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ABSTRACT

To predict conjugate turbulent heat transfer inside porous media, double (volume and Reynolds) averaged
energy equations of fluid and solid phases are modelled based on the multi-scale second moment closure.
Unknown correlation such as the volume averaged turbulent heat flux, dispersion heat flux, wall-heat transfer
and tortuosity terms arise in the double averaged energy equations. The wall-heat transfer term is modelled
considering the analogy between the flow and thermal fields. For the heat fluxes, several heat flux models
such as eddy viscosity model, generalized gradient diffusion hypothesis (GGDH) and higher order GGDH
model are assessed. The developed model is evaluated by comparing the large eddy simulation results of fully
developed conjugate heat transfer in square rod arrays, staggered cube arrays and body centred cubic matrix
foam. It is confirmed that the higher order GGDH heat flux model shows the best performance in prediction
of thermal fields, and the wall-heat transfer based on the analogy to the modelling strategy of the drag term
successfully works. It is found that the present model can reasonably predict the macroscopic temperature
profiles of solid and fluid phases.
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1. INTRODUCTION

Since porous media have large contact area per volume leading to high heat and mass transfer performance, they
are widely utilized for heat exchangers, catalytic reactors and fluidized beds [3, 7]. Accordingly, simulating
heat and mass transfer inside porous media is crucial in many engineering designs.

In engineering computational fluid dynamics analyses of porous medium flows, the volume averaging theory
[13, 14] is usually applied since precisely describing the shape of each pore or grain element of porous me-
dia requires despairingly huge computer costs. To analyze heat transfer in porous media, the non-equilibrium
model which solves two energy equations for fluid and solid phases have been developed since the solid and
fluid phase temperatures are not equilibrium in many occasions. Furthermore, when the flows become turbu-
lent, the Reynolds averaging should be also applied to the volume averaged equations. However, this double
(Reynolds and volume) averaging process produces many unknown correlations. To close the double averaged
momentum equation, [6, 8] modelled the volume averaged Reynolds stress by k-ε eddy viscosity model by
utilizing the simulation data for turbulence in rod bundles. However, their model neglected an influence of
velocity dispersions, and many correlations in the transport equation for k were dropped without sufficient
discussions. For more elaborate model, [5] developed a model based on the two-component-limit (TCL) sec-
ond moment closure of [1]. They confirmed the validity of their developed model for fully-developed porous
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medium flows and interface turbulence between a porous/fluid region. Furthermore, it was reported that turbu-
lence anisotropy, which was significantly important to predict turbulent heat and mass transfer, was correctly
reproduced.

As well as the double averaged momentum equation, many unknown terms arises in double averaging energy
equations, namely, turbulent and dispersion heat fluxes, wall-heat transfer and turtuosity terms. For the volume
averaged turbulent heat flux, [9] modelled it by the eddy diffusivity concept, while they modelled the dispersion
heat flux by the gradient diffusion model with a function of the Peclet number. [4] modelled the volume
averaged turbulent heat flux by the generalized gradient diffusion hypotheses (GGDH) coupled with the multi-
scale second moment closure of [5]. [8] discussed effects of the dispersion heat flux through the turbulent
heat transfer simulations in rod bundles with the k-ε turbulence model. To obtain the correlation for the wall
heat transfer which exchanges energy between the fluid and solid phases, [10] analyzed square rod array flows
using the k-ε turbulence model. More recently, development of the computer technology has made it possible
to perform large eddy simulation (LES) of turbulent porous medium flows. LESs of conjugate turbulent heat
transfer inside square rod arrays, staggered cube arrays and body-centered-cube foam were carried out by
[11] to evaluate modelling strategy of the turbulent and dispersion heat fluxes. Their priori test suggested
that the higher-order extension of the GGDH model could improve prediction performance for dispersion and
turbulence heat fluxes.

In this research, utilizing the latest LES data of [11], the dispersion and turbulent heat fluxes, and the wall-heat
transfer terms are modelled coupled with the multi-scale second moment closure of [5]. The proposed model
equations are validated in the conjugate thermal fields of flows through square rod arrays, staggered cube arrays
and body centred cubic foam.

