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(Dated: 3 December 2020)

This paper presents direct numerical simulation (DNS) results of turbulent flows over systematically varied rough sur-
faces. Three-dimensional irregular rough surfaces with varying effective slope and skewness factor and fixed roughness
height scales were considered in the study. The skewness factor characterizes whether the surface of interest has a
peak-dominated or valley-dominated nature, whereas the effective slope measures the wavelength of the surface undu-
lations or solidity of the roughness elements. The influence of these two topological parameters on the friction drag at
rough surfaces was investigated. Downward shifts in the inner-scaled mean velocity, which quantify an increase in the
friction drag, were found to be larger for surfaces with a positive skewness factor, and this trend was found to be more
pronounced as the effective slope increased. In addition, the downward shift value steeply increased with increases in
the effective slope, while the dependence weakened when the effective slope was larger than a certain threshold value.
The physical mechanism behind the increase in the roughness function was investigated by analyzing the momentum
budgets. It was revealed that the viscous drag dominantly contributes to the roughness function when the effective slope
value is small, whereas the contribution by the pressure drag progressively increases with the effective slope. We also
found that for surfaces with larger effective slope consisting of relatively shorter wavelength undulations, the Reynolds
shear stress tends to be reduced because the wall roughness prevents the formation of quasi-streamwise elongated vor-
tices suppressing the turbulent near-wall cycles. This acts as a negative contribution to the roughness function, and the
two competing effects (of the increase in pressure drag and decrease in Reynolds shear stress) weaken the dependence
of the effective slope value on the roughness function. Further analysis was conducted to better understand how the
surface slope and skewness factor values affect the mean flow field, modifying the pressure and viscous drag forces.

I. INTRODUCTION

Rough-wall turbulence has received significant attention
over the past decades because surfaces in engineering systems
are seldom hydraulically smooth but typically have roughness.
The surface of a turbine blade becomes rough over time owing
to deposition, pitting, and spallation that occur while operat-
ing in harsh conditions. Similarly, time-related deterioration,
including erosion, corrosion, and organic and inorganic foul-
ing processes, generate roughness in ship hulls, oil pipelines,
and heat exchangers. In most situations, the flow in these sys-
tems is turbulent, and the wall roughness is not within the vis-
cous sublayer but protrudes into the logarithmic layer, leading
to a significant increase in friction drag. Consequently, this
results in substantial performance degradation of the afore-
mentioned systems. Hence, predicting turbulence modifica-
tion due to wall roughness becomes an important prerequisite
for optimal engineering design and machine maintenance. To
quantify such surface roughness effects, the equivalent rough-
ness ks and the roughness function ∆U+ have been widely
employed. The equivalent roughness is defined as the size of
sand grain that yields the same skin friction coefficient as the
surface of interest, and ∆U+ is the downward shift value in the
inner-scaled mean velocity profile in the logarithmic region.

One of the important characteristic that has a significant
impact on surface roughness effects is the solidity of the
roughness elements. Earlier works on the influence of solid-
ity for two-dimensional surface roughness were conducted by
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Bettermann1, Dvorak2, and Dirling3. Dirling3 provided cor-
relations for ks based on two parameters: a solidity parame-
ter and a shape parameter. The solidity parameter was repre-
sented as the ratio of the average element spacing to roughness
height, while the shape parameter accounted for the frontal
area and the windward wetted surface area of a single rough-
ness element. An alternative expression including the solid-
ity parameter Λ was proposed by Sigal and Danberg4, which
was based on the reference surface area before the addition
of roughness and the total frontal area over the rough surface.
Another representation for solidity, which is significantly eas-
ier to define for three-dimensional irregular roughness, is the
effective slope (ES) proposed by Napoli et al.5; it is defined
as follows:

ES =
1

LxLz

∫
x

∫
z

∣∣∣∣∂h(x,z)
∂x

∣∣∣∣dxdz, (1)

where h(x,z) is the roughness height, and Lx and Lz are
the respective streamwise and spanwise lengths of the rough
surface. ES is defined as the average value of the magni-
tude of the slope of the roughness corrugation, and it can
be shown that ES is double the value of the solidity param-
eter: ES = 2Λ5–7. To demonstrate the ability of ES in pre-
dicting surface roughness effects, Napoli et al.5 performed
a large eddy simulation (LES) of two-dimensional irregular
corrugated walls and found that the roughness function ∆U+

increased with the ES value when the ES value was lower
than a certain threshold. They also showed that flow sepa-
ration behind the roughness crest occurred more frequently
as the ES value increased, and this increased the contribu-
tion of the pressure drag to the total friction drag. A simi-
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lar trend of dependence of the ES value on ∆U+ was con-
firmed via experiments on closely packed pyramids8 and di-
rect numerical simulation (DNS) studies on sinusoidal wavy
walls9, randomly distributed semi-ellipsoid/cone roughness10,
and a variety of real rough surfaces such as concrete, grit-
blasted, and graphite6. Using large amounts of LES data, De
Marchis11 proposed a new mathematical logarithmic law that
could reasonably predict ∆U+ based on the ES value. Yuan
and Jouybari12 provided a physical interpretation of a rela-
tively smaller drag for a surface with a small ES value. They
stated that the occurrence of roughness wakes was decreased
for the surface with the small ES value, thus reducing the pres-
sure drag. In addition, they reported that the energy redistri-
bution to the wall-normal Reynolds stress was attenuated for
the surface with small ES value, owing to the reduction in the
form-induced shear and mixing-layer turbulence activity. Ex-
tensive investigations on the effects of solidity were also con-
ducted by MacDonald et al.7 as well as Leonardi and Castro13,
who also focused on surfaces with densely distributed rough-
ness elements. MacDonald et al.7 showed that although ∆U+

first increased with the ES value as reported in Napoli et al.5,
it decreased in the dense roughness regime with larger ES val-
ues. They stated that this trend was consistent with the obser-
vations in the so-called d−type roughness14, and the driving
mechanism was attributed to a reduction in the Reynolds shear
stress that was predominantly due to the near-wall turbulence
cycle being pushed away from the rough wall.

