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The present paper shows that the amplitudes of oscillators in delay-coupled oscillator networks can be sup-
pressed by switching the network topology at a rate much lower than the oscillator frequencies. The mechanism
of suppression was clarified numerically, and a procedure for determining the connection parameters to induce
suppression is presented. The analytical and numerical results were obtained with Stuart–Landau oscillators and
were experimentally validated using double-scroll chaotic circuits.
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I. INTRODUCTION

Quenching phenomena in coupled oscillators, which are
induced by mutual connections, have been recently inten-
sively investigated in the field of nonlinear physics [1,2]. It
is well known that these phenomena can be classified into
the two types of quenching: oscillation death and amplitude
death [2]. Oscillation death is an invasive emergence of stable
equilibrium points in coupled oscillators; in this phenomenon,
the coupling signals converge to a constant nonzero value
when oscillation death occurs. In contrast, amplitude death
is a noninvasive stabilization of equilibrium points embedded
within isolated oscillators; when amplitude death occurs, all
the coupling signals converge to zero. The noninvasiveness
of the latter phenomenon, which allows the coupling signals
through connections to be small, has the advantage of enabling
the utilization of death to suppress undesired oscillations in
engineering applications. For this reason, amplitude death has
great potential for use in engineering systems, such as direct
current (DC) bus systems [3] and thermoacoustic systems
[4,5].

The types of connections that induce amplitude death are
roughly categorized into no-delay and delay connections. The
no-delay connection, the simplest diffusive connection, can
induce amplitude death in nonidentical oscillators, but not in
identical oscillators [6–8]. In contrast, the delay connection
can induce amplitude death even in identical oscillators1 and
can enlarge the death region in the connection parameter space
[9,10]. In addition, there remains an ever-increasing interest
and challenge to accumulate knowledge on delay-connection-
induced amplitude death [15–24], as the transmission delays
of signals passing through connections cannot be ignored in
real systems.

*http://www.eis.osakafu-u.ac.jp/∼ecs.
1It should be noted that amplitude death in identical oscillators can

be induced by other connections, such as dynamic connections [11],
conjugate connections [12], direct and indirect connections [13], and
mean-field connections [14].

Most previous studies on delay-connection-induced ampli-
tude death focused only on delay-coupled oscillator networks
with topologies that are temporally fixed. It is necessary
to consider delay-connection-induced amplitude death in
time-varying oscillator networks because there are numer-
ous networks whose topologies are temporally variable in
practical situations. However, it is still a great challenge to
analyze the stability of coupled oscillators with both delay
connections and time-varying topologies. This type of system
was evaluated in the case where the topology changed at a
rate much higher than the oscillator frequency [25], which
simplifies the stability analysis. In addition, this analytical ap-
proach was recently extended and verified using experimental
circuits [26].

The purpose of this study was to deal with the opposite
situation for delay-coupled oscillator networks: topologies
change at a rate that is much lower than the oscillator fre-
quency. It was observed that such slow-switching topologies
can suppress the oscillator amplitude around an unstable
equilibrium point embedded within isolated oscillators. The
mechanism behind this amplitude suppression is shown to
be the formation of two clusters of antiphase synchro-
nized oscillators induced by the delay connection, where
the slow-switching topology acts to counteract this cluster
formation. This mechanism was verified numerically, and
a procedure for inducing amplitude suppression was devel-
oped. The analytical and numerical results were obtained
using Stuart–Landau oscillators. In addition, these results
were experimentally validated using double-scroll chaotic
circuits.

A preliminary version of the present paper was pre-
sented at an international symposium [27]. The present
paper significantly extends the preliminary results as fol-
lows: the necessary conditions for amplitude suppression are
clarified, the relationship between these conditions and the
connection parameters is revealed, the procedure for deter-
mining these parameters to induce suppression is provided,
and the influence of these parameters and the switching
period on the suppression is investigated numerically and
experimentally.
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FIG. 1. Illustration of three topologies CA, CB, and CC.

II. SUPPRESSION OF THE AMPLITUDE OF
DELAY-COUPLED OSCILLATORS

Let us consider four identical Stuart–Landau oscillators:

Ż j (t ) = {1 + iω − |Zj (t )|2}Zj (t ) + Uj (t ), (1)

where Zj (t ) ∈ C is the state variable of oscillator j ∈
{1, . . . , 4} at time t � 0, and ω ∈ R is the common frequency
of the four oscillators. The four oscillators described in Eq. (1)
are coupled by the coupling signal

Uj (t ) = k

2

4∑
l=1

c jl (t ){Zl (t − τ ) − Zj (t )}, (2)

where k � 0 and τ � 0 are the coupling strength and delay
time, respectively. Additionally, c jl (t ) describes the topology
of the coupled oscillators at time t � 0; if oscillator j is (is
not) connected to oscillator l at time t , then c jl (t ) = cl j (t ) = 1
(c jl (t ) = cl j (t ) = 0). The elements of the adjacency matrix
C(t ) for the connections are represented as c jl (t ) = {C(t )} jl .
It should be noted that the oscillator frequency in Eq. (1) is
fixed at ω = 4π throughout this paper.