2. TURBULENCE MODELLING

2.1 Double-averaged transport equations

Following [13, 14], the volume averaging process in the porous media is applied to the Navier-Stokes and
energy equations. The volume averaged value ⟨ϕ⟩ is called the superficial averaged value while ⟨ϕ⟩f is the
intrinsic averaged value of a variable ϕ. Between them, the relation: ⟨ϕ⟩ = φ⟨ϕ⟩f , exists with the porosity of
the porous medium φ. When the Reynolds averaging is performed to the volume averaged momentum equation
for incompressible flows in porous media, by defining the dispersion: ϕ̃ = ϕ − ⟨ϕ⟩f , the Reynolds averaged
value: ϕ and the fluctuation: ϕ′ = ϕ− ϕ, the resultant form can be written as
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where ui, p, ρ, and ν are the fluid velocity, pressure, density and kinematic viscosity, respectively. The drag
term fi consists of the viscous drag and the form drag. The term gφi arises due to the inhomogeneity of the

porosity. The unknown covariant terms: ⟨ũiũk⟩f and ⟨u′iu′k⟩
f
, are respectively the dispersive covariance (dis-

persion stress) Tik and the volume averaged Reynolds stress RA
ik. The volume averaged Reynolds stress can be

decomposed into the macro-scale Reynolds stress Rij and the micro-scale Reynolds stress rij :

RA
ij = ⟨u′i⟩f ⟨u′j⟩f︸ ︷︷ ︸
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+ ⟨ũ′iũ′j⟩f︸ ︷︷ ︸
rij

. (2)
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Since the volume averaged Reynolds stress is the sum of the macro-scale and micro-scale Reynolds stresses,
it is called the total Reynolds stress hereafter. The presently used multi-scale second moment closure, which
is based on the two-component limit (TCL) second moment closured developed by [1], solves the transport
equation of RA

ij while its micro-scale part rij and the dispersive covariance Tik are respectively modelled by
the two-equation eddy viscosity model and the algebraic expressions. See [5] for detailed model formulations
and validation in fully-developed porous medium flows.

Energy of the solid and fluid phases is not always in equilibrium. Hence, the two-energy equation model
solving the energy equations of two phases individually needs to be considered. By applying the volume and
Reynolds averaging to the energy equations for fluid and solid phases, the double averaged energy equations
can be derived as

for fluid phases:
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for solid phases:
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where ⟨Tf ⟩f and ⟨Ts⟩s denote the intrinsic averaged energy of fluid and solid phases, respectively. The sub-
and superscripts of “f” and “s” denote the fluid and solid phases, respectively. Note that ∆V , A and nj are the
local averaging volume, superficial area of the solid phase and its unit normal vector pointing outward from
the fluid to the solid phase, respectively. The fluid and solid thermal diffusivities are kf and ks. The volume

averaged turbulent heat flux Hj = ⟨u′jT ′
f ⟩

f and the dispersion heat flux (thermal dispersion) Hj = ⟨ũj T̃f ⟩
f
,

which are unknown terms, arise in Eq.(3). The surface integration terms are the tortuosity ST and the wall heat
transfer (interfacial heat transfer) SW which take account of the energy exchange between the fluid and solid
phases in Eqs.(3) and (4). Since the contribution of the tortuosity is less significant compared with the other
unknown terms such as the volume averaged turbulent heat flux, the dispersion heat flux and the wall-heat
transfer terms, the present study attempts to model HA

j , Hj and SW .

2.2 Modelling turbulence and dispersion heat fluxes

The volume averaged turbulence heat flux and the dispersion heat flux are usually modelled by the eddy viscos-
ity model (EVM) [9]. However, it is well known that the EVM fails to take account of the turbulence/dispersion
anisotropy despite the fact that turbulence/dispersion anisotropy plays significantly important role in energy
transfer. To reflect the influence of turbulence/dispersion anisotropy, the GGDH (generalized gradient diffu-
sion hypothesis) flux model of [2], which includes the stress tensor, is preferably employed in conjunction with
the Reynolds stress resolving model. Following [11], sum of the volume averaged turbulent heat flux and the
dispersion heat flux can be modelled as the GGDH model:

