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In this study, the effects of permeable porous walls on momentum and heat transfer in a 7

rectangular duct were studied by means of direct numerical simulation of the turbulent 8

conjugate heat transfer. For this purpose, airflow through a rectangular duct, partially 9

filled with a porous medium consisting of aluminum square bars, was simulated at the 10

bulk mean Reynolds number 3500, where the geometry of the duct used was identical 11

to that employed in the experimental study of Suga et al. (2020). It was found that the 12

large-scale perturbations arising from the Kelvin-Helmholtz type of instability developed 13

over the porous medium wall, and the turbulence intensity, particularly in the porous 14

wall-normal component, was enhanced significantly. The secondary flow was enhanced 15

by a factor of three compared to that in a smooth-walled square duct flow, and could 16

be characterized by a strong upward flow along the lateral walls and downward flow in 17

the symmetry plane. The convection by the secondary flow considerably contributed the 18

momentum and heat transfer in the top half of the clear flow region, whereas the enhanced 19

turbulence over the porous wall largely affected the momentum and heat transfer just 20

above the porous medium wall, as seen in case of a porous-walled channel flow. It should 21

be noted that in the porous medium region, the mean temperature at the surface of the 22

porous medium is non-uniform, with the solid and fluid phase temperatures reaching 23

the equilibrium state. This could be correctly reproduced only with the conjugate heat 24

transfer. It was found that the mean velocity dispersion as well as the turbulent velocity 25

fluctuation contributed significantly to the energy transfer below the porous wall, which 26

demonstrated the importance of the dispersion heat flux for the heat transfer modeling 27

for the porous medium flows. Furthermore, it was observed that the secondary flow 28

penetrated the porous medium region resulting in the large-scale mean flow currents, 29

which enhanced heat transfer inside the porous medium region. 30

Key words: 31

1. Introduction 32

Turbulent flows over permeable porous walls are frequently encountered in a variety of 33

environmental, geophysical, biological, and engineering applications. Familiar examples 34

include turbulent flows over vegetation and urban canopies, natural riverbeds, and 35

sediment beds. Moreover, because the porous media have large contact area per volume, 36

enabling high heat and mass transfer, they are widely used in various engineering 37

† Email address for correspondence: kuwata@me.osakafu-u.ac.jp
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applications such as the use of carbon paper for a gas diffusion layer in proton exchange 1

membrane fuel cells, heat exchanger, and chemical reactor. Hence, considerable effort 2

has been devoted to understanding the turbulent flow physics over the permeable porous 3

wall. One of the most important effects of the porous medium on turbulence is the 4

wall permeability effect, which significantly enhances turbulence by relaxation of the 5

wall-blocking effects; and it leads to an increase in momentum exchange across the 6

porous/fluid interface (Zagni & Smith 1976; Kong & Schetz 1982; Manes et al. 2009; 7

Suga et al. 2010; Manes et al. 2011; Kuwata & Suga 2016a). The key parameter that 8

quantifies the wall-permeability of the porous wall is the permeability tensor, which is 9

defined in the convection theory for porous medium flow proposed by Darcy (1856). He 10

assumed proportionality between the flow rate and pressure difference given as under: 11

Ui = −Kij

µ

(
∂P

∂xj
− ρgi

)
, (1.1)

where Kij , Ui, P , gi, µ, and ρ are the permeability tensor, Darcian velocity, fluid- 12

phase averaged pressure, gravitational acceleration, dynamic viscosity, and density of 13

the fluid, respectively. The systematic studies on the influence of the permeability of 14

isotropic porous media on turbulence (K = K11 = K22 = K33) by Breugem et al. 15

(2006); Suga et al. (2010, 2011); Manes et al. (2011); Kuwata & Suga (2016a) reached 16

the same conclusion that the turbulence enhancement over a porous medium wall occurs 17

with increasing wall permeability. However, it should be noted that an excessively high 18

permeable porous wall does not lead to further turbulence enhancement as expected 19

(Kuwata & Suga 2019), and the anisotropic permeability sometimes causes a drag 20

reduction, because the porous wall leads to a slippage velocity at the porous/fluid 21

interface (Rosti et al. 2018). Moreover, special attention is paid to turbulence structure 22

over the porous medium wall, because of the large-scale structure present due to the 23

Kelvin-Helmholtz (K–H) type of instability, which originates from an inflectional point 24

of the streamwise mean velocity profile. Finnigan (2000); Raupach et al. (1996) reported 25

that a turbulent flow over a highly porous wall behaves as a plane mixing layer flow 26

rather than a boundary layer flow due to the presence of the K–H type coherent waves. 27

Therefore, the turbulent structure over the porous medium is dominated by the relatively 28

large-scale structures (Jimenez et al. 2001; Breugem et al. 2006; White & Nepf 2007; 29

Kuwata & Suga 2016a, 2017; Suga et al. 2018), and pressure fluctuations associated with 30

the K–H waves, which significantly affect the turbulent transport mechanisms via the 31

pressure diffusion and redistribution processes (Kuwata & Suga 2016b). 32

Many extensive studies have been pursued to get insights on the turbulent flow physics 33

over the porous wall. Most of those studies are focused on two-dimensional (2D) flow 34

systems, such as a boundary layer flow, or channel flow, despite the fact that flows in 35

real life are frequently affected by the three-dimensional (3D) effects. One of the simplest 36

flow configurations that are largely influenced by 3D effects is a turbulent duct flow. As 37

a result, numerous studies on flows in ducts with non-circular cross-section have been 38

undertaken over the past few decades (Gavrilakis 1992; Huser & Biringen 1993; Vázquez 39

&Métais 2002; Pinelli et al. 2010; Vinuesa et al. 2014). Interest is particularly centered on 40

the influence of the secondary flows of the second kind, defined by Prandtl (1927), because 41

even though the secondary flow is quite weak relative to the streamwise mean velocity, it 42

largely modifies the wall shear stress distribution, momentum transfer and heat transfer 43

mechanisms. In contrast to the large number of studies on the smooth wall duct flows, a 44

few studies were also conducted on the duct flow with a porous medium wall to elucidate 45

the porous medium wall effects in the 3D flow system (Samanta et al. 2015; Suga et al. 46

2020). Samanta et al. (2015) performed direct numerical simulation (DNS) of a turbulent 47
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flow through a duct partially filled with an isotropic porous medium. Their DNS was 1

based on the volume averaged Navier–Stokes equation (VANS), which did not directly 2

resolve the porous medium geometry, but the drag force model was included to account 3

for the flow resistance effects, caused by the porous medium (Breugem et al. 2006). Their 4

results showed that the secondary flow in the clear flow region enhanced considerably, 5

and exceeded that in a smooth wall duct by a factor of four. Furthermore, the four pairs 6

of counter-rotating vortices observed in the smooth wall duct were absent in the porous 7

duct flow, and relatively large secondary flow patterns were formed instead. As in case of 8

2D flows over porous media, turbulent structures associated with the K–H instability 9

appeared, and prevented the development of the streaky structures of wall-bounded 10

turbulence. Moreover, the streamwise turbulence intensity was not enhanced when the 11

porous-wall-normal component increased substantially, which again was consistent with 12

the observations in the 2D flows (Breugem et al. 2006; Suga et al. 2010; Kuwata & Suga 13

2016a). 14

Similar observations were made by Suga et al. (2020) from the experiments of the fully 15

developed turbulent duct flows partially filled with rod arrays. They focused on a flow 16

over gas diffusion layers (GDLs) in proton exchange membrane fuel cells (PEMFCs), 17

which was characterized by a relative low Reynolds number flow (Re≈ 3000) over a 18

highly permeable porous wall (Suga et al. 2014). They found that the streamwise mean 19

velocity distribution and the secondary flow pattern were hardly affected by an increase 20

in the Reynolds number from Re≈ 3500 to 7500. The magnitude of the secondary flow 21

was also independent of the Reynolds number and approximately 6% of the bulk velocity, 22

which was slightly smaller than 8% reported in the DNS by Samanta et al. (2015). This 23

study also reported that the correlations between the pore-scale Reynolds number and 24

the log-law parameters near the symmetry plane were similar to those seen in 2D flows 25

(porous-walled channel flows), which meant that the presence of the lateral walls did 26

not affect the stramwise mean velocity over the porous wall. However, the characteristic 27

wavelengths of the K–H waves were found to be slightly smaller than the reported values 28

for the turbulent channel flows by Kuwata & Suga (2017); Suga et al. (2018), which was 29

possibly due to an interaction between the K–H waves and lateral walls. 30

The experimental study by Suga et al. (2020) revealed the modification of the turbulent 31

coherent structure and secondary flow patterns in presence of the porous wall. However, 32

owing to the experimental difficulties for obtaining high-fidelity near-wall flow properties 33

and full details of turbulence statistics, it was impossible to have a full appreciation of the 34

secondary flow patterns and the momentum transfer mechanisms. The objective of this 35

study is to complement the aforementioned study Suga et al. (2020) by providing further 36

information about the secondary flow effects on turbulence intensities, skin friction, and 37

momentum transfer mechanisms. Hence, we considered the same geometry as that in 38