The other important characteristic parameter for determin-
ing surface roughness effects is the skewness factor (Sk). The
skewness factor, which is defined by the statistical moments
of the surface elevation, quantifies the asymmetry of the prob-
ability density function (PDF) of the roughness height eleva-
tion. The skewness factor Sk is defined as follows:

Sk =
1

h3
rmsLxLz

∫
x

∫
z
(h(x,z)−hm)

3 dxdz, (2)

where hm is the mean roughness height, and hrms is the root-
mean-square roughness height:

h2
rms =

1
LxLz

∫
x

∫
z
(h(x,z)−hm)

2 dxdz. (3)

The skewness factor characterizes whether the surface of in-
terest has a peak-dominated or valley-dominated nature: a
surface with a positive Sk value is peak-dominated whereas a
surface with a negative value is valley-dominated. An earlier
attempt to relate the statistical moments of the surface eleva-
tion to the equivalent roughness was made by Musker15, and
many correlations toward predicting the surface roughness ef-
fects using the skewness factor have been proposed6,10,16–18.
A large amount of experimental data for several types of rough
surfaces, including packed spheres, sandpaper, gravel, honed
pipes, and scratched plates, suggested that the surface rough-
ness effects were enhanced with an increasing Sk value when
Sk > −116. This has also been corroborated by recent DNS
studies6,10,18–20. Measurements of a systematically varied sur-
face by Flack et al.21 revealed that a dramatic increase in fric-
tion drag occurred when the Sk value changed from a neg-
ative value to zero, while a change from zero to a positive

value caused a modest increase in friction drag. A similar
experimental study by Flack et al.22 suggested the need for
separate predictive equations for surfaces with positive and
negative skewness values. However, Flack et al.22 as well
as Busse et al.20 reported that the transitional behavior to-
ward the fully rough regime was almost independent of the
Sk value. Jelly and Busse23 discussed surface roughness ef-
fects using DNS for three roughness topographies: a Gaussian
surface, a peaks-only surface, and a pits-only surface charac-
terized by zero, positive, and negative Sk values, respectively.
They reported that the peaks-only surface with a positive Sk
value yielded a ∆U+ comparable to that of the Gaussian sur-
face, while the ∆U+ for the pits-only surface with a nega-
tive Sk value was much smaller. The significantly larger ∆U+

value for the peaks-only surface in comparison with that for
the pits-only surface was mainly attributed to the velocity off-
set at the roughness crest, which represented the integral ef-
fects of pressure and the viscous effects below the roughness
crest.

As mentioned above, systematic investigations on Sk
or ES have been carried out experimentally8,22,24 and
numerically6,7,10,18,23,25, and the importance of Sk and ES val-
ues for determining surface roughness effects has been well
established. Meanwhile, it has also been reported that many
other important characteristic parameters need to be taken into
account when predicting surface roughness effects (e.g., the
Kurtosis defined as the fourth-order statistical moment10,15,
diversity of roughness peak heights10,26, and streamwise cor-
relation length6, as well as roughness height scales such
as mean peak height, peak-to-valley height, and roughness
height amplitude). This causes difficulties in isolating the
influence of each characteristic parameter on surface rough-
ness effects, and remains a major obstacle in appropriately
accounting for these characteristic parameters predicting the
effects of surface roughness.

To resolve these difficulties, we investigated the individ-
ual effects of skewness Sk and slope (solidity) ES on sur-
face roughness effects through DNSs of turbulence over three-
dimensional irregular rough surfaces, in which the Sk and ES
values were systematically varied while the other characteris-
tic parameters remained fixed. Further, to better understand
how these parameters (Sk and ES) affect the flow structure
and momentum transport mechanisms, this study also ana-
lyzed the double-averaged (spatial and Reynolds) momentum
equation.

II. FLOW CONDITIONS

As in the previous DNS studies10,13,18,27,28, we chose a
rough-walled open channel flow configuration as shown in
Fig. 1 in which a flow is periodic in the streamwise and span-
wise directions whereas the slip boundary conditions are ap-
plied at the top wall. Although the flow near the slip wall
is not identical to that near the symmetry plane in full chan-
nel flow, the choice of the so-called open channel flow allows
us to simulate turbulence modification near the rough wall
with fewer computational resources. The computational do-
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main size (Lx,Ly,Lz) is (6δ ,δ ,3δ ) in the streamwise, wall-
normal, and spanwise directions, respectively, where δ is the
half-channel height. The flow is driven by a constant stream-
wise pressure difference, and the friction Reynolds number
based on the effective half-channel height, δe = δ − hm with
hm being the mean rough surface height, is fixed at Reτ = 600.
Here, the friction velocity uτ is given by the averaged wall-
shear stress uτ =

√
τw/ρ , which is computed by the stream-

wise momentum balance between the pressure drop ∆P and
the wall-shear stress:

∆PSyz = τwLxLz, (4)

where Syz =Vf /Lx is the averaged fluid phase y− z plane area
with Vf being the volume of the fluid phase and can be simply
written as Syz = δeLz (Kuwata and Kawaguchi18). Hence, we
can obtain the wall-shear stress as follows:

τw = δe
∆P
Lx

. (5)

It should be noted that the τw given by Eq.(5) is equivalent to
the x− z plane-averaged total shear stress extrapolated at the
location of the mean roughness height. This definition is con-
sistent with those employed in previous DNS studies9,10,18,29.
In this study, we considered the lattice Boltzmann equation for
the governing equation, which is proven to recover the conti-
nuity and Navier–Stokes equations in second-order accuracy
in space and time. Although there are several possible choices
for the LBM models, we used the three-dimensional twenty-
seven (D3Q27) discrete velocity multiple-relaxation-time lat-
tice Boltzmann method (LBM)30. This DNS approach has
been validated against turbulent channel flows, and no percep-
tible differences were found between the mean velocity, sec-
ond moments, energy spectra, and turbulent budget terms of
the solutions from the LBM and spectral methods30. Further,
the present LBM-DNS approach was successfully applied in
turbulent flows over complicated rough surfaces18,28,31,32. The
LBM employs a regular grid with equal spacing in which
non-body-fitted Cartesian mesh to describe the rough-wall ge-
ometry. This feature reduces numerical errors arising from
a coordinate transformation procedure; however, it requires
prohibitively high computing resources for handling the en-
tire computational domain with sufficiently fine grid resolu-
tion. Hence, the local grid refinement technique proposed by
Kuwata and Suga33 was adopted to allocate the doubly re-
fined grid near the rough-wall region for 0 < y < 0.34δ . The
grid resolution near the rough-wall region was determined
such that the grid spacing in wall units is less than 2.0, as
in the previous lattice Boltzmann DNS studies18,28,29,32where
the wall unit is defined as uτ/ν with ν denoting the kine-
matic viscosity. As a result, the total number of grid points
was approximately 293 million. To handle the rough wall
geometry, we employed the linear interpolated bounce-back
method, as in the previous DNS studies18,28,29,32. This method
is based on the bounce-back rule and accurately imposes no-
slip boundary conditions to the rough surface with second-
order accuracy34. The numerical setup, including the do-
main size and grid resolution, is comparable to those em-
ployed in previous DNS studies on rough-walled open chan-

TABLE I. Characteristic parameters of rough surfaces; Sk is the
skewness factor, ES is the effective slope, hrms is the root-mean-
square roughness, ha is the surface height amplitude, and ht is the
mean peak-to-valley height.