Hi +Hi = −cθ
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⟨ε⟩f
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∂⟨Tf ⟩
f

∂xj
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K
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f

∂xj
, (5)
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where the model constants of cθ = 0.5 and c′θ = 0.08 are used, and k, ε, K and E are the volume averaged
turbulence energy: k = Rkk/2, its dissipation rate, the dispersion energy: K = Tkk/2 and its dissipation
rate, respectively. Although it was confirmed by the a priori test of [11] with their LES data that prediction
performance of the GGDH model was better than the that of the EVM, there was still difficultly to predict in
several types of porous media with wide range of porosity and further extended version of the higher-order
GGDH model (HOGGDH):

Hi +Hi = −cθ
⟨k⟩f

⟨ε⟩f
RikRkj

k

∂⟨Tf ⟩
f

∂xj
− c′θ

K
E
TikTkj
K

∂⟨Tf ⟩
f

∂xj
, (6)

could improve the prediction. Accordingly, the present study employs the HOGGDH model with the multi-
scale second moment closure.

2.3 Modelling wall-heat transfer term

Since the wall-heat transfer term exchanges energy between solid and fluid phases, precise modelling of this
effect is crucial to predict non-equilibrium thermal fields. Traditionally, the wall-heat transfer term is modelled

SWf =
αA

∆V

(
⟨Tf ⟩

f − ⟨Ts⟩
s
)
, (7)

where α is the wall heat transfer coefficient. The wall heat transfer coefficient has been estimated for the certain
field by referring to the corresponding data. Using experimental correlation for packed beds, [12] modelled the
wall heat transfer coefficient by the Reynolds number based on the Darcian velocity and the particle diameter.
For more analytical strategy, [4] developed a wall heat transfer model by analogy to the modelling strategy of
the viscous drag term. Their model included the permeability instead of the particle diameter. Through valida-
tion in laminar/turbulence heat transfer in square rod array flows, they demonstrated very good performance in
wide range of porosity and Reynolds number. The present study attempts to extend the model of [4] assuming
the similarity between the flow and thermal fields, and evaluate in the other types of porous media. The wall
heat transfer term is written as

SWf =
kfA

L∆V
Nu

(
⟨Tf ⟩

f − ⟨Ts⟩
s
)
, (8)

where Nu is the Nusselt number, L is the representative length scale for porous media. Assuming the similarity
between the flow and thermal fields, Nusselt number can be related to a friction coefficient Cf :

Nu ∼ 1

2
CfRePr1/3, (9)

where the Reynolds number Re is defined as Re = ⟨U⟩L/ν, Pr denotes the Prandtl number. The friction
coefficient for the porous media is expressed by a pressure drop ∆P as

Cf =
⟨∆P ⟩

0.5ρ⟨U⟩2
∼ L

0.5⟨U⟩2
φ

ρ

∆⟨P ⟩f

L
. (10)

In fully developed porous medium flows, the volume averaged pressure gradient is balanced with the drag force
term f . Thus, Eq. (10) becomes

Cf ∼ L

0.5⟨U⟩2
f, (11)

Substituting Eqs.(9) and (11) for Eq.(8), the wall heat transfer term can be expressed as

SWf ∼
kfAφ

⟨U⟩2∆V
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. (12)
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Fig. 1 Computational geometry: (a) microscopic LES by [11], (b)statistical thermal fields for macroscopic
computations.

When the Dracy-Forchheimer model is used for the drag force term, the wall heat transfer term can be rewritten
as

SWf ∼
kfALφ

∆V

(
1

K
+

CF ⟨U⟩
ν
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)
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)
. (13)

When the representative length L is assumed to be pore diameter, the product of the surface ares A and L
represents the volume of pores in the representative elementary volume (REV). Hence, the volume ratio may
be expressed as AL/∆V ∼ φ. Assuming that the representative length L can be the same order of

√
K, the

wall-heat transfer term can be expressed as

SWf ∼
kfφ

2

K

(
1 + CF

√
K⟨U⟩
ν

)
Pr1/3

(
⟨Tf ⟩

f − ⟨Ts⟩
s
)
. (14)