Suga et al. (2020) to provide additional information that was not reported by those 39

experimental investigations. In addition, motivated by the widespread applications of 40

porous materials to heat and mass transfer products, we further discuss the influence of 41

a porous medium on the turbulent heat and mass transfer in 3D flow systems. Unlike 42

DNS studies based on the VANS equations (Breugem et al. 2006; Samanta et al. 2015), 43

the present study resolves the porous medium geometry to account for the effects of 44

the velocity and temperature dispersions faithfully. Given that the dependence of the 45

Reynolds number on the secondary flow was not significant (Suga et al. 2020), we only 46

focused on the low-Reynolds number case of Re ≈ 3300. The forced convection of an 47

airflow through an aluminum porous medium is considered together with the conjugate 48

heat transfer conditions for the porous medium, thereby avoiding unrealistic thermal 49

boundary conditions for the surface of the porous medium. 50
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2. Numerical approach 1

In recent studies, the lattice Boltzmann method (LBM) has been used for eddy 2

resolving simulations of turbulent flows in complicated geometries, such as flows in porous 3

media (Chukwudozie & Tyagi 2013; Kuwata & Suga 2015; Fattahi et al. 2016), flows 4

over porous walls (Kuwata & Suga 2016a, 2017), rough walls (Kuwata & Kawaguchi 5

2019, 2018a), and urban canopy (Onodera et al. 2013; Lenz et al. 2019), because of 6

its advantages such as simplicity of the wall treatment, high spatial locality of the 7

calculations, and high accuracy resulting from low numerical dissipation and dispersion. 8

For 3D simulations using the LBM, several possible alternatives can be used for discrete 9

velocity and collision models. In this study, we employed the D3Q27 multiple-relaxation- 10

time lattice Boltzmann method (MRT-LBM) for the flow fields, which was rigorously 11

validated by conducting eddy resolving simulations of a turbulent channel flow, a pipe 12

flow, a duct flow, and porous medium flows (Suga et al. 2015), and has been successfully 13

applied to the turbulent flows over porous and rough walls (Kuwata & Suga 2016a, 2017; 14

Kuwata & Kawaguchi 2018b,a). For the scalar fields, we employed the D3Q19 model with 15

the regularization procedures. The regularization procedure proposed by Latt & Chopard 16

(2006) projects the non-equilibrium distribution function onto the Hermite polynomial, 17

which greatly improves the accuracy and numerical stability, and has been successfully 18

applied to the DNSs of turbulent heat transfer in complex geometries Suga et al. (2017); 19

Nishiyama et al. (2020). 20

3. Flow configuration and computational details 21

3.1. Flow geometry and boundary conditions 22

Figures 1 illustrates the configuration of a rectangular duct flow partially filled with a 23

porous material. This flow system is comparable to that employed in the experimental 24

study of Suga et al. (2020). The rectangular duct size (Lx(x)×Ly(y)×Lz(z)) is 8.7H(x)× 25

2H(y)×H(z) in the streamwise, vertical and horizontal directions, respectively. A porous 26

medium consisting of staggered square bar arrays is considered in the bottom half of the 27

rectangular duct −1 < y/H < 0; hence, the cross-section of the clear flow region is 28

H(y)×H(z). The periodic boundary conditions are applied in the streamwise direction, 29

and the flow is driven by a streamwise pressure difference. To ensure the no-slip boundary 30

conditions at the duct walls and surfaces of the porous medium, the half-way bounce- 31

back method is applied to the distribution function. The Reynolds number based on the 32

bulk mean velocity in the clear fluid region, Ub, and the duct width, H, is 3500. For 33

the thermal boundary conditions, the top (y = H) and bottom (y = −H) walls are 34

considered to be isothermal with a temperature difference ∆T (∆T > 0), and Ty=H = 35

Ty=−H +∆T , whereas the lateral walls at z = −0.5H, 0.5H are considered as adiabatic 36

walls. The conjugate heat transfer conditions are applied to the porous medium, and the 37

heat conduction of the porous material is simultaneously solved considering the thermal 38

energy interaction between the solid and fluid phases. The fluid Prandtl number is set 39

to Pr = 0.71, and a ratio of the thermal diffusivity of the solid phase to that of the 40

fluid phase is 4.4, assuming airflow thorough an aluminum porous material. The study 41

by Yoshida & Nagaoka (2010) can be referred for implementation of the adiabatic and 42

isothermal boundary conditions while the Wang et al. (2007) study can help understand 43

the conjugate heat transfer conditions in the framework of the LBM. Note that the 44

buoyancy effect is crucial in a turbulent square duct flow because the secondary flow 45

pattern under the buoyancy effect entirely differs from that without the effect (Sekimoto 46
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et al. 2011). However, as a first step toward understanding the porous wall effects in 3D 1

flow systems, this study assumed a passive scale neglecting the buoyancy effect. 2

3.2. Porous medium characteristics and averaging procedure 3

The geometry of the porous medium under consideration is identical to that used in 4

the experimental study of Suga et al. (2020), as shown in Fig.2. As seen in the figure, 5

the porous medium is comprised of the square bars of size D/H = 6.25 × 10−2, and 6

the distance between the bar centers ℓx/D = ℓz/D = 4.33. The porosity of the porous 7

medium is φ = 0.77. This porous medium is an orthogonal porous medium because the 8

pressure gradient along i-axis, ∂P
∂xi

, only drives the volume-averaged velocity component 9

in the i-direction, Ui, i.e., the off-diagonal components of the permeability tensor are 10

zero, Kij = 0(i ̸= j). The permeability tensors were measured in the fully developed 11

flows in the duct filled by the porous medium. The streamwise, vertical, and horizontal 12

components of the permeability tensor were obtained by the flow rate and pressure drops 13

from the Darcy–Forchheimer equation (Whitaker 1986); the values measured by Suga 14

et al. (2020) wereKxx/H
2 = 7.6×10−5,Kyy/H

2 = 6.0×10−5, andKzz/H
2 = 7.6×10−5, 15

respectively. 16

In the following discussion, the variables in the clear flow region (y > 0) are averaged 17

over time and in the streamwise direction, while for those in the porous medium region 18

(y < 0), the intrinsic line averaging (phase averaging) is conducted in the streamwise 19

direction. Thus, the fluid-phase variables are averaged over a fluid-phase line segment 20

whereas the solid ones are averaged over a solid-phase line segment as follows: 21

[ϕf ] =
1

∆Lf

∫
x

ϕfdLf , [ϕs] =
1

Ls

∫
x

ϕsdLs, (3.1)

where subscripts “f ” and “s ” denote the variables for the fluid and solid phases, 22

respectively; Lf and Ls are the streamwise line segments of fluid and solid phases: 23

Lx = Lf + Ls. It is noted that, near the porous wall, the averaging over the streamwise 24

direction does not coincide with the Reynolds averaging because the structure of the 25

porous medium under consideration is inhomogeneous in the streamwise direction. 26

When we statistically discuss heat and fluid flow in the porous medium region with 27

a macroscopic viewpoint, the volume averaging carried out over the representative 28

elementary volume (REV) is introduced as follows: 29

⟨ϕf ⟩ =
1

∆Vf

∫
Vf

ϕfdVf , ⟨ϕs⟩ =
1

∆Vs

∫
Vs

ϕsdVs, (3.2)

where the size of the REV is defined as ℓx(x)× ℓy(y)× ℓz(z) in Fig.2; thus, the volume of 30

the REV is ∆V = ∆Vf +∆Vs = ℓxℓyℓz. It is noted that the REV is the smallest volume 31

for which the characteristic parameters of the porous medium (porosity and permeability 32

tensor) are independent of the size; thus, a relation exists as φ = ∆Vf/∆V . 33

In the following discussion, the Reynolds averaged value of a variable ϕ is denoted by 34

ϕ, and ϕ′ denotes the fluctuation from the Reynolds averaged value: ϕ′ = ϕ− ϕ. For the 35

Reynolds averaging, the simulation is run for 209T (where T = H/Ub is the convection 36

time), after the flow has reached a fully developed state. The dispersion from the volume 37

averaged (phase averaged) value over the REV is denoted as ϕ̃ = ϕ− ⟨ϕ⟩. 38

3.3. Computational details 39

This study uses the uniform spacing grid 3328(x) × 770(y) × 386(z) for 8.7H(x) × 40

2H(y) × H(z), which corresponds that a cross-section of a square bar is resolved by 41
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Flo
w

porous 

medium

Flow

Figure 1. Sketch of a configuration of a porous duct flow.