Sk ES h+rms h+a h+t hrms/δe
±0.53 0.1, 0.2, 0.4, 0.6 8.4 6.7 49 0.014

Slip wall

x

z

y

Rough surface

slip wall

y

rough wall

FIG. 1. Schematic of flow geometry of a rough-walled open channel
flow.

nel flows18,28,31,35; therefore, it has been confirmed to be suf-
ficient for capturing the full spectrum of scales, ranging from
dissipative fine eddies to large-scale fluctuations.

III. ROUGH SURFACES

In this study, we considered 8 rough surfaces in which
the Sk and ES values were systematically varied while the
roughness height scales remained fixed. As mentioned pre-
viously, the skewness factor Sk, defined in Eq. (2), measures
whether the surface of interest has a valley-dominated or a
peak-dominated nature, whereas the effective slope ES, de-
fined in Eq. (1), measures the wavelength of the surface un-
dulations or solidity of the roughness elements. In what fol-
lows, we describe the procedure used for generating the rough
surfaces. The surface height h(x,z) was first generated by su-
perimposing differently sized hyperbolic shape roughness el-
ements. The height of a single hyperbolic shape roughness el-
ement hN(x,z) is defined as a rotating body of the hyperbolic
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(a)                                          (b)                                           (c)                                         (d)

(e)                                         (f)                                            (g)                                         (h)

x

z

FIG. 2. Geometry of the rough surfaces together with the effective slope value in Eq. (1) and the skewness factor in Eq. (2). The surface
enclosed by a dashed line indicates a single unit tile. 2×2, 4×4, 6×6 tiles are used for (b,f), (c,g), and (d,h), respectively.

function:

hN(x,z) = (ANδ )sech

(
BN

√
(x− xN)2 +(z− zN)2

δ

)
, (6)

where xN and zN represent the center position of the roughness
element, and the shape parameters AN and BN determine the
height and width of a roughness element, respectively. Then,
the rough surface height is given by superimposing the rough-
ness elements as follows:

h(x,z) = ∑
N

hN(x,z), (7)

where N denotes the number of roughness elements, and xN ,
zN , AN , and BN are all given by random numbers. The sur-
face characteristics can be controlled through the number of
roughness elements N and by imposing the upper and lower
limits for the AN and BN values. The values for N, AN , and BN
were adjusted by trial and error such that the Sk and ES values
were close to the target values of Sk = +0.53 and ES = 0.1.
The resulting values for these parameters are N = 10000,
1.2×10−3 ≤ AN ≤ 1.2×10−2, and 14.4 ≤ BN ≤ 28.8, and the
generated rough surface is shown in Fig. 2(a) including the Sk
and ES values. Next, we describe how the ES and Sk values
were systematically changed. The sign of the Sk value was
changed by reversing the surface height as hp − h(x,z) with
hp being the maximum roughness peak. This transformed
the surface peaks of the original rough surface into surface
valleys in the reversed surface; this is clearly shown in Fig.
2(a,e), where the positions of the surface peaks in Fig. 2(a)
correspond to the positions of the surface valleys in Fig. 2(e).
Notably, this transformation did not affect the surface height
scales and the ES value. The ES value was increased by re-
ducing the surface width in the streamwise and spanwise di-
rections while preserving the surface height. This procedure
effectively altered the wavelength of the surface undulation
but kept the roughness height scales fixed. For example, as

shown in Fig. 2 (a,b), we reduced the width of the original sur-
face (Fig. 2 (a)) in the streamwise and spanwise directions by
a factor of 2; and when 2×2 reduced surfaces are used, the ES
value is doubled, as shown in Fig. 2 (b). Following this proce-
dure, the ES value was increased from 0.1 to 0.6; this range of
ES values covers wavy surface to rough surface regimes8. The
characteristic parameters, including the values of Sk, ES, and
hrms; the surface height amplitude ha; and the mean peak-to-
valley height ht , are summarized in Table I, where ht is com-
puted by partitioning the surface in Fig. 2(a) into 5× 5 tiles
of equal size6. It should be noted that unlike other systematic
studies on the characteristic parameters of a rough surface,
this procedure only modified the ES and SK values and strictly
preserved the roughness height scales (e.g., root-mean-square
roughness, mean peak-to-valley height, and surface height
amplitude) and the kurtosis; this allows us to investigate the
isolated effects of ES and Sk values on turbulence. However,
on the negative side, this procedure reluctantly imposes the
repetition of the surface height in x and z directions for cases
with ES = 0.2,0.4, and 0.6. Thus, these surfaces cannot be re-
garded as perfectly irregular rough surfaces, and the effects of
the roughness arrangement may appear; these aspects are dis-
cussed in §V. Note that, as shown in Fig.3, the grid resolution
is sufficiently fine to accurately reproduce the surface geom-
etry, even for the case with ES = 0.6, which has the steepest
surface undulations among the presently tested cases.

IV. AVERAGING PROCEDURE

To statistically discuss turbulence near the rough wall,
where a time-averaged variable changes in the x− z plane due
to the inhomogeneous nature of the surface, we focus on a
variable averaged over space and time in the following dis-
cussion. For spatial averaging, we introduce superficial x− z
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FIG. 3. Grid resolution near the rough surface for case with ES = 0.6 and Sk =+0.53. Here, ∆ denotes the near-wall grid spacing.

plane-averaging for a variable ϕ(x,y,z) as follows:

⟨ϕ⟩(y, t) = 1
S

∫
x

∫
z
ϕ(x,y,z, t)dxdz, (8)

where the plane area S = LxLz. We can also define the variable
averaged over a fluid phase x− z plane as the intrinsic (fluid
phase) averaged value:

⟨ϕ⟩ f (y, t) =
1
S f

∫
x

∫
z
ϕ(x,y,z, t)dxdz, (9)

where S f is the fluid phase x− z plane area, and a relation ex-
ists between the superficial and intrinsic plane-averaged val-
ues as: ⟨ϕ⟩ = φ⟨ϕ⟩ f , with the plane porosity φ = S f /S. The
variable ϕ(x,y,z, t) can be decomposed into a contribution
from an intrinsic averaged value ⟨ϕ⟩ f (y, t) and a deviation
from the intrinsic averaged value ϕ̃(x,y,z, t) referred to as the
dispersion, as follows:

ϕ(x,y,z, t) = ⟨ϕ⟩ f (y, t)+ ϕ̃(x,y,z, t). (10)

As the flow variables also fluctuate in time, the Reynolds
decomposition is introduced to decompose a variable into a
Reynolds (ensemble) averaged value ϕ(x,y,z) and its fluctua-
tion ϕ ′(x,y,z, t) as

ϕ(x,y,z, t) = ϕ(x,y,z)+ϕ ′(x,y,z, t), (11)

For Reynolds averaging, the statistical properties were assem-
bled over a period of 250T , where T = Lx/Ub is the flow-
through time and Ub is the bulk mean velocity.