The present paper focuses on a ring-type network with
oscillators described by Eq. (1) and connections described by
Eq. (2) [30–33]. Let us consider the following three adjacency
matrices (see Fig. 1):

CA :=

⎡
⎢⎣

0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

⎤
⎥⎦, CB :=

⎡
⎢⎣

0 0 1 1
0 0 1 1
1 1 0 0
1 1 0 0

⎤
⎥⎦,

CC :=

⎡
⎢⎣

0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

⎤
⎥⎦.

It is clear that these topologies are equivalent to a ring
topology; thus, phenomena that emerge with a time-invariant
topology given by C(t ) ≡ CA, CB, or CC are identical. How-
ever, this study deals with the time-variant network topology
C(t ) ∈ {CA,CB,CC} that switches between these three topolo-
gies.2 The switching period T is presumed to be much longer
than the natural period of the oscillators, i.e., T � 2π/ω; this
long period implies that the network topology slowly switches
between the three defined topologies.

2Stabilization and synchronization of Stuart–Landau oscillators on
fast time-variant networks have been recently reported [28,29].

FIG. 2. Time series data for state variables Zj (t ): (a) topology
switching CA → CB → CA → · · · and (b) topology switching
CA → CB → CC → · · · (k = 3.00, τ = 0.25, T = 10.0).

Here we consider two examples of numerical simula-
tions. First, the network topology is defined as C(t ) ∈
{CA,CB} and switched between CA and CB with period T .
Figure 2(a) shows time series data for the state variables
Zj (t ) in this simulation with connection parameters (k, τ ) =
(3.00, 0.25) and a switching period of T = 10.0 � 2π/ω =
0.5. Note that the uniform random numbers ξ j (t ) ∈ C in
the narrow range, Re[ξ j (t )] ∈ [−0.01, 0.01] and Im[ξ j (t )] ∈
[−0.01, 0.01], are added to the right-hand side of Eq. (1)
and updated at time intervals of 0.1. The four oscillators
were isolated until t = 10, at which point they were coupled
with the network topology C(t ) = CA. The topology then
switched to C(t ) = CB at t = 20 and continued to alternate
in this manner in time intervals of 10. It can be seen that
the amplitudes of all the oscillators were suppressed just
after the topology changed from CA to CB. After a while,
the amplitude gradually increased; however, it was suppressed
when the next switch occurred.

In the second simulation, the network topology was defined
as C(t ) ∈ {CA,CB,CC} and switched among the three possi-
ble states in a given order. The time series data for Zj (t ) in this
simulation are shown in Fig. 2(b). As with the first simulation,
the amplitudes of the oscillators were suppressed by switching
between these three topologies.

The time series data for t ∈ (10, 20] in Fig. 2 demonstrate
that coupled oscillators with C(t ) ≡ CA show oscillatory be-
havior and their amplitude is never suppressed. This indicates
that coupled oscillators with C(t ) ≡ CB or CC would behave
in the same way as those with C(t ) ≡ CA, as these three
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FIG. 3. Enlarged views of time-series data in Fig. 2(a) for (a) t ∈
[15, 25] and (b) t ∈ [22, 35].

topologies are equivalent. The two numerical examples de-
scribed above demonstrate that a slow-switching topology can
suppress oscillations.

III. MECHANISM AND DESIGN

This section describes the mechanism behind oscillation
suppression and provides a simple procedure for determining
(k, τ ) to induce this suppression. In addition, we numerically
investigate the influence of (k, τ ) and the switching period T
on the suppression.