(a) top view 

(b) side view                                     (c) front view

Figure 2. Geometry of a porous medium; (a) top view, (b) side view, and (c) front view.

23× 23 grids. To assess the grid independence of the solutions, we performed additional 1

simulation with twice coarser resolution grids, and found no perceptible change in the 2

simulation results (a difference in a maximum peak value of the turbulence intensity 3

was confirmed to be approximately 1%). Moreover, the grid spacing in the wall units is 4

confirmed to be approximately 1.0, which is much finer than those used in the lattice 5

Boltzmann DNS studies (Kuwata & Suga 2016a, 2017; Kuwata & Kawaguchi 2018a; 6

Kuwata & Suga 2019). Note that the wall unit, ν/uτp, is defined with the kinematic 7

viscosity ν and averaged friction velocity, uτp, at the porous wall as given in §.4. 8

In terms of the computational domain length, since the computational domain length 9

presently used, Lx = 8.7H, is longer than that employed in the numerical simulations of 10

square duct flows by Huser & Biringen (1993); Madabhushi & Vanka (1991); Zhang et al. 11

(2015), the domain length is expected to be enough to capture turbulent vortex motion. 12

Nonetheless, it should be noted that there is still much controversy about the sufficient 13

domain length for the square duct flows (Vinuesa et al. 2014). For the porous wall 14

turbulence, it is well established that the large-scale streamwise perturbation arising from 15

the K–H instability develops over the permeable porous wall (Finnigan 2000; Jimenez 16

et al. 2001), and requires a longer streamwise domain length compared to that used in 17

smooth wall bounded turbulent flow simulations (Kuwata & Suga 2016a, 2017, 2019). 18
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Hence, as seen in Fig.3, we examine the two-point spatial correlation function Ruu,x, 1

of streamwise velocity fluctuations at several locations to validate the domain length. 2

It is observed that over the porous medium, profiles of Ruu,x in cases (i) and (ii) are 3

wavy, and exhibit local minimum points at x/H ≃ 1.2. This observation suggests the 4

presence of the large-scale streamwise perturbation in the duct flow system arising from 5

the K–H instability, which is consistent with the results from experimental study of 6

Suga et al. (2020). Suga et al. (2020) reported that the streamwise perturbation could 7

develop in the porous duct flow despite the confinement by the lateral walls. Similarly 8

in this study, the profile near the corner (case i) over the porous medium was very 9

close to the one in the symmetry plane (case ii); thus, indicating that the K–H waves 10

are not reduced by the lateral walls. The presence of the streamwise perturbation is also 11

confirmed from a snapshot of streamwise velocity fluctuations just above the porous/fluid 12

interface at y/H = 0.0013, as seen in Fig.4. It is observed that the high and low-speed 13

regions, which have strong coherence in the spanwise direction, alternatively appear in 14

the streamwise direction (see Kuwata & Suga (2016a, 2019) for the detailed discussions 15

on the turbulence structure associated with the K–H instability in the porous-walled 16

channel). Fig.3 confirms that the magnitude in Ruu,x fell below 0.1 at half the domain 17

length but does not not completely converge to zero. To ensure the computational domain 18

size, we further performed a domain size test with a domain size twice as large in the 19

streamwise direction, yielding a 2% difference in the maximum peak of the turbulence 20

energy. 21

3.4. Validation 22

This subsection provides validation of the present numerical method through the 23

comparison of the turbulence statistics with the experimental data from Suga et al. (2020) 24

and DNS data from Samanta et al. (2015). Figure 5 presents comparisons of the turbulent 25

statistics with the experimental data. Following Suga et al. (2020), the mean velocity in 26

Fig. 5(a) and the Reynolds stresses in Fig. 5(c) are averaged over −ℓz/2 < z < ℓz/2, 27

and the kinematic energy of the secondary flow intensity in Fig. 5(b) is averaged over 28

0 < y < H. It is shown that the mean velocity in Fig. 5(a) and the kinetic energy of the 29

secondary flow in Fig. 5(b) do not strongly depend on the Reynolds number. The skewed 30

mean velocity profile with respect to y/H = 0.5 collapses onto the experimental data in 31

Fig.5(a), and the enhanced kinetic energy of the secondary flow in comparison with the 32

square duct flow (Suga et al. 2020) is reasonably predicted in Fig.5(b). The enhancement 33

of the turbulence over the porous wall is perfectly reproduced in Fig.5(c). Moreover, 34

Fig.5(c) also shows that the turbulence intensities in the porous medium region y < 0 35

generally agree with the experimental data. Thus, it can be concluded that the present 36

method can accurately reproduce turbulence inside the porous medium region. 37

Figure 6 presents comparisons of the predicted mean velocity with the DNS data of the 38

porous duct flow at Reb = 5500 from Samanta et al. (2015). It should be noted that direct 39

comparison of the simulation results may not be possible because of the difference in the 40

characteristics of the porous medium and the simulated Reynolds number. Moreover, the 41

DNS study of Samanta et al. (2015) did not resolve the porous geometry, but only solved 42

the volume averaged equations with the drag force model of Whitaker (1996); Breugem 43

et al. (2006). Nevertheless, the general trend of the mean velocity profile at z/H = 0.0 44

and 0.45 appears qualitatively similar. Therefore, the findings of the present study are 45

not limited to the case with this specific porous medium geometry and Reynolds number, 46

and the conclusions obtained in this study can be generalized for other scenarios. 47
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(i)

(ii)

(iii)

Figure 3. Two-point spatial correlation function of streamwise velocity fluctuations at three
(y,z) locations; (i) a profile over the porous medium in the symmetry plane, (ii) a profile near
the corner over the porous medium, and (iii) a profile at the center of the clear flow region.

0.0         1.0         2.0          3.0         4.0         5.0         6.0          7.0         8.0           

-0.5

0.5

-2.2               2.2

Figure 4. Snapshot of streamwise turbulent velocity fluctuations in x− zplane just above the
porous/fluid interface at y/H = 0.0013.

4. Wall shear stress and wall heat flux 1

Before discussing the detailed flow physics, this section concentrates on the global flow 2

characteristics, including the skin friction coefficient and the Nusselt number. Figure 7 3

presents profiles of the wall shear stress τw/τ
a
w and wall heat flux qw/q

a
w at the top wall 4

y/H = 1.0. Here, τaw and qaw denote the averaged values over the top wall. For comparison, 5

the square duct DNS result of τw/τ
a
w from Pinelli et al. (2010) at Reb = 3600 (based on 6

the duct width H) is included. Fig.7 (a) confirms that the profile of τw/τ
a
w for the square 7

duct flow takes a local maximum value around z/H = −0.26 and minimum value at the 8

symmetry plane, which is associated with the presence of a low velocity streak flanked 9

by two high velocity ones near the wall (Pinelli et al. 2010). For the porous duct flow, 10

the wall shear stress takes a maximum peak value at around z/H = −0.3, but it rapidly 11

decreases as it approaches the middle of the top wall z/H = 0.0. The maximum peak 12

value of τw/τ
a
w for the porous duct is approximately 6% larger than that for the square 13

duct wheres the local minimum value is 31% smaller, indicating that non-uniformity of 14

τw due to the lateral walls is more substantial for the porous duct. As in the case of the 15

wall shear stress, the wall heat flux in Fig.7 (b) exhibits a maximum peak value around 16

z/H = −0.3 and it decreases toward the midpoint at z/H = 0.0. The maximum peak 17

value of qw/q
a
w is found to be 6% larger than that of τw/τ

a
w, and the reduction of qw/q

a
w 18

is more remarkable in the symmetry plane. 19

The bulk wall shear stress at the porous/fluid interface τawp is computed from the 20

momentum balance between the pressure drop ∆P and the wall shear stress in the clear 21
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flow region (y > 0.0) as follows: 1

∆PH2 = 3HLxτ
a
ws +HLxτ

a
wp, (4.1)

where the bulk wall shear stress at the solid wall τaws is given as 2

τaws =
1

3H

(∫ H

0

τw |z=−H dy +

∫ H

0

τw |z=H dy +

∫ H/2

−H/2

τw |y=H dz

)
. (4.2)

This yields the bulk friction velocity at the porous wall, uτp =
√
τawp/ρ, as follows: 3

uτp =

√
1

ρ

H∆P

Lx
− 3

τaws

ρ
. (4.3)