V. MEAN VELOCITY AND ROUGHNESS FUNCTION

We first present profiles of the streamwise mean velocity
to discuss how the ES and Sk values affect the mean flows.
Profiles of the inner-scaled streamwise mean velocity ⟨u⟩+ are
presented in Fig. 4, where the effective wall-normal distance
ye:

ye =
∫ y

0
φdy, (12)

proposed by Kuwata and Kawaguchi18 is used as the distance
from the rough wall. Notably, ye becomes zero at the bottom
of the deepest valley but returns to y−hm above the maximum
roughness crest y > hp

18. For comparison, the DNS result for
the smooth-wall case36 is also included. As the present DNS
considers the open-channel flows, the present smooth wall re-
sult deviates from the reference data for the full channel flow
as it approaches the channel center. Nevertheless, the present
DNS is in perfect agreement with the reference data near the
wall region, thus indicating that the present grid resolution is
sufficient to resolve the viscous sublayer near the wall.

The figure confirms that the profiles of ⟨u⟩+ for the rough-
wall cases are shifted downward, which is due to an increase
in the skin friction coefficient of the rough wall. The rough-
ness function ∆U+, evaluated as the difference in ⟨u⟩+ at
y+e ≃ 100 with the smooth-wall case results as in Kuwata and
Kawaguchi18, attains a maximum value of 7.3 (Sk = +0.53
and ES = 0.6), followed by 7.0 (Sk = +0.53 and ES = 0.4)
and 5.3 (Sk = −0.53 and ES = 0.6). This indicates that the
simulated flows are in the transitionally rough regime except
the case with Sk =+0.53 and ES = 0.6, judging from the cri-
terion of the fully rough regime37 ∆U+ ≳ 7(k+s > 70). For
the case with Sk = +0.53 and ES = 0.6, where the flow is
expected to be in the onset of the fully rough regime, the
equivalent roughness height k+s is estimated by the following
relation16:

k+s = exp
[
κ
(
8.5−B+∆U+

)]
. (13)

In the above equation, k+s = 78 when the von Kármán con-
stant κ = 0.41 and the log-law intercept for a smooth B = 5.2
are used. Interestingly, this value reasonably agrees with the
empirical correlation from the data for real rough surfaces16

ks = 4.43hrms(1+ Sk)1.37 within 16%. This suggests that the
generated surface yields hydraulic roughness effects compa-
rable to real rough surfaces, despite the fact that the same
surface geometry repeatedly appears in the streamwise and
spanwise directions as mentioned in §III.

As for the influence of Sk, the figure confirms that ∆U+

is larger for cases with the positive skewness value Sk =
+0.53, which is consistent with the observations of previ-
ous studies6,10,16,18,23. Another observation from Fig. 4 is
that ∆U+ increases with the ES value: ∆U+ substantially in-
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FIG. 4. Inner-scaled streamwise mean velocity profile. The DNS
result for the smooth-wall case36 is included.

creases as ES increases from 0.1 to 0.4, while this trend slows
down when ES increases from 0.4 to 0.6.

The aforementioned is evident from Fig. 5, where ∆U+

is plotted against the ES value. Also shown are the LES
data for two-dimensional irregularly corrugated walls5, the
DNS data for three-dimensional sinusoidal roughness9, and
the experimental data for closely packed pyramids8. Note
that the inner-scaled roughness height scales for the three-
dimensional sinusoidal roughness9 (h+rms ≃ 5) and the closely
packed pyramids8 (h+rms ≃ 8.5) are rather close to the values
in the present study (h+rms = 8.4), whereas it is much larger in
the two-dimensional irregularly corrugated wall5 (h+a = 19.5)
compared to the present study (h+a = 6.7). Figure 5 shows
that ∆U+ steeply increases with the ES value for the wavy
surface regime8 (ES < 0.3); however, this trend progressively
weakens as the ES value further increases, which is consistent
with the findings of previous studies5,8. The values of ∆U+ in
the present study are close to the values reported by Schultz
and Flack8 and Chan et al.9, but deviate significantly from the
results of Napoli et al.5, in which the inner-scaled roughness
height scales are significantly larger. This supports the find-
ings by Chan et al.9 that ∆U+ depends on some measure of the
viscous roughness height as well as the ES value. Another im-
portant observation from the figure is that the dependence of
the ES value is generally similar irrespective of the Sk value;
however, the influence of Sk on ∆U+ is more pronounced for
a surface with a large ES value: the difference in ∆U+ is 20%
when ES = 0.1 whereas the value is doubled when ES = 0.6.

VI. MOMENTUM BUDGET

To better understand the physical mechanisms of the in-
crease in friction drag, this section provides a discussion on
momentum transfer with the help of the double-averaging
theory. Applying the spatial- (x − z plane) and Reynolds-
averaging operators to the Navier–Stokes equation for incom-
pressible flows, we can obtain the double-averaged momen-

FIG. 5. Roughness function against the ES value. The LES data
for two-dimensional irregularly corrugated walls5, the DNS data for
three-dimensional sinusoidal roughness9, and the experimental data
for closely packed pyramids8 are plotted.

tum equation as follows:

∂ ⟨ui⟩
∂ t

+
⟨
u j
⟩∂ ⟨ui⟩ f

∂x j
=−φ

ρ
∂ ⟨p⟩ f

∂xi
+

∂
∂x j

(
ν

∂ ⟨ui⟩
∂x j

)