A. Mechanism of suppression

To clarify the mechanism of suppression, the time se-
ries data for the oscillators were observed in more detail.
Figure 3(a) shows an enlarged view of the time-series data
presented in Fig. 2(a) for t ∈ [15, 25]. In the scenario repre-
sented in this plot, for t ∈ [15, 20], oscillator 1 with C(t ) =
CA, which is connected to oscillators 2 and 4, is synchronized
in-phase with oscillator 3 but antiphase with oscillators 2 and
4:

Z1(t ) ≈ −Z2(t ) ≈ Z3(t ) ≈ −Z4(t ). (3)

After C(t ) switched from CA to CB at time t = 20, oscillator
1 became connected to oscillators 3 and 4. Thus, the initial
state of the oscillators for topology CB at t = 20 is described
by Eq. (3) for t ∈ [20 − τ, 20]. Because Eq. (3) still holds
until t ≈ 23 even after switching, the coupling signals (2)
after switching are then reduced to Uj (t ) ≈ −kZj (t ) ( j =
1, . . . , 4). Accordingly, the coupled oscillators after switching

are approximately given by

Ż j (t ) = {(1 − k) + iω − |Zj (t )|2}Zj (t ), ( j = 1, . . . , 4). (4)

The equilibrium points of the oscillators described by Eq. (4),
Zj (t ) ≡ 0, are stable (unstable) for 1 − k < 0 (1 − k > 0);
these points with the parameter k = 3.00 used in Figs. 2(a)
and 3 are therefore stable. Thus, for t ∈ [20, 23), the oscilla-
tions for all of the oscillators decrease in amplitude.

Figure 3(b) shows an enlarged view of the time-series
data for t ∈ [22, 35]. It can be seen that after the decrease in
amplitude, the states of the oscillators for t ∈ [23, 24) stray
from the antiphase synchronization described by Eq. (3) be-
cause of the presence of a small amount of noise ξ j (t ) ∈ C
added to the right-hand side of Eq. (1). For t ∈ [24, 30),
the amplitude of the oscillators then increases with another
antiphase synchronization, described by

Z1(t ) ≈ Z2(t ) ≈ −Z3(t ) ≈ −Z4(t ). (5)

In other words, at approximately t ∈ [23, 24], the small
amount of added noise ξ j (t ) causes the oscillators to switch
from the antiphase synchronization state described by Eq. (3),
which stably occurs with topology CA, to a second antiphase
synchronization state described by Eq. (5), which stably oc-
curs with topology CB. It should be noted that if noise is not
added to the oscillators, the state requires a very long time to
stray from the first antiphase synchronization state [Eq. (3)]
in a numerical simulation. This suggests that the noise is
a necessary factor to achieve the switching of synchroniza-
tions with the finite switching period T . The same behavior
was also observed for t ∈ [28, 35]. It can thus be concluded
that the essential mechanism for the slow-switching-topology-
induced suppression in Fig. 2 is the repetition of the following
actions in order: antiphase synchronization, switching of the
topology, amplitude decrease, switching to another antiphase
synchronization state, and slow amplitude increase with this
second antiphase synchronization state.

The above discussion indicates that the following three
conditions are necessary for amplitude suppression: (i) k >

1 holds for the stability of the equilibrium points in the
oscillators [Eq. (4)]; (ii) an antiphase synchronization state
exists, but other synchronizations, including in-phase syn-
chronization and splay states, do not exist; (iii) the existing
antiphase synchronization state is stable. Therefore, if one
wants to induce the suppression of the oscillations, k and τ

should be chosen such that the above three conditions are
satisfied.

B. Design of connection

The connection parameters k and τ were then chosen such
that the above three conditions hold. Because condition (i) is
easily implemented, conditions (ii) and (iii) are discussed be-
low. It should be noted that as the three considered topologies
CA, CB, and CC are equivalent, it is possible to consider only
CA without a loss of generality.

The dynamics of delay-coupled oscillator networks de-
scribed by Eqs. (1) and (2) with CA can be described in polar
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form as

ṙ j (t ) = h(r j (t ))

+ k

2
r j−1(t − τ ) cos (θ j−1(t − τ ) − θ j (t ))

+ k

2
r j+1(t − τ ) cos (θ j+1(t − τ ) − θ j (t )), (6)

θ̇ j (t ) = ω

+ k

2

r j−1(t − τ )

r j (t )
sin (θ j−1(t − τ ) − θ j (t ))

+ k

2

r j+1(t − τ )

r j (t )
sin (θ j+1(t − τ ) − θ j (t )), (7)

where

r j (t )eiθ j (t ) := Zj (t ), h(r) := (1 − k − r2)r.

A ring network with periodic boundary conditions was imple-
mented by setting Z0(t ) = Z4(t ) and Z5(t ) = Z1(t ).