The friction Reynolds number for the porous wall is Repτ = uτph/ν = 197, and that for 4

the top wall Resτ = uτsh/ν = 135, with uτs =
√
τaw/ρ and h being the half duct size, 5

h = 0.5H. This confirms that the bulk wall shear stress at the porous wall is thus 2.1 times 6

larger than that at the solid walls τawp/τ
a
ws = 2.1. The permeability Reynolds number, 7

ReK =
√
Kuτp/ν, is ReK = 3.4 with K being the mean permeability, K = Kii/3. This 8

value is comparable to that in the DNS of porous-walled turbulent channel flow of Kuwata 9

& Suga (2016a) where the turbulence over the porous medium is significantly enhanced 10

due to the wall-permeability effects. The Nusselt number representing the heat transfer 11

rate in the clear flow region is given by the temperature difference in the clear flow 12

region, ∆Tc, and the clear duct height, H, according to the following expression: Nuc = 13

qawH/ (kf∆Tc) where kf is the thermal conductivity for the fluid phase and ∆Tc denotes 14

the averaged temperature difference between the porous/fluid interface and the top wall. 15

This is computed as Nuc = 8.2. By contrast, the Nusselt number representing the heat 16

transfer rate in the porous medium region is given by the temperature difference in the 17

porous medium region,∆Tp, and the porous medium height,H, according to the following 18

expression: Nup = qawH/ (keff∆Tp) where keff is the effective thermal diffusivity, i.e., 19

keff = kfφ+ks(1−φ) with ks being the thermal conductivity of the solid phase, and∆Tp 20

denotes the averaged temperature difference between the porous/fluid interface and the 21

bottom wall. The value of Nup was 1.1, which is significantly smaller than that of Nuc. 22

The reason for this is that the turbulent motion is enhanced over the porous medium 23

but reduced in the porous medium. Hence, the turbulent heat transfer inside the porous 24

medium region is significantly attenuated (see §10 for a detailed discussion on the heat 25

transfer mechanism). 26

5. Mean velocity 27

It is well established that the secondary mean flow of the second kind (Prandtl 1927) 28

is induced by the turbulent motion, which is relatively weak but plays a significantly im- 29

portant role in the transport process near the corners (Gavrilakis 1992; Huser & Biringen 30

1993; Adrian & Marusic 2012). Hence, this section first focuses on the modification of 31

this secondary flow pattern due to the presence of the permeable porous wall. Figure 8 32

presents contour maps of the streamwise mean velocity [u]/Ub, and the secondary flow 33

intensity

√
[v]

2
+ [w]

2
/Ub, along with the cross-streamwise mean velocity vectors. In a 34

regular square duct flow, the secondary mean flow is directed towards the corners, and 35

induces counter-rotating eight vortices near these corners (Huser & Biringen 1993). In 36

contrast, for the porous duct flow, it is observed in Fig.8(b) that these counter-rotating 37
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present
exp.(Suga et al. 2020)

 (c)

present

exp. Re=3400 (Suga et al. 2020) 
exp. Re=7400 (Suga et al. 2020)  

present

exp. Re=3300 (Suga et al. 2020) 
exp. Re=7400 (Suga et al. 2020)  

Figure 5. Comparison of the predicted turbulence statistics with the experimental data from
Suga et al. (2020); (a) streamwise mean velocity, (b) kinematic energy of secondary flow,
and (c) Reynolds stresses. The mean velocity and the Reynolds stresses are averaged over

−ℓz/2 < z < ℓz/2: U = 1
ℓz

∫ ℓz/2

−ℓz/2
[u]dz and Rij = 1

ℓz

∫ ℓz/2

−ℓz/2

[
u′
iu

′
j

]
dz. The kinematic energy of

secondary flow is averaged over 0 < y < H: Kc = 1
H

∫ H

0

(
[v]2 + [w]2

)
dy. Note that the porous

medium for the results of Kc from Suga et al. (2020) is not identical to that employed in this
study.

(a)                                                                                  (b)

present

DNS (Samanta et al. 2015)

Figure 6. Comparison of the mean velocity profile with the DNS results from Samanta et al.
(2015); (a) at z/H = 0.0, and (b) at z/H = 0.45.

eight vortices are absent, and a quite different secondary flow pattern is formed. The 1

secondary flow directed toward the corners above the porous wall can penetrate the 2

porous medium region due to the wall permeability but is also partially blocked by the 3

porous medium. The blocked cross-sectional flow results in the upward flow along the 4

lateral walls, and also generates a rotating flow over porous wall with cores located at 5

y/H = 0.07, z/H = ±0.27. The blocking of the secondary flow by the porous medium 6

generates a global mean flow current in the clear flow region, which is characterized by the 7

upward flow along the lateral wall and downward flow in the symmetry plane at z/H = 0. 8
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(a)                                                                                  (b)

porous duct (present)

squre duct (Pinelli et al. 2010)

Figure 7. (a) wall shear stress profile at the top wall, and (b) wall heat flux profile at the top
wall. The DNS data of square duct flow from Pinelli et al. (2010) is included.

Moreover, this mean flow current disturbs the corner flow directed toward the top corners, 1

and prevents formation of the counter-rotating vortex pairs near these top corners. This 2

secondary flow pattern is quite similar to that in the DNS study from Samanta et al. 3

(2015) despite the difference in characteristics of simulated Reynolds number and the 4

porous medium, and complements the view made in the experiments by Suga et al. (2020) 5

who did not confirm the presence of the small recirculating bubbles formed near the top 6

and bottom corners in the clear flow region in Fig.8(b). The secondary flow intensity 7

attains a maximum value near the lateral wall, z/H = ±0.47. The maximum peak value 8

is approximately 6% of the bulk mean velocity, which is considerably larger than that seen 9

in the square duct flow (2%) (Gavrilakis 1992), but is close to the experimental data of 10

Suga et al. (2020). The enhanced secondary flow may be attributed to two porous medium 11

effects: one is the enhanced turbulent motion due to the relaxation of the wall-blocking 12

effects (Breugem et al. 2006; Suga et al. 2010) and the other is low viscous dissipation at 13

the porous/fluid interface (Samanta et al. 2015). The streamwise mean velocity contour 14

in Fig.8 (a) is only slightly directed toward the corners above the porous wall, as the 15

secondary flow convects the high-momentum fluid toward these corners. On the other 16

hand, in the top half of the clear flow region (y/H > 0.5), the distortion of the streamwise 17

velocity iso-lines is more prominent. It is observed that the downward secondary flow near 18

the symmetry plane considerably convects the near-wall low-momentum fluid toward the 19

core region, which substantially accelerates the core flow as reported by Samanta et al. 20

(2015). The detailed momentum transport mechanism will be further discussed in §7. 21

To get insights into the scaling of the streamwise mean velocity in the clear flow 22

region, an inner-scaled mean velocity profile in a log-linear format is discussed. Figure 23

9(a) displays a mean velocity profile normalized by the local friction velocity at the middle 24

of the top wall z/H = 0.0, y/H = 1.0, with the top wall coordinate. Also shown are the 25

DNS results in a turbulent channel flow at a comparable Reynolds number of Reτ = 150 26

from Iwamoto et al. (2002), and for a square duct flow at Reτ = 123 from Pinelli et al. 27

(2010). The superscript “ + ” stands for scaling with the corresponding viscous length. 28

In Fig. 9(a), the profiles in the viscous sublayer y+s < 10, with ys being the distance 29

from the top wall, are consistent in all the cases. In the region of y+s > 50, although the 30

logarithmic region is not evident due to the low-Reynolds number effects, the slopes in 31

the porous duct and square duct flows appear to be somewhat larger than that in the 32

channel flow. In particular, the profiles in the porous duct flow further deviates from 33

the square duct result as it separates from the top wall, which is principally due to the 34

significantly enhanced secondary flow in the symmetry plane. 35
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(a)                                                                                      (b)

Figure 8. Contour maps of the mean velocity; (a) streamwise mean velocity, and (b)
secondary flow intensity with the cross-streamwise mean velocity vectors.