Using the tensorial expression for the permeability and the Forchheimer coefficient, the resultant form of the
wall-heat transfer model is expressed as

SWf = Cw1kfφ
2KijLij

(
1 + Cw2LijC

F
ij

ˆReK

)
Pr1/3

(
⟨Tf ⟩
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. (15)

where Kij is the inverse matrix of the permeability tensor Kij , CF
ij is the Forchheimer tensor, and Lij is

defined as Lij = ℓiℓj , ℓi = ⟨ui⟩f/
√

⟨uk⟩f ⟨uk⟩f The permeability Reynolds number ˆReK is defined as

R̂ek =
√

K∗
kk

√
⟨uk⟩f ⟨uk⟩f/ν. Here, K∗

ij = (KikLkj +KjkLki)/2. The model constants presently used are
Cw1 = 0.23 and Cw2 = 0.07.

3. APPLICATION RESULTS AND DISCUSSIONS

The calibration of the present model is performed in fully developed turbulent flows inside square rod arrays
(SRA), staggered cube arrays (SCA) and BCC foam whose schematic diagrams and their REV are illustrated in
Fig.1. For the validation, conjugate heat transfer LES data of [11] are used as reference data. The representative
length for the Reynolds number is a gap between square rods/cubes : h in cases SRA and SCA while the pore
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Table 1 Flow condition and characteristics parameters of porous media.

Case Re φ Kxx/H
2 CF,xx

SRA 3000 0.897 3.23× 10−2 0.114
0.823 1.71× 10−2 0.161

SCA 3000 0.711 5.13× 10−3 0.102
0.576 2.33× 10−3 0.139

BCC 700 0.909 8.50× 10−3 0.225
0799 2.72× 10−3 0.686
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Fig. 2 Comparison of the mean temperature profiles of the solid and fluid phase; (a) square rod array, (b) stag-
gered cube array, (c) BCC foam. The normalized temperatures ⟨Tf ⟩f∗ = (⟨Tf ⟩

f −⟨Tf ⟩
f

z/H=0)/(⟨Ts⟩
s
z/H=1 −

⟨Tf ⟩
f

z/H=1) and ⟨Ts⟩s∗ = (⟨Ts⟩
s − ⟨Ts⟩

s
z/H=0)/(⟨Ts⟩

s
z/H=1 − ⟨Tf ⟩

f

z/H=1).

diameter is used for BCC foam. In microscopic LES in [11], the periodical boundary conditions were applied
to the streamwise (x) and cross-streamwise (y) directions while constant temperatures are imposed for the
solid phase (THot, TCool) at the top (z/H = 1) and the bottom (z/H = −1) boundaries, and the adiabatic
free slip condition were imposed to the top and bottom fluid phase boundaries. The macroscopic simulation
assumes the homogeneous media. The number of computational grid nodes for the macroscopic computations
are 15(x) × 50(z) for the two-dimensional computational domain of H(x) × H(z). Periodical boundary
conditions are imposed at the streamwise direction. For the cross-streamwise boundary faces (z/H = 1), LES
data of the solid and fluid phase temperatures are imposed whereas the slip boundary condition is considered
for the flow fields as shown in Fig.1(b). Since the solid and fluid temperatures reach an equilibrium state
at z/H = 0, the bottom boundary temperature of the fluid phase is set to be the same as the solid phase
temperature and the zero-gradient conditions are applied to the velocity field. Following the LES study, the
ratio of the thermal diffusivities ks/kf = 4.4, which corresponds to the ratio of aluminium/air, is applied. The
flow conditions and characteristic parameters of the porous media needed for the macroscopic computations
are listed in Table 1. (In the present cases, the permeability and Forchheimer tensors are diagonal.)