First, condition (ii) is addressed. In phase-synchronized
states, each oscillator has a constant phase difference of mπ/2
with respect to the remaining connected oscillators, and the
oscillators have a common amplitude r̂ > 0 and frequency
� > 0. Such states can be described by

r j (t ) = r̂, θ j (t ) = θ̂
(m)
j (t ) := �t + ( j − 1)

m

2
π, (8)

where m ∈ {0, 1, 2, 3} describes the type of synchronization:
in-phase (m = 0), antiphase (m = 2), and splay (m = 1 or 3).
Substituting Eq. (8) into the polar-form state equation given
in Eqs. (6) and (7) yields

r̂2 = 1 − k
(
1 − cos �τ cos

m

2
π

)
> 0, (9a)

� = ω − k sin �τ cos
m

2
π. (9b)

Note that there exists synchronization as described by
Eq. (8) with type m if Eqs. (9a) and (9b) hold. Thus, the
antiphase synchronization with a common frequency of �

satisfying Eq. (9b) with m = 2 exists if k and τ satisfy

r̂2 > 0 ⇔ 1 − k(1 + cos �τ ) > 0. (10)

In contrast, the in-phase synchronization with � satisfying
Eq. (9b) with m = 0 does not exist if k and τ satisfy

r̂2 < 0 ⇔ 1 − k(1 − cos �τ ) < 0. (11)

Furthermore, for k > 1 [condition (i)], synchronization with
m = 1 or 3 (i.e., splay states) never exists, independent of k
and τ . This is because Eq. (9a) cannot yield a real positive r̂2

with k > 1 [condition (i)] for m = 1 or 3. This suggests that
the coexistence of a splay state does not need to be considered.
The above discussion demonstrates that if k and τ satisfy both
Eqs. (10) and (11), then condition (ii) is satisfied.

The regions satisfying condition (ii) in (k, τ ) parameter
space are now described (see Fig. 4). The red (blue) curves in
the figure are values of (k, τ ) that satisfy r̂2 = 0 with m = 2
(m = 0). The amplitude r̂ grows from zero with increasing

FIG. 4. Boundary curves for the existence of in-phase (i.e., m =
0) and antiphase (i.e., m = 2) synchronization and regions satisfying
condition (ii) in (k, τ ) parameter space.

(decreasing) τ on the bold (thin) curves.3 Additionally, there
exists antiphase (in-phase) synchronization outside the re-
gions between the bold and thin red (blue) curves. Thus, in
the blue (red) regions, antiphase (in-phase) synchronization
exists and does not coexist with in-phase (antiphase) synchro-
nization, and (k, τ ) values satisfying condition (ii) are the blue
regions in the parameter space.

Next, condition (iii) is discussed. To investigate the sta-
bility of the antiphase synchronization, Eqs. (6) and (7) are
linearized around the state described by Eq. (8) with m = 2, as

ẋ(t ) = (I4 ⊗ A)x(t ) + (CA ⊗ B)x(t − τ ), (12)

where

x(t ) := [�r1(t ) �θ1(t ) · · · �r4(t ) �θ4(t )]T ∈ R8

�r j (t ) := r j (t ) − r̂, �θ j (t ) := θ j (t ) − θ̂
(2)
j (t ),

A :=
[−3r̂2 + 1 − k kr̂ sin �τ

− k
r̂ sin �τ k cos �τ

]
,

B :=
⎡
⎣− k

2 cos �τ − k
2 r̂ sin �τ

k
2r̂ sin �τ − k

2 cos �τ

⎤
⎦.

The diagonal transformation matrix T : T−1CAT =
diag(2, 0, 0,−2) allows the linearized system (12) to be
simplified as follows:

zl = Azl + ρlBzl (t − τ ), (l = 1, . . . , 4),

where x = (T ⊗ I2)[zT
1 · · · zT

4 ]
T
. Here, ρ1 = 2, ρ2,3 = 0,

and ρ4 = −2 are the eigenvalues of CA. From this, the

3It should be noted that these curves are equivalent to the stabil-
ity boundaries for the equilibrium point Z1,...,4 = 0 of the oscillator
networks described by Eqs. (1) and (2) with CA.
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characteristic function of the linear system in Eq. (12) is
given by

f (s) :=
4∏

l=1

g(ρl , s),

where

g(ρl , s) := det[sI2 − A − ρl e
−sτ B]. (13)

Note that f (s) = 0 has one zero root s = 0, as g(ρ1, 0) = 0
always holds; this zero root corresponds to the synchroniza-
tion manifold. The antiphase synchronization state [Eq. (8)]
with m = 2 is stable if and only if all the roots of f (s) = 0
except the zero root have negative real parts.