A profile over the porous medium is discussed by introducing the modified log-law 1

profile: 2

[u]
+
=

1

κ
ln

{
y+p + d+p

h+
r

}
, (5.1)

where parameters κ, dp and hr are, respectively, the Kármán constant, the zero-plane 3

displacement and the equivalent roughness height. (See Breugem et al. (2006) or Suga 4

et al. (2010) for the procedure to obtain these parameters). The normal distance from the 5

porous/fluid interface is denoted as yp. The friction velocity at the porous/fluid interface 6

y/H = 0.0, z/H = 0.0 is evaluated via the total stress at the interface averaged over 7

−ℓz/2 < z < ℓz/2: µ
∂[u]
∂y − ρ[u v]− ρ

[
u′v′

]
. Here, µ is the dynamic viscosity. Figure 9(b) 8

presents the mean velocity profile over the porous wall. The first notable observation is 9

that a slope of the log region for the porous duct is considerably steeper than that for 10

the channel and square duct flows. In addition, as in the porous-walled turbulent channel 11

flow, the mean velocity profile shifts rightward due to an increase in the mean velocity 12

penetration, and shifts downward due to an increase in skin friction drag. The predictive 13

result shows reasonably agreement with the experimental data at Re = 3300 from Suga 14

et al. (2020), and the mean velocity at Re= 7400 shifts rightward due to the increase in 15

the flow penetration while the slope of the profile is not affected by the Reynolds number. 16

The Reynolds number dependence of the log-law parameters is further discussed in Suga 17

et al. (2020) and they stated that the log-law parameters could be reasonably scaled in a 18

similar fashion as in the case of turbulent porous-walled channel flow. This is supported 19

by the present result that the secondary flow intensity that is averaged over the bottom 20

half of the symmetry plane in the clear flow region is small 0.9% of Ub. However, it is 21

still larger than the one in the square duct flow. The maximum value of the secondary 22

flow intensity in the symmetry plane is approximately 3 times larger than the result for a 23

square duct flow from Pinelli et al. (2010). This suggests that the influence of the lateral 24

walls in the symmetry plane is not significant but still larger than that in the square duct 25

flow. 26

6. Turbulence intensities 27

This section briefly reviews the 3D effects due to the presence of the lateral walls 28

on the turbulence intensity. Figure 10 presents contour maps of the streamwise and 29
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(a)                                                                                  (b)
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channel (Iwamoto et al. 2002)
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Figure 9. Inner-scaled streamwise mean velocity with the log-linear format; (a) profile near
the top wall, and (b) profile over the porous medium. The DNS data of turbulent channel flow
from Iwamoto et al. (2002) and square duct flow from Pinelli et al. (2010) are included. The
experimental data of porous-duct flows from Suga et al. (2020) are shown in (b).

vertical turbulence intensities

√[
u′2
]
and

√[
v′2
]
, both of which are normalized by the 1

bulk mean velocity. It is evident from the figure that turbulence over the porous wall 2

is enhanced considerably, which is consistent with the observations in the porous-walled 3

turbulent channel flows (Breugem et al. 2006; Suga et al. 2010; Kuwata & Suga 2016a). 4

The turbulence intensity is the largest in the symmetry plane, while it is attenuated 5

close to the corners as seen for the square duct flow (Huser & Biringen 1993). It is 6

apparent that the Reynolds stress contours are also not flattened near the symmetry 7

plane, suggesting that the effect of the the lateral walls reaches the symmetry plane. 8

This is clearly confirmed in Fig.11 wherein the streamwise and vertical components over 9

the porous medium are plotted together with experimental data from Suga et al. (2020) 10

and DNS data of the porous-walled turbulent channel flow from Kuwata & Suga (2017). 11

The turbulence intensities are normalized by the friction velocity evaluated at y/H = 12

0.0, z/H = 0.0, and plotted as a function of yp/δp. Here, δp denotes the distance from the 13

porous/fluid interface to the position where the mean velocity takes its maximum value. 14

It was reported in Suga et al. (2010) that when the permeability Reynolds number was 15

larger than a certain threshold value, i.e., ReK > 3, the profiles of the streamwise and 16

vertical components collapsed onto each other irrespective of the Reynolds number and 17

wall permeability. However, the present DNS results are slightly larger than those for the 18

porous-walled channel flows even though the simulated Reynolds numbers (Repτ = 195, 19

and ReK = 3.4) are close to those for cases YZ (Repτ = 158, and ReK = 4.3) and XY 20

(Repτ = 183, and ReK = 5.5) reported in Kuwata & Suga (2017). A similar trend can 21

be found in the experimental data from Suga et al. (2020), and the discrepancy is found 22

to be larger for the high Reynolds number case (Re= 7400). The discrepancy between 23

the porous channel and porous duct substantiates the 3D effects by the lateral walls, 24

suggesting that this effect is not prominent for the mean velocity but for the turbulence 25

intensities. 26

7. Momentum transport 27

This section discusses the influence of the secondary mean flow on the streamwise 28

momentum transport by analyzing the budget terms in the momentum equation. The 29

Reynolds averaged momentum equation for the clear flow region (y > 0) in the present 30
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Figure 10. Contour maps of the turbulence intensity components; (a) streamwise component,
and (b) vertical component.

(a)                                                                                   (b)

present

exp. Re=3300 (Suga et al. 2020) 

exp. Re=7400 (Suga et al. 2020)  

porous channel-XY (kuwata and Suga 2017)

porous channel-YZ (kuwata and Suga 2017)

present

exp. Re=3300 (Suga et al. 2020) 

exp. Re=7400 (Suga et al. 2020)  

porous channel-XY (kuwata and Suga 2017)

porous channel-YZ (kuwata and Suga 2017)

Figure 11. Comparison of the turbulence intensities; (a) streamwise component, and (b) vertical
component. The DNS data of porous-walled turbulent channel flows from Kuwata & Suga (2017),
and the experimental data of porous-duct flows from Suga et al. (2020) are included.

flow system may be written in the non-dimensional form as follows: 1[
v
∂u

∂y

]
+

[
w
∂u

∂z

]
= −1

ρ

∂[p]

∂x
+

1

Reb

(
∂2[u]

∂y2
+

∂2[u]

∂z2

)
−

∂
[
u′v′

]
∂y

−
∂
[
u′w′

]
∂z

(7.1)

where the terms Cy = −
[
v ∂u
∂y

]
and Cz = −

[
w ∂u

∂z

]
are the vertical and horizontal 2

convection terms, respectively; Dν = 1
Reb

(
∂2[u]
∂y2 + ∂2[u]

∂z2

)
is the viscous diffusion term; 3

Ry = −∂[u′v′]
∂y , Rz = −∂[u′w′]

∂z are respectively the vertical and horizontal Reynolds stress 4

terms. The convection terms primarily represent the convection effects by the secondary 5

mean flow; however, near the porous wall they also include the effects of the mean velocity 6

dispersion induced by the presence of the porous medium. It should be noted that this 7

equation is valid only for the clear flow region of y > 0 in which there are no solid 8

obstacles except the duct walls. 9

All the budget terms are normalized by the bulk mean velocity Ub and duct height 10

H. The budget term profiles at three different locations z/H = 0.0, 0.25 and 0.375 are 11

shown in Fig.12. We first focus on the profiles in the bottom half of the clear flow 12
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budget terms budget terms budget terms

Figure 12. Budget terms in the Reynolds averaged streamwise momentum equation; (a) profiles
in the symmetry plane at z/H = 0.0, (b) profiles at z/H = 0.25, and (c) profiles at z/H = 0.375.

region (0 < y/H < 0.5). In the symmetry plane shown in Fig.12(a), the 3D effects 1

due to the vertical convection term, Cy, and the horizontal Reynolds shear stress term, 2

Rz, substantially contribute in the region of 0.04 < y/H < 0.2. This may explain the 3

discrepancy in the turbulence intensity profiles away from the porous medium. As shown 4

in Fig.12(b) and (c), as expected, the 3D effects by the convection terms (Cy and Cz) and 5

the horizontal Reynolds shear stress term, Rz, play a significant role in the momentum 6

transport as they approach the lateral wall. 7

When we focus on the profiles in the top half of the clear flow region (0.5 < y/H < 8

1.0), it is immediately clear that the 3D effects by the convection terms are much more 9

prominent. In Fig.12(a), in the symmetry plane, the vertical convection term, Cy, by the 10

downward mean flow contributes to a significant momentum loss, which principally causes 11

the deviation of the mean velocity profile from the established law of the wall for 2D flows 12

observed in Fig.9(a). As the upward secondary flow is induced near the lateral wall as 13

observed in Fig.8, the vertical convection, Cy, causes the momentum gain at z/H = 0.25 14

and 0.375 shown in Fig.12(b) and (c). At z/H = 0.25 and 0.375 in Fig.12(b) and (c), the 15

terms (Cy and Ry) transport the high-momentum fluid toward the top wall making the 16

boundary layer thinner as observed in the mean velocity contour shown in Fig.8(a). This 17

results in the increase in the wall shear stress around z/H = 0.3 as shown in Fig.7(a). 18

