value and Cf/Cf0 in cases P2, P3 and
P4 take almost the same values despite the significant difference of the rough surface structures
as shown in Fig.5. It is confirmed that the predicted Cf/Cf0 shows the same trends which
suggests that the present model can reasonably predict increase in skin friction at real rough
surfaces.
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4. Conclusions
To predict rough wall turbulence without resolving rough geometry, spatial and Reynolds (dou-
ble) averaged equations are modelled based on the two-component limit (TCL) second moment
closure. The double averaging operation to the Naiver-Stokes equation produces the additional
terms, namely, double-averaged drag force and inhomogeneous correction terms. The double-
averaged drag force is modelled as the Darcy-Forchheimer form with the model functions using
the plane porosity and plane hydraulic diameter. Binomial expansion is applied to model the
effects of fluctuating velocity on the double-averaged drag force. The influence of the drag
force on a pressure-strain term is modelled with Two-Component Limit constraints. The de-
veloped model is calibrated in turbulence over randomly distributed semi-spheres and spray
paint surfaces. Comparison with the DNS results in turbulence over randomly distributed semi-
spheres confirms that the modifications of the skin friction coefficient is well predicted and the
Reynolds stress anisotropy near the rough wall is reasonably reproduced. Through validation
in turbulence over spray paint surfaces, the present model is found to successfully predict the
Reynolds number dependence of the roughness function in the fully rough regime. Furthermore,
qualitative agreement of the skin friction increasing with the experimental data is confirmed.
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