The above results are now summarized. Conditions (i), (ii),
and (iii) hold if k and τ are selected such that the following
three conditions are satisfied: (i) k > 1; (ii) k and τ are within
the blue regions in Fig. 4 [i.e., Eqs. (10) and (11) hold]; (iii) all
the roots of f (s) = 0 except the zero root have negative real
parts. It should be noted that such a design procedure requires
some complicated computations. Thus, we show that if ω >

π , the following simple procedure for determining k and τ

can be used:

k ∈
(
1,

ω

π

)
, τ = π

ω
. (14)

The horizontal dotted line in Fig. 4 represents the set of (k, τ )
given by Eq. (14). The following demonstrates that k and τ in
Eq. (14) satisfy conditions (i), (ii), and (iii). Condition (i) is
obviously satisfied. For condition (ii), the existence of the an-
tiphase (m = 2) and in-phase (m = 0) synchronization states
are considered. For m = 2, there exists only the antiphase
synchronization state with � = ω and r̂ = 1. For m = 0, there
exists only � = ω satisfying Eq. (9b), and it also satisfies
Eq. (11). As a result, the antiphase synchronization with � =
ω exists, and the in-phase synchronization does not exist. For
condition (iii), the functions in Eq. (13) with the parameters
given in Eq. (14), � = ω, and r̂ = 1, are simplified. The well-
known analytical results for a one-dimensional linear delay
system [34] then imply following: g(ρ1, s) = 0 has a zero root,
but the other roots have negative real parts; g(ρ2,3, s) = 0 has
the two roots s = −k < 0 and s = −2 − k < 0; and all the
roots of g(ρ4, s) = 0 have negative real parts. These analytical
results indicate that the antiphase synchronization is stable. It
should be noted that the unfilled circle on the dotted line in
Fig. 4 represents the (k, τ ) values used in Figs. 2 and 3.

In addition to determining k and τ , the switching rule
that induces the suppression must be considered. It can be
easily confirmed that the suppression mechanism described
in the preceding subsection is valid for any switching order,
i.e., CA � CB, CB � CC, and CC � CA. This shows that the
suppression can be induced not only by the periodic orderings
given as examples in Fig. 2 but also by randomized orderings.

It would be interesting to examine how the number of
oscillators and the types of topologies influence these an-
alytical results. However, we focus here only on the four
delay-coupled oscillators described by Eqs. (1) and (2) with
the ring topology C(t ) ∈ {CA,CB,CC}, the simplest case for
amplitude suppression, because the main purposes of the
present paper are to report the occurrence of this suppression

and to analytically and experimentally clarify its essential
mechanism. Thus, the influence remains an issue to be inves-
tigated in future work.4

C. Numerical simulations

The influence of the connection parameters (k, τ ) and the
switching period T on the amplitude suppression was next
numerically investigated. Figures 5(a)–5(d) show the average
amplitude,

δ := 1

4

〈
4∑

j=1

∣∣Zj (t )
∣∣〉, (15)

in the (k, τ ) connection parameter space for the switching pe-
riods T = 5, 10, 20, and T → +∞ (i.e., invariant topology),
respectively. It should be noted that the topology was changed
in same manner as in Fig. 2(a) (i.e., CA � CB). The four
oscillators were isolated until t = 10, at which point they were
coupled with the network topology C(t ) = CA. The topology
then switched to C(t ) = CB at t = 10 + T and continued to
alternate in this manner in time intervals of T . In Eq. (15), 〈·〉
denotes averaging over t ∈ [100, 400]. The average amplitude
δ was numerically estimated in 101 × 101 grids in (k, τ )
space. The dark blue (yellow) regions in Fig. 5 represent areas
of small (large) average amplitude. These figures show that
the average amplitude depends on the switching period T .
For T = 5 (10 times the natural period of 0.5), as shown in
Fig. 5(a), the dark blue regions correspond to the blue regions
in Fig. 4 except where k � 1.5. It can be seen from Figs. 5(b)
(T = 10) and 5(c) (T = 20) that the dark blue regions shrink
with increasing switching period T . For T → +∞, as shown
in Fig. 5(d), the dark blue region remains only in the amplitude
death region.

To clarify the dependence of the amplitude suppression
on T , the time series data are shown in Figs. 6 and 7. The
amplitudes are not suppressed in these cases, even though the
coupling parameters satisfy conditions (i), (ii), and (iii). At
(k, τ ) = (1.50, 0.25) with T = 5 (i.e., the circle in Fig. 5(a)),
the amplitudes are not suppressed, as shown in Fig. 6(a).
Figure 6(b) shows an enlarged view at t ∈ [17, 22] to clarify
the reason for the failure of suppression. For t ∈ [17, 20],
the oscillators were coupled with C(t ) ≡ CB and converged
with antiphase synchronization [Eq. (3)]. As described ear-
lier, suppression is the repetition of the following actions in
order: antiphase synchronization, switching of the topology,
amplitude decrease, switching to another antiphase synchro-
nization state, and slow amplitude increase in this second
antiphase synchronization state. However, Fig. 6(b) shows
that the topology changes at t = 20, before the switch to
the second antiphase synchronization [Eq. (5)]. Accordingly,
the amplitudes did not converge to equilibrium points for
C(t ) ≡ CA. However, Fig. 7 shows time series data at (k, τ ) =
(3.0, 0.25) with T = 20 [i.e., the circle in Fig. 5(c)]. At