− ∂
∂x j

⟨ũiũ j
⟩︸ ︷︷ ︸

Ti j

+
⟨

u′iu
′
j

⟩
︸ ︷︷ ︸

Ri j


−ν

∂φ
∂x j

∂ ⟨ui⟩ f

∂x j︸ ︷︷ ︸
gi

− 1
ρS

∫
L

p̃nidℓ︸ ︷︷ ︸
fpi

− ν
S

∫
L

(
−nk

∂ ũi

∂xk

)
dℓ︸ ︷︷ ︸

fvi

,

(14)

where L represents the obstacle perimeter within an averag-
ing x− z plane, ℓ represents the circumference length of solid
obstacles, and nk is its unit normal vector pointing outward
from the fluid to solid phase. In addition to the plane-averaged
Reynolds stress Ri j, a plane-dispersive covariance Ti j arises
owing to the inhomogeneous nature of the mean flow in the
x− z plane, and is expressed as the product of the mean ve-
locity dispersion ũi = ui −⟨ui⟩ f . The other terms represent-
ing the roughness effects are the inhomogeneous roughness
density term gi, the pressure drag term fpi , and the viscous
drag force term fvi . The viscous and pressure drag force terms
are expressed as the averaged pressure and viscous stress dis-
persions, respectively, over the obstacle perimeter at a certain
plane. Hence, these terms represent the mean pressure and
viscous forces offered by the roughness elements. As gi orig-
inates from the volume-averaged viscous stress term, it rep-
resents the viscous effect arising from the distribution of the
plane porosity φ , which exhibits a non-zero contribution only
below the maximum roughness crest.

By integrating equation (14) over the wall-normal direction
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(a)                                                                                (b)

(c)                                                                                (d)

T

T

FIG. 6. Momentum budgets: (a) drag force contribution Fv+x +F p+x and inhomogeneous roughness density contribution G+
x for surfaces with

Sk = +0.53, (b) plane-averaged Reynolds stress −R+
12 and plane-dispersive covariance −T12 for surfaces with Sk = +0.53, (c) Fv+x +F p+x

and G+
x for surfaces with Sk =−0.53, (d) −R+

12 and −T12 for surfaces with Sk =−0.53.

from 0 to y and normalizing by uτ , the shear stress balance
for the present flow system in non-dimensional form can be
derived after some manipulation18:

1− ye

δe
=

∂ ⟨u⟩+

∂y+
−R+

12 −T +
12 +

∫ hp

y
g+x dy+︸ ︷︷ ︸
G+

x

+
∫ hp

y
f+vx dy+︸ ︷︷ ︸

Fv+x

+
∫ hp

y
f+px dy+︸ ︷︷ ︸

F p+x

, (15)

where G+
x , Fv+x , and F p+x denote the contributory terms of

inhomogeneous roughness density, viscous drag, and pressure
drag, respectively.

The contributions by the drag force Fv+x +F p+x , inhomoge-
neous roughness density G+

x , plane-averaged Reynolds shear
stress −R+

12, and plane-dispersive covariance −T12 are shown
in Fig. 6. Although the sum of the pressure and viscous
drag forces is introduced here, each contribution is further
detailed in §VII. In Fig. 6(a) for the peak-dominated sur-
faces with Sk = +0.53, the contribution by Fv+x + F p+x is

substantial below the roughness crest and monotonically in-
creases with the ES value, whereas G+

x decreases with the
ES value. In Fig. 6(b), as the ES value increases, −T +

12 in-
creases while −R+

12+ decreases. This indicates that −T +
12 and

−R+
12+ show a compensating effect, which is consistent with

previous observations18,23. The reduction in −R+
12 with the

ES value was also found by MacDonald et al.7 who explained
that the turbulent near-wall cycle was pushed outward by the
wall roughness for densely distributed roughness, which was
characterized by the large ES value. For the valley-dominated
surface with Sk = −0.53 in Fig. 6(c) and (d), although the
maximum roughness crest measured by ye is different from
that for the case with Sk = +0.53, the general trend of the
influence of the ES value on the momentum budget is qualita-
tively similar to that for the case with Sk =+0.53.

As can be seen in Fig. 6, the difference in the budget terms
between the case with Sk = +0.53 and that with Sk = −0.53
appears to be responsible for the difference in the maximum
roughness crest measured by ye. To investigate the difference
in detail, a comparison with the budget terms between the
cases with Sk = +0.53 and Sk = −0.53 is presented in Fig.
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T

T

FIG. 7. Comparison of the momentum budgets for cases with Sk =+0.53 and Sk =−0.53: (a) Fv+x +F p+x and G+
x for surfaces with ES = 0.1,

(b) −R+
12 and −T12 for surfaces with ES = 0.1, (c) Fv+x +F p+x and G+

x for surfaces with ES = 0.6, (d) −R+
12 and −T12 for surfaces with

ES = 0.6.

7. It is evident from Fig. 7(a) and (c) that the drag force,
Fv+x +F p+x , below the roughness crest (0.03 < ye < 0.07) is
significantly larger for the case with ES = 0.6 than that for
the case with ES = 0.1, which enlarges the difference in the
momentum budgets between the case with Sk = +0.53 and
that with Sk = −0.53 (ES = 0.6) as shown in Fig. 7(c). As
in Fv+x + F p+x , it is found from Fig. 7(b) and (d) that the
difference in the second moments (−R+

12 and −T +
12 ) is more

pronounced for cases with ES = 0.6 below the roughness crest
(0.03 < ye < 0.07).

The physical interpretation of the influence of the ES values
on the second moments can be provided by the spatial distri-
bution of −ũ ṽ+ and −u′v′

+
in the x− z plane for the case

with Sk = +0.53. Figures 8 and 10 depict the contour maps
of −ũ ṽ+ and −u′v′

+
, respectively, at ye/δe = 0.02, where the

effects of the ES values on R+
12 and T +

12 are pronounced, as
shown in Fig.6(b). Also shown are the contour lines to indi-
cate the high-speed region and the backward flow region. The
contour maps for ES= 0.6 in Figs. 10(b) and 8(b) are enlarged
by a factor of 6 for a comparison with those for ES = 0.1. The
dispersive shear stress of −ũ ṽ+ for the case with ES = 0.1 in

Fig. 8 (a) is significant but the averaged value over the x− z
plane is considerably small (−

⟨
ũ ṽ
⟩+

= −0.025), thereby
suggesting that there is almost no correlation between ũ and
ṽ for the case with ES = 0.1. In contrast, for the case with
ES = 0.6 in Fig. 8 (b), although the magnitude of −ũ ṽ+ is
not significant, −ũ ṽ tends to be positive for the high-speed
and backward flow regions. This means that there is a strong
negative correlation between ũ and ṽ in the regions where the
downwash flow of the high-speed fluid and upwash flow of
the backward flow region frequently occur. The dominance of
the negative dispersive shear stress for the case with ES = 0.6
can be statistically proven by Fig.9 where the joint probability
density function of ũ+ and ṽ+ is depicted. For the case with
ES = 0.6 in Fig.9 (b), the occurrence of strong positive and
negative ũ+ is found to be less frequent than that for the case
with ES = 0.1 in Fig.9 (a). However, it is apparent in Fig.9(b)
that, for the case with ES = 0.6, there is a distinct negative
correlation between ṽ+ and ũ+, which produces the negative
dispersion shear stress. This observation clearly explains the
reason why −T +

12 increases with the ES values in Fig. 6(b).