Figure 2 shows comparisons of the mean temperature profiles between the predicted results and the LES
data. As approaching the symmetry plane at z/H = 0, thermal field goes to the equilibrium state due to the
role of the energy exchanging terms: Swf

and Sws . This trend is successfully captured by the present model,
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Fig. 3 Comparison of the volume averaged turbulent hean flux and the dispersion heat flux; (a) square rod array
of φ = 0.897, (b) staggered cube array of φ = 0.711, (c)bcc foam of φ = 0.909.
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Fig. 4 Comparison of the wall-heat transfer term; (a) present model, (b) model by [4] (c) model by [12]. The
normalized wall-heat transfer is S∗

w = SwH
2/
(
⟨T ⟩s − ⟨T ⟩f

)
/kf .

which demonstrate that the developed wall-heat transfer model can reasonably reproduce the energy exchange
between the solid and fluid phases. It should be noted that the LES data are intrinsically averaged over x − y
plane and thus show discontinuous/wavy profiles in z direction corresponding to the porous structures, which
is clearly seen in porous media with three-dimensional structures in cases SCA and BCC. However, since the
present macroscopic model solves volume averaged values in the REV, the present model cannot predict the
discontinuous/wavy distribution within the REV. Thus slight discrepancies between the LES data and predicted
results can be appeared. However, it is confirmed that overall agreement with the LES data is satisfactory in all
types of the porous media.

In order to evaluate the model in detail, Fig.3 compares sum of the dispersion heat flux Hz and the volume
averaged turbulent heat flux Hz normalized by the heat flux: qx = −kf∂T/∂y. Since the wall-normal mean
and fluctuated velocity reduce to zero at the slip wall of z/H = 1, both Hz and Hz become zero at the slip
boundary. Since the GGDH and HOGGDH models include the volume averaged Reynolds stress/dispersive
covariance tensor, the behaviour near the slip wall is successfully captured. On the other hand, the eddy viscos-
ity/diffusivity model does not include the stress tensors, and it thus fails to reproduce that behaviour near the
slip wall. It is confirmed that prediction results of the limiting behaviour near the slip walls by the HOGGDH
are obviously better than those by the GGDH model. The LES data in case SCA is significantly damped near
0.65 < z/H < 0.85 resulting from the blocking effects of the velocity fluctuation in z direction due to the
presence of the cube faces normal to z direction. However, again, since the present macroscopic model solves
volume averaged values in the REV, such behaviour cannot be predicted.

Comparisons of the volume averaged wall-heat transfer terms between the present model, the other models of
[4, 12] and the LES data are presented in Fig.4. Note that although the model of [12] requires the mean particle
diameter, it is difficult to be determined for BCC foams. Alternatively, the root mean square of the permeability√
Kxx surrogates the particle diameter. It is found that the wall-heat transfer model of [12] significantly over
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predicts the wall-heat transfer. Although prediction by the model by [4] is considerably better than that by the
model of [12], the results in case SCA are still overpredicted and the results in case BCC are underpredicted
as shown in Fig.4(a) and (b). It is confirmed that the presently developed model successfully improves the
prediction accuracy compared with the model of [4]. However, the presently developed model still underpre-
dicts in case BCC at φ = 0.909. The reason is that since the thermal field in case BCC at φ = 0.909 by the
LES reaches almost the equilibrium state at z/H = 0.7 as shown in Fig.2(c) mean that the energy exchange
dominantly works in the limited in the REV (0.7 < z/H < 1), Sw by the LES data may not represent the
volume averaged values in the REV.

4. CONCLUSIONS

To macroscopically simulate turbulent heat transfer inside porous media, unknown correlations appearing in
double (volume and Reynolds) averaged energy equations of fluid and solid phases are modelled coupled with
the multi-scale second moment closure. The wall heat transfer term is modelled considering analogy between
the flow and thermal fields while the dispersion and volume averaged turbulence heat fluxes are modelled by
the higher order GGDH model. The developed model is evaluated by comparing the large eddy simulation
results of fully developed conjugate heat transfer in square rod arrays, staggered cube arrays and body centred
cubic foam. The prediction performance of the higher order GGDH heat flux model is confirmed to be better
than that by the GGDH model, and the wall-heat transfer based on the analogy to the modelling strategy of
the drag term successfully works in several types of the porous media. Thus, the present model can reasonably
predict the macroscopic temperature profiles of solid and fluid phases.
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