4It should be noted that condition (ii) requires the formation of two
clusters of antiphase synchronized oscillators; thus, condition (ii) is
not valid for odd numbers of oscillators with a ring topology due to
the impossibility of forming two such clusters.
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FIG. 5. Average amplitude δ in (k, τ ) connection parameter space for switching periods (a) T = 5, (b) T = 10, (c) T = 20, and (d) T →
+∞ (invariant topology).

t = 30, the amplitudes converged after the switching from CA

to CB; however, the amplitudes then fully grew before the next
topology switch because the switching period was too long to
maintain the suppressed state.

In addition, the relationship between the suppressed area
in the parameter space (k, τ ) and the switching period T ∈
[0.5, 40] was numerically investigated in the same manner as
in Fig. 5. Here, the switching period T was presumed to be
longer than the natural period of the oscillator of 2π/ω = 0.5.
An index was defined as

β[%] := Size of the suppressed area with δ � 10−3

Size of space (k, τ ) : k ∈ [0, 5] and τ ∈ [0.01, 1.01]

× 100,

to evaluate the ratio of the size5 of the suppressed area (i.e.,
blue regions in Fig. 5) to the size of (k, τ ) parameter space.

5Numerical simulations were conducted in 101 × 101 grids with
k ∈ [0, 5] and τ ∈ [0.01, 1.01]. The size is given by the number of
grid elements.

The index β is plotted against the switching period T in Fig. 8.
The points at T = 5, 10, and 20 correspond to Figs. 5(a), 5(b)
and 5(c), respectively. The inset in Fig. 8, which presents a
detailed view of the data for T ∈ [0.5, 5], shows that the index
β is maximized at T = 3. For T > 3, the index β decreases as
the switching period increases and then approaches the dashed
line. The dashed line β ≈ 4.88% denotes the ratio of the size
of the amplitude death region to the size of (k, τ ) space for the
time-invariant network (i.e., C(t ) ≡ CA, CB, or CC) shown in
Fig. 5(d). As shown in Figs. 5(a), 5(b) and 5(c), the suppressed
regions shrink with increasing switching period; however,
these regions with T = 5, 10, and 20 commonly include the
amplitude death region of the time-invariant network with
T → +∞. In addition, we numerically estimated the index
β as a function of T at the lower frequency ω = 2π and the
higher frequency ω = 8π : similar trends were observed.

The above discussion can be summarized as follows: the
size of the suppressed area depends on the switching period
T , and the slow-switching topology has the potential to en-
large the suppressed area relative to that of the time-invariant
topology.
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FIG. 6. Switching before suppression for (a) t ∈ [0, 60] and
(b) t ∈ [17, 22]: k = 1.50, τ = 0.25, T = 5.00.

IV. CIRCUIT EXPERIMENTS

The preceding section analytically and numerically clar-
ified the mechanism of amplitude suppression in Stuart–
Landau oscillators, which are ideal oscillators near the
Hopf bifurcation. The present section aims to experimen-
tally demonstrate that amplitude suppression occurs even in
chaotic oscillators.

Let us consider the double-scroll circuit j ∈ {1, . . . , 4}
(see Fig. 9), which is a well-known chaotic oscillator [35]
described by

Ca
dv

( j)
a (t )

dt
= 1

Rd

{
v

( j)
b (t ) − v

( j)
b (t )

} − h(v( j)
a ),

Cb
dv

( j)
b (t )

dt
= 1

Rd

{
v( j)

a (t ) − v
( j)
b (t )

} + i( j)
L (t ) + i( j)

u (t ),

L
di( j)

L (t )

dt
= −v

( j)
b (t ),

FIG. 7. Switching after amplitude growth: k = 3.00, τ =
0.25, T = 20.0.

FIG. 8. Index β for suppression ratio plotted against switching
period T with oscillator frequency ω = 4π .

where v
( j)
a (t ) [V] and v

( j)
b (t ) [V] are the voltages applied to

the respective capacitors Ca [F] and Cb [F], and Rd [�] is
the circuit resistor. The currents i( j)

L (t ) [A] and h(v( j)
a ) [A],

respectively, flow through the inductor L [H] and the nonlinear
resistor [36] given by

h(v) := m0v + 1
2 (m1 − m0){|v + Bp| − |v − Bp|},

where m0, m1, and Bp are parameters. The coupling current
from the other oscillators to the jth oscillator is described by

i( j)
u (t ) = Rd

Rk

4∑
l=1

c jl (t )
{
v

(l )
b (t − Td ) − v

( j)
b (t )

}
,

where Td [s] is the delay time. The ratio Rd/Rk > 0 with the
coupling resistor Rk ∈ [180 �, 1800 �] represents the cou-
pling strength.