As opposed to the role of the upward flow, the downward flow in the symmetry plane 19

thickens the boundary layer of the top wall, resulting in the reduction of the wall shear 20

stress in the middle of the top wall as observed in Fig.7(a). 21

8. Mean temperature 22

While the previous sections concentrate on the flow field properties, this section 23

provides discussions on the mean temperature distribution. A contour map of the non- 24

dimensional mean temperature distribution, T
∗
= (

[
T
]
− Ty=0)/∆T , is presented in 25

Fig.13 (a) and mean temperature profile at z/H = 0.0 is plotted in Fig.14, where the 26

volume averaged temperature profiles for fluid and solid phases are shown in the porous 27

medium region. In addition, to better understand a global view of the heat and fluid flow, 28
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the heatlines proposed by Kimura & Bejan (1983) are superimposed in Fig.13(a), and the 1

secondary flow intensity with the cross-sectional streamlines is presented in Fig.13(b). 2

The heatlines defined in analogy with streamlines are expressed as the iso-contour lines 3

of heat function H, and are defined as follows: 4

∂H

∂y
= ρcp[w](

[
T
]
− T0) + ρcp

[
w′T ′

]
− kf

∂
[
T
]

∂z
,

∂H

∂z
= ρcp[v](

[
T
]
− T0) + ρcp

[
v′T ′

]
− kf

∂
[
T
]

∂y
, (8.1)

where cp and T0 are the constant pressure specific heat and reference temperature, 5

respectively. The isolines of the heat function, which is similar to the stream function for 6

the streamlines, can visualize the heat flow due to the combined effects of the convection, 7

turbulent transport, and heat conduction. It is noted that although several choices are 8

possible for the reference temperature T0, we set the reference temperature as the mean 9

temperature at the porous wall interface. (we have confirmed that the conclusion does 10

not change even if we change reference temperature). 11

Fig.13(a) and (b) confirms that the heatlines in the clear flow region exhibit the 12

large-scale recirculating patterns as in the streamlines of the secondary flow, which is 13

characterized by the upward flow along the lateral walls and downward flow in the 14

symmetry plane. This indicates that the secondary flow considerably alters the mean 15

temperature fields despite the fact that intensity of the secondary flow is not very strong 16

(6% of the bulk mean velocity). It is also evident that the upward flow along the lateral 17

wall convects the high-temperature fluid toward the top wall, while the downward flow in 18

the symmetry plane convects the near-wall low-temperature fluid toward the core region. 19

This leads to a considerably non-uniform temperature distribution in the horizontal 20

direction despite the fact that the temperature difference is not imposed to the lateral 21

walls. This is reasonably reflected by the wall heat flux profile at the top wall as shown 22

in Fig.7(b) where the wall heat flux takes a maximum value around z/H = 0.3 and 23

decreases as it approaches the middle of the top wall. 24

The other observation in Figs.13 (a) and 14 is that the mean temperature inside the 25

porous medium region (y/H < 0) varies more significantly than that in the clear flow 26

region (y/H > 0). Similar observations were made in the conjugate heat transfer of 27

the turbulent porous-walled channel by Nishiyama et al. (2020), where it was reported 28

that the mean temperature deep inside the porous wall region varied significantly as 29

the turbulent heat flux was damped, and the heat conduction is more effective in this 30

region. Indeed, the Nusselt number representing the heat transfer in the porous medium 31

region Nup is nearly unity Nup = 1.1, suggesting the generally linear variation of the 32

mean temperature deep in the porous medium region as shown in Fig.14. Also, Fig.14 33

confirms that the fluid and solid phase temperature profiles are observed to collapse 34

into each other, implying that the temperature inside the porous wall region nearly 35

reaches the equilibrium state even just below the porous interface, which is consistent 36

with the results in the conjugate heat transfer of the porous channel flow Nishiyama 37

et al. (2020). This is principally due to the relatively low conductivity ratio and low 38

turbulent heat transfer rate in the porous medium region. It is expected that an increase 39

in the heat conduction through the porous material leads to an increase in the solid 40

phase temperature while the enhancement of the turbulent heat transfer leads to a 41

decrease in the fluid temperature, resulting in the separation between solid- and fluid- 42

phase temperatures. The other important implication from Fig.14 is that the temperature 43

field in the present system can be predicted neither with the isothermal wall condition nor 44
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with constant wall heat flux condition at the surface of the porous medium because the 1

solid-phase temperature is far from homogeneous. This demonstrates the importance of 2

employing the conjugate heat transfer approach for studying the turbulent heat transfer 3

over porous walls. Note that although the necessity of conjugate heat transfer depends on 4

the thermal properties and flow condition, the ratio of the thermal diffusivity between the 5

air and the metal material is of the same order as that employed in the present simulation. 6

It should be noted that, although the results are not shown here, we confirmed that the 7

difference in the thermal boundary conditions of the porous material considerably affects 8

the temperature field inside the porous medium region (y/H < 0) while the heat transfer 9

mechanism in the clear flow region (y/H > 0) is consistent irrespective of the choice of the 10

thermal boundary conditions of the porous medium. The similar observation was made 11

in the DNS study of the porous channel flow reported in Nishiyama et al. (2020), which 12

showed that, over the porous wall, profiles of the mean temperature and temperature 13

variance were not affected by the choice of the thermal boundary conditions. 14

To discuss the scaling of the mean temperature profile, inner-scaled mean temperature 15

profiles are shown as in the velocity profiles. Figure 15(a) displays a profile of the mean 16

temperature, [θ] =
[
T
]
− Ty=H , normalized by the local friction temperature at the 17

middle of the top wall, z/H = 0.0, y/H = 1.0, with the top wall coordinate. For a 18

comparison, the DNS result for a turbulent channel flow in constant wall temperature 19

difference conditions at Reτ = 180, and an empirical log-law profile from Kawamura 20

et al. (2000) are also presented. Although the profiles in the viscous sublayer (y+s < 10) 21

are consistent in the channel and porous duct flows, the profile for the porous duct flow 22

considerably deviates upward when it approaches the core region. This trend is similar 23

to that observed in the inner-scaled mean velocity profile in Fig.9(a); it is related to the 24

lateral wall effects characterized by the enhanced secondary flow motion. 25

A profile of the mean temperature, [θ] =
[
T
]
y=0,z=0

−
[
T
]
, over the porous medium 26

is displayed in Fig. 15(b), where the friction temperature at the porous/fluid interface 27

y/H = 0.0, z/H = 0.0 is evaluated via the total heat flux at the interface averaged over 28

−ℓz/2 < z < ℓz/2:
µ
Pr

∂[θ]
∂y − ρcp

[
θ v
]
− ρcp

[
θ′v′
]
. Also shown for the DNS results of 29

turbulent flows over the anisotropic orthogonal media at comparable Reynolds number 30

cases from Nishiyama et al. (2020): cases YZ (Repτ = 180, and ReK = 4.9) and XY (Repτ = 31

240, and ReK = 6.0). Note that the displacement d+p is not taken into account for the 32

distance from the porous wall because the logarithmic region of the temperature profile 33

cannot be observed even though d+p is introduced. Although the narrow logarithmic region 34

can be confirmed in the profile of the smooth wall channel according to Kawamura et al. 35

(2000), the logarithmic region is no longer preserved for the porous channel and porous 36

duct flow results. Moreover, the profiles over the porous media deviate downward owing 37

to the increase in the heat transfer over the porous media. Interestingly, the profile of 38

the porous duct flow is in good agreement with the porous channel flow in case XY, 39

suggesting that the mean temperature profile is not significantly affected by the lateral 40

walls as in the mean velocity profiles. 41

9. Turbulent heat flux 42

Before discussing the heat transfer mechanisms by analyzing the energy budget terms, 43

this section discusses the effects of the lateral walls on the turbulent heat flux distri- 44

butions. The turbulent heat flux components and mean square temperature variance 45

are shown in Fig.16. The temperature variance shown in Fig.16(a) near the symmetry 46

plane exhibits two prominent peaks: one locates above the porous/fluid interface, and 47
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Figure 13. (a) contour map of the mean temperature together with the heatlines, (b) contour
map of the secondary flow intensity together with the streamlines. For the streamlines, white
lines correspond to clockwise rotation, and black lines to anticlockwise.

porous
 medium 

Figure 14. Mean temperature profiles: the mean-solid and fluid-phase temperatures averaged

over the REV, ⟨Tf ⟩
f
and ⟨Ts⟩

f
, are shown in the porous medium region y/H < 0 while

[
Tf

]
is

shown in the clear fluid region.

the other locates inside the porous medium at around y/H = −0.25. Interestingly, the 1

temperature variance is enhanced considerably in the porous medium region rather than 2

over the porous medium, despite the fact that turbulent velocity fluctuations is increased 3

over the porous medium. This trend is consistent with the results in the conjugate heat 4

transfer in the porous-walled channel flow by Nishiyama et al. (2020). They analyzed the 5

production terms in the transport equation of the temperature variance and concluded 6

that the local maximum peak over the porous medium was due to the increased vertical 7

velocity fluctuations, whereas inside the porous medium, it was due to the increased 8

temperature gradient, both of which contributed to the production of the temperature 9

variance. The streamwise turbulent heat flux in Fig.16(b) is slightly enhanced over the 10

porous wall and rapidly damped in the porous medium region as in the streamwise 11