The Reynolds shear stress −u′v′ in Fig. 10 is generally pos-
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itive, as in smooth-wall turbulence, but significantly reduced
near the roughness elements. Interestingly, −u′v′ is consider-
ably larger for the case with ES = 0.1 (Fig. 10(a)) than for
the case with ES = 0.6 (Fig. 10(b)) despite the fact that the
skewness factor and roughness height scales are consistent.
This difference can be reasonably explained from a snapshot
of the instantaneous wall-normal vortex fluctuations shown in
Fig. 11. In Fig. 11(a), quasi-streamwise vortices, which are
similar to those in smooth-wall turbulence38, develop for the
case with ES = 0.1 because of the sufficient scale separation
between the roughness wavelength and the turbulent length
scale. However, for the case with ES = 0.6 in Fig. 11(b), as
the roughness wavelength in the x− and z− directions is re-
duced by a factor of 6, the turbulent length scale is observed
to be comparable to the roughness length scale. Consequently,
the roughness elements effectively prevent the development of
the quasi-streamwise vortices. A similar observation of the ef-
fects of the roughness on quasi-streamwise vortices was made
by Kuwata and Kawaguchi32. Their budget term analysis sug-
gested that the breakdown of quasi-streamwise vortice was a
representation of additional energy dissipation due to a role
of the drag force offered by the roughness elements. In other
words, the turbulence generation tended to be attenuated with
an increase in the drag force. This reasonably explains why
−u′v′

+
is smaller for the case with ES = 0.6, in which the

drag force contribution Fv+x +F p+x is substantial within the
rough wall, as shown in Fig. 6(a).

VII. CONTRIBUTION OF THE ROUGHNESS FUNCTION

Although the previous section concentrates on the influence
of ES and Sk values on momentum transfer, it is still not clear
how these momentum budget terms contribute to an increase
in ∆U+. Hence, in this section we quantify the effects on
∆U+ starting from Eq. (15). The double-average momentum
equation can be rewritten as follows:

∂φ⟨u⟩ f+

∂y+
= 1− ye

δe
+R+

12 +T +
12 −G+

x −Fv+x −F p+x .

(16)

The left-hand side of Eq. (16) can be rewritten by using the
definition of ye in Eq. (12) as follows:

∂φ⟨u⟩ f+

∂y+
=

∂φ2⟨u⟩ f+

∂y+e
−⟨u⟩ f+ ∂φ

∂y+
. (17)

By integrating Eq. (16) with Eq. (17) over the wall-normal
direction from 0 to y+e , the mean velocity can be written in
terms of the momentum budget terms as follows:

φ2⟨u⟩ f+(y+e ) = y+e

(
1− 1

2
y+e
Reτ

)
+
∫ y+e

0

(
R+

12 +T +
12
)

dy+e

−
∫ y+e

0

(
G+

x −⟨u⟩ f+ ∂φ
∂y+

)
dy+e

−
∫ y+e

0
Fv+x dy+e −

∫ y+e

0
F p+x dy+e . (18)

(a)

(b)

FIG. 8. Contour map of the dispersive shear stress −ũ ṽ+ in the x− z
plane at ye/δe = 0.02: (a) case with ES= 0.1 and Sk =+0.53 and (b)
case with ES = 0.6 and Sk = +0.53. The regions enclosed by gray
lines indicate the high-speed flow regions of u+ > 0.8u+max, where
u+max is the maximum velocity in the plane; those enclosed by black
lines are the backward flow regions of u+ < 0.

FIG. 9. Joint probability density function of the streamwise and wall-
normal velocity dispersions: (a) case with ES = 0.1 and Sk =+0.53
and (b) case with ES = 0.6 and Sk =+0.53.

The corresponding equation for the smooth-wall case can be
derived in a similar fashion as follows:

⟨u⟩ f+(y+e ) = y+e

(
1− 1

2
y+e
Reτ

)
+
∫ y+e

0
R+

12dy+e . (19)

Note that ye = y for the smooth-wall case because φ = 1. Sub-
tracting the mean velocity for the rough-wall case in Eq. (18)
from that for the smooth-wall case in Eq. (19) at y+e = 100,
we can derive an expression for ∆U+ in terms of several con-
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(a)

(b)

FIG. 10. Contour map of the Reynolds shear stress, −u′v′
+

, in the
x− z plane at ye/δe = 0.02: (a) case with ES = 0.1 and Sk =+0.53
and (b) case with ES = 0.6 and Sk = +0.53. The regions enclosed
by gray lines indicate the high-speed flow regions of u+ > 0.8u+max,
where u+max is the maximum velocity in the plane; those enclosed by
black lines are the backward flow regions of u+ < 0.

tributors, as follows:

∆U+ = ∆U+
sm +∆U+

dv +∆U+
d p +∆U+

ir ,

∆U+
sm =

∫ 100

0
R+

12dy+e

∣∣∣∣
smooth

−
∫ 100

0

(
R+

12 +T +
12
)

dy+e

∣∣∣∣
rough

,

∆U+
dv =

∫ h+pe

0
Fv+x dy+e

∣∣∣∣
rough

,

∆U+
d p =

∫ h+pe

0
F p+x dy+e

∣∣∣∣
rough

,

∆U+
ir =

∫ h+pe

0

(
G+

x −⟨u⟩ f+ ∂φ
∂y+

)
dy+e

∣∣∣∣
rough

, (20)

where hpe is the maximum roughness crest evaluated by ye,
and the contributors ∆U+

sm, ∆U+
dv, ∆U+

d p, and ∆U+
ir represent

the effects of the second moment, viscous drag, pressure drag,
and inhomogeneous roughness terms, respectively. It is to be
noted that MacDonald et al.7 as well as Jelly and Busse23 de-
rived similar expressions for ∆U ; however, they did not sep-
arately consider the contributions of ∆U+

dv, ∆U+
d p, and ∆U+

ir ,
which have a dominant effect below the roughness crest. The
contributors in Eq.(20) are shown in Fig. 12. The figure con-
firms that ∆U+ is dominated by the pressure and viscous drag

(a)

(b)