The delay unit in Fig. 9 consists of level shift circuits, a PIC
device (PIC18F2550), and an R–2R resistor ladder digital-to-
analog converter [26,37]. The PIC device imports the voltage
v

( j)
b (t ) with a sampling interval 25 × 10−6 s through the level

shift circuit and the incorporated 10-bit analog-to-digital con-
verter. The imported data v

( j)
b (t ) are stored in a first-in first-out

queue on the PIC device for Td [s]. The PIC device outputs
the stored data as the delayed voltage v

( j)
b (t − Td ) via the 8-bit

digital-to-analog converter and the level shift circuit.

FIG. 9. Diagram of coupled double-scroll circuit.
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FIG. 10. Four double-scroll circuits with switching topologies.

The parameters for the double-scroll circuits are fixed at

Ca = 0.1 μF, Cb = 1.0 μF,

L = 180 mH , Bp = 1.0 V, Rd = 1.8 k�,

m0 = −0.4 mS, m1 = −0.8 mS,

and the double-scroll chaotic attractor occurs in each circuit
with a natural period6 of Tf ≈ 3 × 10−3 s. Here, the individual
circuit has the following three unstable equilibrium points:

[va vb iL]T = [0 0 0]T ,
[±2.57 0 ∓1.43 × 10−3

]T
.

As illustrated in Fig. 10, the delay-coupled oscillator net-
work consists of four double-scroll circuits (see Fig. 9) and
analog switches (ADG452). These switches are controlled by
the binary voltage signals corresponding to c jl (t ) ∈ {0, 1},
which is the ( j, l )th element of the adjacency matrix C(t ).
A high (low) signal allows (does not allow) the delay volt-
age v

(l )
b (t − Td ) to drive the coupling current i( j)

u (t ) through
the coupling resistor Rk. The binary voltage signals are con-
trolled by a microcontroller board (Arduino Due). Figure 11
shows the experimental setup of the delay-coupled double-
scroll circuits with a time-varying network; the four circuit
board layers are connected by coupling resistors. Each board
consists of a double-scroll circuit, a delay unit, and analog
switches. The voltages va(t ) and vb(t ) are imported into a
personal computer (Windows 7 32bit, Intel Core i3-540, 2 GB
RAM) through a 12-bit analog-to-digital input board (PCI-
3153, Interface Corp.) at a sampling rate of 30 kHz and an
input voltage range of ±5 V.

The time series data for v
( j)
b (t ) ( j = 1, . . . , 4) for

(Rd/Rk, Td ) = (4.85, 2.25 × 10−3 s) and T = 150 × 10−3 s
are shown in Fig. 12. The four circuits were isolated until
t = 0.5 s, and then coupled with C(t ) = CA. The network
topology C(t ) ∈ {CA,CB} alternated between the two possible
states. As shown in Fig. 12(a), the amplitudes of all the circuits
were suppressed around the equilibrium point vb = 0 V.

6The natural period was estimated from the eigenvalue of the
Jacobian matrix at the equilibrium points [va vb iL]

T =
[±2.57 0 ∓1.43 × 10−3]

T
.

FIG. 11. Experimental setup of delay-coupled double-scroll cir-
cuits with time-varying topology.

The occurrence of the amplitude suppression in double-
scroll circuits was then confirmed. In Sec. III A, it was
demonstrated that the essential mechanism of amplitude sup-
pression in Stuart–Landau oscillators is the repetition of the
following actions in order: antiphase synchronization, switch-
ing of the topology, amplitude decrease, switching to another
antiphase synchronization state, and slow amplitude increase
with this second antiphase synchronization state (see Fig. 3).
Figures 12(b), 12(c) and 12(d) show enlarged views of the
data at the first topology switch CA → CB, the second switch
CB → CA, and the third switch CA → CB, respectively. The
enlarged view at t ∈ [0.64 s, 0.72 s] [Fig. 12(b)] demonstrates
that the voltage pairs v

(1,3)
b (t ) and v

(2,4)
b (t ) were synchronized

until t = 0.65 s; however, the pairs v
(1,3)
b (t ) and v

(2,4)
b (t ) were

not perfectly antiphase synchronized with each other. Just
after C(t ) switched from CA to CB at t = 0.65 s, the voltages
v