Reynolds stress shown in Fig.10(a). The reason is that Reynolds shear stress component, 12
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Figure 15. Inner-scaled mean temperature with log-linear format: (a) profile near the top wall,
and (b) profile over the porous medium. DNS data of the turbulent channel flow from Kawamura
et al. (2000) and porous-walled channel flows from Nishiyama et al. (2020) are included.

which dominantly contributes to the generation of the streamwise turbulent heat flux, 1

is rapidly decayed as well (not shown here). In contrast to the streamwise component, 2

Fig.16(c) shows that the vertical turbulent heat flux near the symmetry plane exhibits 3

two prominent peaks that locate above and inside the porous medium. This trend is 4

similar to that seen in the temperature variance. Indeed, both production terms for the 5

temperature variance and vertical turbulent heat flux are related to the vertical mean 6

temperature gradient and vertical velocity fluctuations. The presence of the lateral heat 7

flux, which vanishes in the 2D flow systems as in the turbulent channel flow, can be 8

confirmed in Fig.16(d). Although the magnitude is much smaller than those of the vertical 9

and streamwise components, the lateral turbulent heat flux is particularly generated near 10

the top wall where the gradient of the horizontal mean velocity that contributes to the 11

generation term is significantly increased. As in the turbulence intensities, it is apparent 12

that the contours of the turbulence heat flux and temperature variance are not flattened 13

near the symmetry plane affected by the lateral walls. 14

The influence of the lateral wall effects on the temperature variance can be clearly 15

observed in Fig.17 which presents comparisons of turbulence statistics related to the 16

temperature variance with those for the porous channel flows at comparable Reynolds 17

numbers from Nishiyama et al. (2020). Although Fig.15(b) shows that the mean temper- 18

ature profile for the present result is close to that in case XY, the streamwise turbulent 19

heat flux in Fig.17(a) for the porous duct is considerably larger than that in case XY but 20

close to that in case YZ. Moreover, Fig.17(b) and (c) confirms that the profiles of the 21

vertical turbulent heat flux and temperature variance for the porous duct flow distinctly 22

deviate from the results for the channel flows. In contrast with the results for the channel 23

flows, the vertical component in Fig.17(b) is larger just above the porous medium but 24

slightly smaller near the core of the duct, and the temperature variance in Fig.17(c) is 25

considerably smaller near the core of the duct. 26

These observations in Figs.15 and 17 suggest that, over the porous medium region, the 27

presence of the lateral walls does not significantly affect the scaling of the first moment 28

(i.e., mean temperature and mean velocity) in the symmetry plane. but the apparent 29

effects emerge in the second moments such as the turbulence intensity, temperature 30

variance, and turbulent heat flux. By contrast, near the top wall, the effects of the lateral 31

walls are more prominent than the square duct flow, even modifying the scaling of the first 32

moment in the symmetry plane. Further discussion about the influence of the lateral wall 33

can be addressed by studying the effects of the aspect ratio as in Vinuesa et al. (2014). 34
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Figure 16. (a) temperature variance, (b) streamwise turbulent heat flux, (c) vertical
turbulent heat flux, and (d) lateral turbulent heat flux.
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Figure 17. (a) streamwise turbulent heat flux, (b) vertical turbulent heat flux, and (c)
temperature variance. The DNS data of porous-walled channel flows from Nishiyama et al.
(2020) are included.

10. Heat transfer mechanisms 1

The previous sections gave a brief review of the temperature fields. This section finally 2

reveals the detailed heat transfer mechanisms by analyzing budget terms in the energy 3

equation. In the clear flow region, the Reynolds averaged energy equation in the present 4
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flow system may be written as follows: 1

[
v
∂T

∂y

]
+

[
w
∂T

∂z

]
= −

∂
[
v′T ′

]
∂y

−
∂
[
w′T ′

]
∂z

+
1

PrReb

(
∂2
[
T
]

∂y2
+

∂2
[
T
]

∂z2

)
, (10.1)

where the equation is non-dimensionalized by the bulk mean velocity Ub, duct height H 2

and temperature difference ∆T . The terms CT
y = −

[
v ∂T

∂y

]
and CT

z = −
[
w ∂T

∂z

]
denote 3

the vertical and horizontal convection terms, respectively. The turbulent transport terms 4

are Hy = −∂[v′T ′]
∂y and Hz = −∂[w′T ′]

∂z , and the last term on the right-hand side is the 5

conduction term DνT = 1
PrReb

(
∂2[T ]
∂y2 +

∂2[T ]
∂z2

)
. 6

The budget term profiles at different locations z/H = 0.0, 0.25 and 0.375 are presented 7

in Fig.18. First, we focus on the profiles in the top half of the clear flow region. In the 8

symmetry plane as shown in Fig.18(a), the vertical convection CT
y works as an energy 9

loss in the region 0.3 < y/H < 1.0 where the horizontal turbulent transport Hz is almost 10

balanced by CT
y . The negative vertical convection in the region (0.3 < y/H < 1.0) 11

represents that the downward secondary flow in the symmetry plane convects the near- 12

wall low-temperature fluid toward the core region, supporting the view made in the 13

mean temperature contour with the heatlines in Fig.13(a). Moreover, this convection 14

process thickens the thermal boundary layer in the middle of the top wall, which causes 15

a reduction of the viscous term and wall heat flux as observed in Fig.7(b). Near the lateral 16

wall at z/H = 0.375 in Fig.18 (c), both of Hy and CT
y work as an energy source and 17

convect the high-temperature fluid toward the top wall, resulting a significantly increased 18

DνT . The heat transfer mechanisms near the top wall are similar to the momentum 19

transport. The upward secondary flow along the lateral wall convects the high-momentum 20

fluid toward the top wall, while the downward flow in the symmetry plane convects the 21

near-wall low-momentum fluid toward the core region; thus, leading to the similarity 22

between the wall heat flux and wall shear stress distributions at the top wall. Near 23

the corners above the porous medium, the heat transfer mechanisms are much more 24

complex than the momentum transport, and the 3D effects are more remarkable. For the 25

momentum transport near the corners above the porous medium shown in Fig.12 (c), 26

the vertical turbulent transport term tends to be balanced by the viscous term, and the 27

contributions of the convection terms due to the secondary flow Cz and Cy are less than 28

30% of Ry. In contrast, for the heat transfer in the vicinity of the porous medium wall 29

0 < y/H < 0.05 as shown in Fig.18 (c), the horizontal turbulence transport term Hz is 30

the most dominant contributor and causes an energy gain, while Hy and CT
z work as an 31

energy loss. The contribution of the convection by the horizontal secondary flow CT
z is 32

found to be 45% of Hy, suggesting that the secondary flow largely affects the temperature 33

fields in this region. 34

To better understand the heat transfer mechanism inside the porous medium, we 35

consider the volume and Reynolds (double) averaged energy equations. The analysis 36

of the double averaged equation is not only helpful to discuss heat transfer mechanisms 37

from a macroscopic viewpoint, but also provides indispensable data for the progression of 38

macroscopic turbulence models. Applying the volume and Reynolds averaging operators 39

to the energy equation for the fluid phase, we can obtain the double averaged energy 40
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equation for the fluid phase, normalized by Ub, H and ∆T as follows: 1

φ⟨uj⟩
∂⟨Tf ⟩
∂xj︸ ︷︷ ︸

−CT
p

=
1

PrReb

∂

∂xj

(
∂φ⟨Tf ⟩
∂xj

+
1

∆V

∫
A

njTfdA

)
︸ ︷︷ ︸

DνT
p

− ∂

∂xj
φ⟨u′

jTf ⟩︸ ︷︷ ︸
Hp

− ∂

∂xj
φ⟨ũj T̃f ⟩︸ ︷︷ ︸
Hp

+
1

PrReb∆V

∫
A

nj
∂Tf

∂xj
dA︸ ︷︷ ︸

Sw

, (10.2)

where Tf stands for the fluid phase temperature, and the terms CT
p , DνT

p , Hp, Hp, 2

and Sw are the convection, diffusive heat flux, turbulent heat flux, dispersion heat flux, 3

and wall-heat transfer terms, respectively. The diffusive heat flux term consists of the 4

molecular diffusion term and the surface integrating term referred to as the tortuosity 5

molecular diffusion term (Kuwahara et al. 1996; Nakayama & Kuwahara 1999). See Saito 6

& de Lemos (2005) for the detailed derivation of the volume averaged energy equation. 7