FIG. 11. Snapshot of the wall-normal vorticity fluctuations in the
x− z plane at ye/δe = 0.02: (a) case with ES = 0.1 and Sk =+0.53
and (b) case with ES = 0.6 and Sk =+0.53.

effects (∆U+
dv and ∆U+

d p), whereas the second moment ∆U+
sm

exhibits a negative contribution. The viscous drag ∆U+
dv dom-

inates ∆U+ when ES = 0.1 but does not increase with the
ES value; however, ∆U+

d p dramatically increases with the ES
value, which supports the findings by Napoli et al.5 as well
as Leonardi and Castro13, who showed that the contribution
of the pressure drag to the friction drag increased with an
increasing ES value. A comparison between the results for
the case with Sk = +0.53 and that with Sk = −0.53 suggests
that ∆U+

d p is consistently larger for the peak-dominated sur-
face with Sk = +0.53 and that this is the dominant mecha-
nism leading to the larger ∆U+ for the peak-dominated sur-
face. The negative contribution of ∆U+

sm is more significant
as the ES value increases, i.e., the friction drag associated
with −(R+

12+T +
12 ) is less significant than that for the smooth-

wall case and decreases with the ES value. This is principally
due to the significant reduction in −R+

12 with the ES value,
as observed in Fig. 6(b) and (d). Another notable observa-
tion from Fig. 12 is that the negative contribution by ∆U+

sm for
cases with ES ≥ 0.4 partly cancels the positive contributions
by ∆U+

dv and ∆U+
pd , which explains why ∆U+ does not signif-

icantly increase with the ES value for the roughness regime
(ES ≥ 0.4) as observed in Fig. 5.
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FIG. 12. Contribution of the roughness function. The contributory
terms: ∆U+

sm is the second moment, ∆U+
dv is the viscous drag, ∆U+

d p
is the pressure drag, and ∆U+

ir represents inhomogeneous roughness,
which are expressed as Eq. (20).

VIII. DRAG FORCE

In this section, we describe an attempt to obtain a physical
understanding of the drag force effects expressed as ∆U+

dv and
∆U+

d p. The viscous drag contributor, which is expressed as the
double integral of f+vx , can be transformed by partial integra-
tion as follows:

∆U+
dv =

∫ h+pe

0

(∫ h+p

y+
f+vx dy+

)
dy+e

=
∫ h+p

0

dy+e
dy+

(∫ h+p

y+
f+vx dy+

)
dy+

=

[
y+e

(∫ h+p

y+
f+vx dy+

)]h+p

0

−
∫ h+p

0
y+e

d
dy+

(∫ h+p

y+
f+vx dy+

)
dy+, (21)

As y+e = 0 when y+ = 0, the definite integral in the first term
on the right-hand side of Eq. (21) goes to zero as follows:[

y+e

(∫ h+p

y+
f+vx dy+

)]h+p

0
= 0. (22)

In addition, the differentiation of the definite integral in the
second term on the right-hand side of Eq. (21) can be written
as

d
dy+

(∫ h+p

y+
f+vx dy+

)
=− f+vx . (23)

Substituting Eqs.(22) and (23) into Eq. (21), the contribu-
tion by the viscous drag force can be simply expressed as the
weighted integral of f+px , as follows:

∆U+
dv =

∫ h+p

0
y+e f+vx dy+. (24)

The contribution by the pressure drag can be expressed in a
similar fashion as follows:

∆U+
d p =

∫ h+p

0
y+e f+px dy+. (25)

The interesting implication from Eqs.(24) and (25) is that
∆U+ is not solely affected by the magnitude of f+px or f+vx it-
self; rather, the product of the effective distance ye and the
drag force is the key factor. First, the dominant mechanism
of the increase in ∆U+, namely the pressure drag effects, is
shown against y/h and y∗ = (y−hm)/hrms in Fig. 13. In Fig.
13 (a) and (b), as the ES value increases, f+px progressively
increases above the mean location of the surface (y∗ > 0) but
decreases near the bottom (−2 < y∗ <−1). The primary rea-
son for the increase in f+px is an increase in the wetted area of
the rough surface with the ES value: the wetted area is pro-
portional to the ES value for the surfaces considered in this
study, and thus it increases by a factor of 6 as ES increases
from 0.1 to 0.6. It is worth noting that the effective distance
ye increases with y/δ as shown in Fig. 13(a) and (b). Hence,
f+px near the bottom wall plays a less important role in y+e f+px
but is more influential as it moves toward the roughness crest.
This can be clearly confirmed from Fig. 13 (c) and (d): the
decrease in f+px with the ES value below the mean location of
the surface (y∗ < 0) is less visible for y+e f+px , while the increase
in f+px with the ES value near the roughness crest is enlarged.
Consequently, it can be concluded that ∆U+ increases with
the ES value, owing to the increase in f+px above the mean
location of the surface.

A comparison of f+px for the case with Sk = +0.53 (Fig.
13(a)) against the case with Sk =−0.53 (Fig. 13(b)) confirms
that the location where f+px reaches the maximum peak value
is almost the same when scaled by y∗ as 0 < y∗ < 1, while
the maximum peak value of f+px is found to be larger for the
valley-dominated surface (Sk = −0.53) when the ES value is
the same. However, y+e against y/δ is considerably larger for
cases with Sk = +0.53; thus, the difference in the maximum
peak value of f+px becomes considerably smaller for y+e f+px , as
shown in Fig. 13(c) and (d). As a result, the integral of y+p f+px
expressed as Eq. (25) becomes larger for the surface with
Sk = +0.53. This is the reason why the contribution of the
pressure drag ∆U+ is larger for the surface with Sk =+0.53.

The viscous drag f+vx and the weighted viscous drag y+e f+vx
are also presented in Fig. 14. Figure 14 (a) and (b) con-
firms that, in contrast with the pressure drag, the maximum
peak of f+vx generally decreases with the ES value despite the
increase in the wetted area of the rough surface. In the re-
gion of −2 < y∗ < 1, f+vx rapidly decreases with the ES value
and eventually exhibits a negative value for the cases with
ES = 0.4 and 0.6. This trend is consistent irrespective of the
Sk value. However, as the effective distance y+e is not sig-
nificant in those regions, the significant reduction of f+vx with
the ES value is less influential for y+e f+vx , which explains why
the contribution of the roughness ∆Ud p is not significantly af-
fected by the ES value, as shown in Fig. 12.