( j)
b (t ) were suppressed and began to oscillate immediately

because they were not completely antiphase synchronized.
The voltages v

( j)
b (t ) were observed to increase with antiphase

synchronization, as

v
(1)
b (t ) ≈ v

(2)
b (t ) ≈ −v

(3)
b (t ) ≈ −v

(4)
b (t ). (16)

The topology changed at t = 0.80 s [see Fig. 12(c)], and then
all the voltages v

( j)
b (t ) converged to the equilibrium point

vb = 0 V. For C(t ) = CA, the voltages v
( j)
b (t ) strayed from

the antiphase synchronization state described in Eq. (16) be-
cause of the noise, and then, as illustrated in Fig. 12(d), they
switched to another antiphase synchronization state,

v
(1)
b (t ) ≈ −v

(2)
b (t ) ≈ v

(3)
b (t ) ≈ −v

(4)
b (t ).

Furthermore, the voltages v
( j)
b (t ) were suppressed when the

topology switched at t = 0.95 s. After the suppression, the
voltages slowly increased. This observation demonstrates
that amplitude suppression can occur not only in Stuart–
Landau oscillators (i.e., ideal limit-cycle oscillators) but also
in double-scroll circuits (i.e., chaotic oscillators) by the same
mechanism.

Section III C showed the influence of the coupling pa-
rameters (k, τ ) and the switching period T on amplitude
suppression in Stuart–Landau oscillators (see Fig. 5). On
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FIG. 12. Time-series data for v
( j)
b (t ) for (Rd/Rk, Td ) =

(4.85, 2.25 × 10−3 s) and T = 150 × 10−3 s. (a) t ∈ [0 s, 1.7 s],
(b) t ∈ [0.64 s, 0.72 s], (c) t ∈ [0.79 s, 0.87 s], and (d) t ∈
[0.94 s, 1.02 s].

this theoretical basis, the influence of the coupling param-
eters (Rd/Rk, Td ) and switching period T [s] on amplitude
suppression in double-scroll circuits was experimentally
demonstrated. Figure 13 shows the experimental results in
(Rd/Rk, Td ) connection parameter space for the switching
periods T = 30 × 10−3 s, 150 × 10−3 s, 300 × 10−3 s and
T → +∞ (time-invariant topology), respectively. The plotted
circles represent the average amplitude,

δ := 1

4

〈
4∑

j=1

∣∣v( j)
b (t )

∣∣〉,

where 〈·〉 denotes the average over t ∈ [1.2 s, 1.7 s]. The
blue (yellow) circles indicate a small (large) amplitude.
Figures 13(a)–13(c) demonstrate that the blue circles (i.e., the
suppressed region) depend on the switching period T [s]. It
should be noted that the switching periods T = 30 × 10−3,
150 × 10−3, and 300 × 10−3 s are much longer than the
natural period of the double-scroll circuits, which is Tf ≈
3 × 10−3 s. Figure 13(d) shows the experimental results for
a time-invariant network (i.e., T → +∞); amplitude death
occurs in the region of the blue circles. It was observed that
the time-varying networks have larger suppressed regions than
the time-invariant network, which is consistent with Fig. 5.
Figure 13 demonstrates that the suppressed regions shrink
with increasing switching period and that these regions in
the case of T = 30 × 10−3, 150 × 10−3, and 300 × 10−3 s
commonly include the amplitude death region of the time-
invariant network. These experimental results are consistent
with the numerical results presented in Sec. III C.

V. CONCLUSIONS

This paper presented an investigation of amplitude sup-
pression in a delay-coupled oscillator network with a time-
varying topology in which the topology changes at a rate
much lower than the oscillator frequency. It was revealed
that the mechanism behind the suppression is repetition of
the following actions in order: antiphase synchronization,
switching of the topology, amplitude decrease, switching to
another antiphase synchronization state, and slow amplitude
increase with the second antiphase synchronization state. The
mechanism was verified numerically with the Stuart–Landau
oscillator, and a procedure for determining the coupling pa-
rameters (k, τ ) to induce the suppression was presented on
the basis of the mechanism. The suppressed regions in (k, τ )
connection parameter space depend on the switching period
T . The time-varying networks were found to have a larger
suppressed region than the time-invariant network. Further-
more, the amplitude suppression phenomenon was observed
with double-scroll circuits. The experimental results demon-
strate that amplitude suppression can occur not only in the
Stuart–Landau oscillators but also in the double-scroll chaotic
circuits by the same mechanism.
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FIG. 13. Average amplitude δ in (Rd/Rk, Td ) connection parameter space for switching periods (a) T = 30 × 10−3 s, (b) T = 150 × 10−3 s,
(c) T = 300 × 10−3 s, and (d) T → +∞ (invariant topology).
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