The convection term CT
p represents the transport process owing to the volume averaged 8

mean flow ⟨ui⟩, i.e., the convection term by the global mean flow current. The dispersion 9

heat flux term Hp represents the transport process by the mean velocity dispersion 10

which is the deviation from the macroscopic mean velocity, ũi = ui − ⟨ui⟩. The surface 11

integration terms in DνT
p and Sw arise because the averaging of the gradient provides 12

additional integration term as given by Whitaker (1996): 13

φ

⟨
∂ϕ

∂xj

⟩
=

∂φ⟨ϕ⟩
∂xj

+
1

∆V

∫
A

njϕdA, (10.3)

where ∆V = ℓxℓyℓx is the volume of the REV as illustrated in Fig.2. The surface of the 14

porous medium is A, and nj is a unit normal vector pointing outward from the fluid to 15

the solid phase. 16

The budget term profiles along the vertical direction are computed by continuously 17

shifting the REV from y = −H + ℓy to y = 0. The profiles of these budget terms in 18

the symmetry plane (z/H = 0.0) and those near the lateral wall (z/H = 0.35) are 19

plotted in Fig.19. Fig.19 (a) shows that the profile of the turbulent heat flux term ,Hp, 20

is not monotonic inside the porous medium region: the profiles of Hp exhibit a negative 21

local minimum value around y/H = −0.18 while its magnitude increases toward the 22

porous/fluid interface. This is associated with the double peaks of the vertical turbulent 23

heat flux in Fig.16(c) around y/H = −0.25 and y/H = 0.1 near the symmetry plane. 24

What is particularly interesting is that the trends of the dispersion heat flux term Hp 25

and Hp are opposite. It is observed from Fig.19 (a) that Hp increases where the region 26

Hp decreases. This trend can be explained from the transport equations of Hp and Hp, 27

wherein one of the production terms appears in the same form but with opposite sign 28

(Suga et al. 2017). Suga et al. (2017) suggested in their large eddy simulation study on 29

the turbulent heat transfer inside the porous media that since the transport equations 30

of Hp and Hp included the mutual energy exchange terms, the sum of those fluxes 31

can be modelled more easily than treating the individual term. Accordingly, a profile 32

of Hp + Hp is presented in Fig.19 (a), and this revealed that the total heat flux term 33

(Hp +Hp) in the symmetry plane works as an energy loss. Fig.19 (b) confirms that this 34

energy loss is found be almost balanced by the energy gain due to the convection term 35

CT
p , as a result of the global flow mean flow current, which is induced by the secondary 36

flow penetration toward the porous medium region. The corner flow above the porous 37

medium wall at y/H = 0.0, z/H = ±0.5 partly penetrates the porous medium wall, and 38
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this flow ejects the fluid in the porous wall near the symmetry plane toward the clear 1

flow region. Then, as observed in Fig.13(b), the recirculating mean flow patterns across 2

the porous/fluid interface are generated; thus, enhancing heat transfer below the porous 3

wall. It is notable that although this recirculating mean flow is relatively weak deep inside 4

the porous medium, the influence of this global flow on the heat transfer is still dominant 5

deep inside the porous wall region at y/H = −0.6. 6

Although Fig.19 (b) confirms that the total heat flux term (Hp+Hp) largely contributes 7

the heat transfer in the symmetry plane, Fig.19 (c) shows that the total heat flux term 8

is significantly reduced due to the lateral wall; still, Hp and Hp have the opposite trends 9

as in Fig.19 (a). Fig.19 (d) confirms that CT
p works as an energy loss, representing 10

that the global mean flow induced by the secondary flow penetration convects the low- 11

temperature flow in the clear flow region toward the porous medium region. The lateral 12

wall reduces the contribution of the turbulent heat flux while the molecular diffusive 13

term DνT
p and the wall heat transfer term Sw become more prominent. The wall heat 14

transfer, which transports the energy by the heat conduction through the solid phase, 15

convects the high temperature fluid as in DνT
p . The magnitude of Sw is smaller than 16

DνT
p despite that fact that the thermal diffusivity is 4.4 times larger, which is due to 17

a relatively high porosity of the porous medium under consideration. The solid phase 18

merely occupies 23% of the representative elementary volume. The observation that the 19

contribution of Sw is substantial and nonuniform confirms the importance of employing 20

conjugate heat transfer conditions because the nonuniform contribution of Sw cannot be 21

reproduce except for conjugate heat transfer conditions. 22

The other important finding in this analysis is that the dispersion heat flux plays an 23

important role in the heat transfer, which is not reproduced by simulations based on 24

the VANS equations in prior studies Breugem et al. (2006); Samanta et al. (2015). This 25

finding also suggests that the VANS approach essentially needs some model that considers 26

the dispersion effects to correctly predict the heat transfer in the porous medium region. 27

Finally, it should be noted that the turbulent heat transfer of a porous square duct 28

flow largely depends on the characteristics of the porous material. In this study, we 29

consider highly permeable porous materials, which can be encountered in the carbon 30

paper of fuel cells, foam metal in heat exchangers, or catalytic converters. However, 31

for porous media with lower permeability or void fraction, such as packed beds, the 32

turbulence enhancement over the porous wall is expected to be less significant (Breugem 33

et al. 2006; Suga et al. 2010; Rosti et al. 2015; Kuwata & Suga 2019). This weakens the 34

secondary mean flow leading to a decrease in convective heat transfer by the secondary 35

mean flow. In addition, since flow penetration toward the porous media is weakened, the 36

convective heat transfer inside the porous media is also reduced. Therefore, high heat 37

transfer performance due to the enhanced secondary flow is not expected to be achieved 38

by porous media with low permeability. 39

11. Conclusions 40

The permeable porous wall effects on the momentum and heat transfers in a duct flow 41

are discussed by performing the direct numerical simulation of turbulent conjugate heat 42

transfer of airflow through a rectangular duct partially filled with a porous material. The 43

porous medium is comprised of aluminum square bars whose geometry is identical to that 44

employed in the experimental study of Suga et al. (2020). The large-scale streamwise 45

perturbation arising from the Kelvin-Helmholtz type of instability develops over the 46

porous wall despite the confinement by the lateral walls, and the turbulence over the 47

porous wall is enhanced significantly. The secondary flow intensity is increased by a factor 48
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(a)                                                                               (b)                                                                    (c)

budget terms budget terms budget terms

Figure 18. Budget terms of the Reynolds averaged energy equation; (a) profiles in the
symmetry plane at z/H = 0.0, (b) profiles at z/H = 0.25, and (c) profiles at z/H = 0.375.

+

(a)                                                                 (b)

(c)                                                                 (d)
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+
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Figure 19. Budget terms of the volume and Reynolds averaged energy equation for the fluid
phase; (a) Hp and Hp profiles at z/H = 0.0, (b) budget terms at z/H = 0.0, (c) Hp and Hp

profiles at z/H = 0.35, and (d) budget terms at z/H = 0.35.
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of three compared to that in the regular square duct flow, and it can be characterized 1

by the strong upward flow along the lateral walls and downward flow in the symmetry 2

plane, which considerably contributes the momentum and heat transfers in the top half 3

of the clear flow region. Over the porous medium region, the presence of the lateral walls 4

does not significantly affect the scaling of the first moment in the symmetry plane (i.e., 5

mean temperature and mean velocity) but apparently affect the second moments such 6

as the turbulence intensity, temperature variance, and turbulent heat flux. By contrast, 7

near the top wall, the presence of the lateral walls even modifies the scaling of the first 8

moment in the symmetry plane. 9

Inside the porous medium region, the temperature at the surface of the porous medium 10

is not uniform, and solid and fluid phase temperatures are found to reach an equilibrium 11

state, which is correctly reproduced only with the conjugate heat transfer. The analysis of 12

the budget terms in the volume and Reynolds averaged fluid phase energy equation shows 13

that the dispersion heat flux as well as the turbulent heat flux contribute significantly 14

to the energy transfer inside the porous medium, demonstrating the importance of the 15

dispersion heat flux for the heat transfer in the porous medium. Also, the enhanced 16

secondary flow in the clear duct region partly penetrates toward the porous wall which 17

results in the recirculating mean flow currents inside the porous medium. These flow 18

currents contribute to the enhancement of the heat transfer deep inside the porous 19

medium region. Note that this is the first DNS study that reveals the influence of a 20

porous medium on the heat and momentum transfer mechanisms in 3D flow systems by 21

fully resolving the geometry of the porous medium. However, this study is not focused 22

on the effects of the Prandtle number, conductivity ratio, and buoyancy, which are also 23

important for practical applications of porous materials to engineering heat transfer 24

systems. This will be the focus of our future work. 25
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