Finally, we focus on the influence of ES values on the mean
flow structure, which is closely related to the drag force terms
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FIG. 13. Profiles of the pressure drag against y/h and y∗ = (y−hm)/hrms: (a) pressure drag f+px
for cases with Sk = +0.53, (b) f+px

for cases
with Sk = −0.53, (c) weighted pressure drag y+e f+px

for cases with Sk = +0.53, and (d) y+e f+px
for cases with Sk = −0.53. Thin solid lines in

(a) and (b) indicate the profiles of y+e .

f+vx and f+px . The PDF of u+ below the roughness crest is
shown for the case with Sk = +0.53 in Fig. 15. As afore-
mentioned, the influence of the ES value on the drag force
terms is similar irrespective of the Sk values, and only the re-
sults for the case with Sk = +0.53 are shown here (we have
confirmed that the same conclusion can be drawn for the case
with Sk = −0.53). In Fig. 15(a) and (b), the most notable
difference between the results for the cases with ES = 0.1 and
ES = 0.6 is the probability density of the backward flow near
the location of the mean surface y∗ =−0.12: although a weak
backward flow with −1 < u+ < 0 occurs in both cases, the
PDF of −1 < u+ < 0 significantly increases for the case with
ES = 0.6, indicating an increase in the weak backward flow
region. For the case with ES = 0.6, the PDFs at y∗ = −0.12
and 0.53 exhibit peaks around u+ ≃ 0, indicating that the flow
field is dominated by the dead water region where the mean
positive or negative flow is sufficiently weak to interact with
outer flows. In the dead water region, the wall-shear stress
is very minimal and sometimes shows a negative value; thus,
f+vx for the case with ES = 0.6 exhibits a smaller value than
that for the case with ES = 0.1 near the location of the mean
surface, as observed in Fig. 14(a). Further, in this region the
mean pressure dispersion is considerably small, which may
explain the reason why f+px below the location of the mean

surface decreases with the ES value in Fig. 13(a).

The increase in the dead flow regions near the location
of the mean surface can be confirmed by a contour map of
the streamwise mean velocity at y∗ = −0.12 in Fig. 16 to-
gether with contour lines of u = 0. It is immediately observed
that the weak backward flow regions (−2 < u+ < 0) associ-
ated with the recirculating bubbles behind the roughness ele-
ments are merged and significantly extended for the case with
ES = 0.6 in Fig. 16(b), while the backward flow regions for
the case with ES = 0.1 in Fig. 16(a) are limited to the region
immediately behind the roughness elements. This is princi-
pally due to insufficient scale separation between the rough-
ness wavelength and the turbulent length scale for the dense
roughness (ES = 0.6), as shown in Fig. 11(b). In this sit-
uation, the turbulent vortices do not penetrate the dead wa-
ter region, and the stable weak vortices within the roughness,
which are driven by the skimming flow above the roughness
crest, are not disrupted by the turbulent vortices. Therefore,
the mean flow structure is analogous to that seen in d− type
roughness14,39,40.
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FIG. 14. Profiles of the viscous drag against y/h and y∗ = (y−hm)/hrms: (a) viscous drag f+vx
for cases with Sk =+0.53, (b) f+vx

for cases with
Sk =−0.53, (c) weighted viscous drag y+e f+vx

for cases with Sk =+0.53, and (d) y+e f+vx
for cases with Sk =−0.53. Thin solid lines in (a) and

(b) indicate the profiles of y+e .

FIG. 15. PDF of the streamwise mean velocity, u+, in the x− z plane at different y∗ locations for cases with Sk =+0.53.

IX. CONCLUSIONS

The influence of two important geometrical parameters for
rough surfaces, namely, the effective slope ES and skewness
factor Sk, on rough wall turbulence was analyzed by DNSs
of turbulence over systematically varied three-dimensional ir-

regular rough surfaces. We numerically generated the rough
surfaces in which the ES and Sk values were systematically
varied in the range of Sk =±0.53 and 0.1 ≤ ES ≤ 0.6, while
roughness height scales remained fixed.

We confirmed that the roughness function ∆U+ is larger
for a peak-dominated surface with Sk =+0.53 than that for a
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FIG. 16. Contour map of the streamwise mean velocity u+ in the
x− z plane at ye/δe = 0.02 for cases with Sk = +0.53: (a) for case
with ES = 0.1 and (b) for case with ES = 0.6. The regions enclosed
by white lines are the backward flow regions of u+ < 0.

valley-dominated surface with Sk = −0.53. The dependence
of Sk on ∆U+ increases as the ES value increases. As for
the influence of ES, it was found that ∆U+ steeply increases
when 0.1 ≤ ES ≤ 0.4 whereas the increase slows down when
ES ≥ 0.4.

The physical mechanism behind the increase in ∆U+ was
discussed by analyzing the spatial- and Reynolds-averaged
momentum equation. For a surface with ES ≤ 0.2, the viscous
drag dominantly contributes to ∆U+, whereas the contribution
by the pressure drag progressively increases with the ES value
and becomes dominant when ES ≥ 0.4. Meanwhile, when
ES ≥ 0.4, as there is no sufficient scale separation between the
roughness wavelength and the turbulent length scale, the wall
roughness prevents the formation of quasi-streamwise elon-
gated vortices that suppress the turbulent near-wall cycles,
thereby decreasing the Reynolds shear stress. This acts as
a negative contribution to ∆U+, and the two aforementioned
competing effects weaken the dependence of the ES value on
∆U+ when ES ≥ 0.4. As for the influence of the Sk value,
the pressure drag is consistently larger for the surface with
Sk = +0.53; this is the dominant mechanism leading to the
larger ∆U+ for the surface with Sk =+0.53.

The drag force effects, which have a dominant impact on
the increase in ∆U+, were further analyzed. The contribution
of ∆U+ by the drag force was found to be the integral of the
weighted drag force, which is expressed as the product of the
drag force and effective distance from within the rough walls.
Because the effective distance increases as it approaches the
roughness crest, the drag force near the roughness crest pro-
vides a larger contribution to the increase in ∆U+. The ef-

fective distance, which depends on the geometry of the rough
surfaces, is generally larger for a surface with Sk = +0.53,
thus leading to the increase in the drag force contribution to
∆U+ for the surface with Sk =+0.53. This is the main reason
why peak-dominated surfaces with a positive Sk yield larger
∆U+.

The present strategy for varying surface characteristics was
found to be meaningful in investigating the isolated effects
of the effective slope ES and skewness factor Sk. However,
the present study only considers a single relatively low fric-
tion Reynolds number of 600, owing to limitations in compu-
tational resources; thus, the simulated flows are generally in
the transitionally rough regime. Further analysis in the fully
rough regime will be required for full appreciation of the ef-
fects. This will be accomplished through experiments or min-
imal flow simulations as in Macdonald et al.41.
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